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Abstract

The effects of the earthquakes on buildings and the concept of seismic base isolation are
investigated by using the model of the vibrating bar embedded at one end. The normal modes
and the eigenfrequencies of the bar are highlighted and the response to oscillating shocks is
computed for several typical shock structures. A special atention is devoted to the oscillating
shock, especially with a sharp wavefront, deemed as a suitable model for the seismic main
shock with its long tail. It is shown that in all cases the response of the bar is governed by an
amplification factor, which includes cumulative information about the shock duration, height
of the bar above the ground surface and the velocity of the elastic waves in the bar. The
amplification of the response is due to the excitation of the normal modes (eigenmodes). The
efect is much enhanced at resonance, for oscillating shocks which contain eigenfrequencies of
the bar. Also, the response of two linearly joined bars with one end embedded is calculated.
It is shown that for very different elastic properties the eigenfrequencies are due mainly to the
"softer" bar. The model of the embedded bar provides a way of understanding the well-known
amplification site effects of the earthquakes, as arising from the excitation of the normal modes
in local inhomogeneities. The effect of the base isolation in seismic structural engineering is
assessed by formulating the model of coupled harmonic oscillators, as a simplified model
for the structure building-foundation viewed as two coupled vibrating bars. The coupling
decreases the lower eigenfrequencies of the structure and increases the higher ones. Similar
amplification factors are derived for coupled oscillators at resonance with an oscillating shock.

Introduction. Embedded bar. The concept of seismic base isolation aims at formulating solu-
tions for protecting buildings against earthquakes, by designing special couplings betwen buildings
and their foundations. As a key element in earthquake engineering it aims at designing means of
achieving to some extent a building-foundation decoupling, such that the response of the building
to vibrations be not (too) damaging. Usually, the dynamics of the structure building-foudation is
approached by means of the model of two coupled oscillators. We examine here the formulation
of this model starting with coupled elastic bars.[1]-[7] To this end, it is useful to assess first the
response to the ground excitation of a vibrating bar with one end embedded in the ground. For
ground excitation we focus mainly on oscillating shocks with a sharp wavefront, as corresponding
to seismic excitation, especially the seismic main shock with its long tail. At resonance it is shown
that the response of the bar exhibits amplification factors which may attain large values. The
amplification factors are given by a combination of the shock duration, the heigth of the bar above
the ground surface and the velocity of the elastic waves in the bar. The amplification factors arise
as a consequence of the excitation of the normal modes in the bar. Two coupled bars are also
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studied, excited at their lower end; for bars with very different elastic properties it is shown that
the eigenfrequencies of this system are given mainly by the "softer" bar. Such an information may
throw light upon the elasticity of composite structures, like, for instance, those including voids.
A bar buried completely in the ground may serve as a model for local inhomogeneities in the soil;
it is shown that such an inhomogeneity may exhibit large spectral amplification factors. Making
use of the information gained from the study of the vibrating bars we fromulate the model of
coupled harmonic oscillators and investigate its response to an oscillating shock. It is shown that
the lower frequency of the system is lowered by the coupling, while the higher frequency is raised.
At resonance the coupled oscillators exhibit amplification factors, similar with the vibrating bar.

The most convenient model for investigating the response of a building to ground vibrations is the
bar embedded at one end. Let us assume that a vertical elastic bar with uniform cross-section is
fixed in the ground at one end, having a length l above the ground surface; the bar end above the
ground is free. Under the action of the seismic waves the buried end of the bar is set in motion.
We assume the cross-sectional dimensions of the bar being much smaller than the bar length,
so we may limit ourselves only to the z-dependence of the displacement, where z is the vertical
coordinate (along the bar). At the same time, we consider the length of the bar and the excitation
sufficiently small, such that the bar does not enter the regime of flexural elasticity (bending).
The strain tensor reduces to uxz = uzx = 1

2
∂ux/∂z, uyz = uzy = 1

2
∂ux/∂z and uzz = ∂uz/∂z;

the stress tensor is σxx = σyy = λ∂uz/∂z, σzz = (λ + 2µ)∂uz/∂z, σxz = σzx = µ∂ux/∂z and
σyz = σzy = µ∂uy/∂z, where λ and µ are the Lame coefficients. It follows an elastic force density
fx = ∂σxz/∂z = µ∂2ux/∂z

2, fy = ∂σyz/∂z = µ∂2uy/∂z
2 and fz = (2µ + λ)∂2uz/∂z

2. The
equations of the elastic motion are[8]

ρüx − µ∂2ux

∂z2
= 0 , ρüy − µ∂2uy

∂z2
= 0 ,

ρüz − (λ+ 2µ)∂
2ux

∂z2
= 0 ,

(1)

where ρ is the density of the bar. We may limit ourselves to only one equation of motion, which
we write in the generic form

ü− c2
∂2u

∂z2
= 0 , (2)

where u and c stand for ux,y,z and, respectively, cl =
√
(λ+ 2µ)/ρ, ct =

√
µ/ρ); cl,t are the

velocities of the longitudinal and, respectively, transverse waves in the bar.

Shock-type excitation. We solve equation (2) for a free upper end of the bar, while the lower
end has the prescribed motion u0(t) of the ground; therefore, we impose the boundary conditions

∂u
∂z

|z=l= 0 , u |z=0= u0(t) ; (3)

the motion is limited to t > 0 and 0 < z < l. Using time Fourier transform, equation (2) and the
boundary conditions (3) read

u
′′

+ κ2u = 0 , u
′

l = 0 , u0 = u0(ω) , (4)

where κ2 = ω2/c2 and the prime denotes the derivation with respect to z.

We note that the solution for the limited interval 0 < z < l can also be obtained by extending
the equation to the whole space and limiting ourselves to the restriction of the solution to the
interval 0 < z < l; as it is well known, this is achieved by multiplying the equation by θ(z)θ(l −
z) and absorbing the step functions θ in the derivatives (the method of generalized functions).
Unfortunately, we should use in this case the Green function which implies wave propagation
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in both directions, in order to satisfy the boundary conditions at infinity; this complicates the
technical procedure (in contrast with the half-line, where one-direction Green function is needed).

The natural "initial" condition which requires the vanishing of the solution for past times (t < 0)
is treated most conveniently by integrating over frequency ω in the lower half-plane (the causality
condition).

The solution of the equation (4) has the form

u = A cosκz +B sin κz , (5)

where the constants A and B are determined by the boundary conditions; we get

A = u0 , B = u0 tan κl (6)

and
u(z, ω) = u0(ω) (cos κz + tanκl · sin κz) . (7)

The reverse Fourier transform gives

u(z, t) =
1

2π

∫
dωu0(ω)e

−iωt cosκz +
1

2π

∫
dωu0(ω)e

−iωt tanκl · sin κz , (8)

or

u(z, t) =
1

2
[u0(t− z/c) + u0(t+ z/c)] +

1

2π

∫
dωu0(ω)e

−iωt tan κl · sin κz , (9)

where we take the real part. We can see that half of the displacement u0(t) applied to the
grounded end propagates along the bar with velocity c, while the other half propagates in the
opposite direction (it "comes from the future").

We consider seismic excitations which have a general aspect of shocks, i.e. they are concentrated
in at the initial moment of time. This is valid for both the primary P and S waves, as well as
for the main shock produced by the so-called surface waves. Consequently, we assume first a
shock-like ground motion u0(t) = u0Tδ(t), u0(ω) = u0T , where T is a measure for the duration of
the shock. The second integral in equation (9) implies the contribution of the poles arising from
the zeroes of the denominator of tanκl: cosκl = cosωnl/c = 0, ωn = (2n + 1)πc/2l, where n is
any integer. We get

u(z, t) =
1

2
u0T [δ(t− z/c) + δ(t + z/c)] + u0

cT

l

∑

n

sinωnt · sinωnz/c . (10)

We can see that half of the δ-pulse applied at the fixed end at the initial moment propagates along
the bar up to z = l, while the other half, "coming from the future", brings no contribution to the
motion of the bar (0 < z < l), except for z = 0; in addition, vibrations given by the normal modes
with the eigenfrequencies ωn are excited in the bar.

The amplitude of the pulse is of the order u0, while the amplitude of the normal modes is of the
order u0cT/l; we introduce the parameter

g =
cT

l
(11)

and denote by un(t, z) the contribution to the displacement of the n-th normal mode, i.e.

un = gu0 sinωnt · sinωnz/c ; (12)
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the corresponding velocity and acceleration are given by

u̇n = gu0ωn cosωnt · sinωnz/c = g
u0

T
(ωnT ) cosωnt · sinωnz/c (13)

and, respectively,

ün = −gu0ω
2
n sinωnt · sinωnz/c = −g

u0

T 2
(ωnT )

2 sinωnt · sinωnz/c . (14)

A δ-shock of the form u(t) = u0Tδ(t) includes a superpositions of oscillations with equal weights
for all frequencies. We can see from the above equations that the response of the bar is affected by
the factor g and powers of ωnT ; beside the ground displacement u0, the quantities u0/T and u0/T

2

may be viewed as ground velocity and, respectively, acceleration. Typical values of the velocity of
the elastic waves in the bar are c ≃ 3 × 103m/s; for a short duration T = 0.1s we get g = 10 for
a length l = 30m. We can see that the displacement, velocity and acceleration amplitudes in the
bar could be enhanced in comparison with their ground counterparts. This is why we may call
the parameter g the amplification factor.

However, a pulse with a finite duration T excites mainly frequencies ωn up to ≃ π/T ; in the above
formulae, a weight factor f(ωn) should be inserted, which decreases appreciably for frequencies
ωn > π/T ; therefore, the amplification parameter is subject to the condition

ωnT =
(2n+ 1)π

2
g ≤ π , (15)

which implies values for g of the order as high as unity, corresponding to the fundamental frequency
ω0 = πc/2l (n = 0). In addition, it is well knwon that the seismic spectrum includes a range of
frequencies extending up to ≃ 10s−1, which is far below a fundamental frequency of the order
c/l ≃ 100s−1 for c ≃ 3 × 103m/s and l = 30m. Therefore, it is unlikely that a short pulse can
excite normal modes which might lead to appreciable amplification factors in reasonable conditions.
However, the situation is different if the pulse includes resonance frequencies.

As a technical point, we note that if the pulse is applied at some point on the bar, different from
the bar ends, then we deal in fact with two bars; the solution has four constants of the type A and
B in equation (5) and the boundary conditions are the continuity of the displacement at the point
of application of the excitation, the equality of the displacement with the excitation at that point
and the conditions at the two ends; the resulting four equations determine the four constants of
the solution.

Oscillating shock. If the ground displacement has the form of a harmonic oscillation u0(t) =
u0 cosω0t, u0(ω) = π[δ(ω − ω0) + δ(ω + ω0)], the displacement in the bar (equation (9)) is

u(z, t) = u0 cosω0t (cosω0z/c+ tanω0l/c · sinω0z/c) = u0 cosω0t
cosω0(z − l)/c

cosω0l/c
; (16)

if ω0 happens to be an eigenfrequency of the bar (ω0 = ωn), then the amplitude increases indef-
initely, and the dangerous resonance phenomenon occurs (we recall that the eigenfrequencies ωn

are the roots of the equation cosωnl/c = 0).

Let us assume a ground motion given by

u0(t) = u0θ(t)e
−αt cosω0t , (17)

where θ(t) = 1 for t > 0, θ(t) = 0 for t < 0 is the step function and 0 < α ≪ ω0; it represents an
oscillating shock with a sharp wavefront, attenuated in time with the rate α, which is deemed to
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model the seismic main shock with its long tail (produced by the so-called surface waves).[9] The
Fourier transform of u0(t) is

u0(ω) =
i

2
u0

(
1

ω − ω0 + iα
+

1

ω + ω0 + iα

)
. (18)

The displacement given by equation (9) includes the propagating shocks θ(t±z/c)e−α(t±z/c) cosω0(t±
z/c), which we leave aside here. The integral in equation (9) includes contributions from the poles
±ω0 − iα of the shock and contributions from the normal modes with eigenfrequencies ωn (the
poles of tan κl). For ω0 different from all ωn we get

u(z, t) ≃ u0e
−αt cosω0t · tanω0l/c · sinω0z/c−

− c
2l
u0

∑
n

[
(ωn−ω0) cos ωnt−α sinωnt

(ωn−ω0)2+α2 + (ωn+ω0) cos ωnt−α sinωnt
(ωn+ω0)2+α2

]
sinωnz/c ;

(19)

for ω0 = ωn (at resonance)

u(z, t) = u0
c

l

1− e−αt

α
sinω0t · sinω0z/c . (20)

We can see that the displacement amplitudes at resonance are (c/lα)u0, i.e. in the amplification
factor g = cT/l the duration T is replaced by 1/α, as expected. We note that for ω0 = 0 the
amplitude is reduced to (c/lωn)u0. Similarly, the response velocity and aceleration include factors
u0ω0 and u0ω

2
0, respectively, which now can be viewed as corresponding to the ground velocity

and acceleration; the amplification factor for these quantities is g = c/lα, as for the displacement.

A similar conclusion is reached for a ground motion given by

u(t) = u0e
−α2(t−T/2)2 cosω0t , (21)

which is a harmonic oscillation with frequency ω0 attenuated in time by a gaussian with the rate
α ≪ ω0, centered at the moment T ; its Fourier transform is

u(ω) =
1

2
u0

√
π

α
e

1
2
iT (ω+ω0)−(ω+ω0)2/4α2

+ (ω0 → −ω0) ; (22)

the contribution of the normal modes is

un(z, t) =
cu0

2lα

√
π sin [ωn(t− T/2) + ω0T/2] sinωnz/c · e−

(ωn−ω0)
2

4α2 + (ω0 → −ω0) . (23)

We can see from equation (23) that at resonance (ω0 = ωn) the amplitude of the oscillations is
of the order (c/lα)u0, where 1/α is a measure for the pulse duration T . For a superposition of
harmonic oscillations weight factors f(ωn) should be inserted in the amplification factor c/lα. It
is worth emphasizing that amplification factors of the type g = c/lα may attain high values.

Coupled bars. Let us assume a bar with length l fixed at z = 0 to another long bar with length
l0; we denote the former bar by 1 and the latter bar by 2; bar 1 extends above the ground surface,
while bar 2 is buried in the ground. The equations of elastic motion in the two bars are

ü1 − c21u
′′

1 = 0 , ü2 − c22u
′′

2 = 0 , (24)

where u1,2 are the displacement in the two bars; the boundary conditions are

u2 |z=−l0= u0(t) , u1 |z=0= u2 |z=0 ,

µ1u
′

1 |z=0= µ2u
′

2 |z=0 , u
′

1 |z=l= 0 ,
(25)
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which signify, respectively, a ground motion applied to the lower end z = −l0 of bar 2, the
continuity of the displacement at the joining point (the bars are rigidly connected to each other),
the absence of the force at the interface z = 0 and the free upper end z = l; the force is written
for a shear displacement; for compression (dilatation) the rigidity moduli µ1,2 should be replaced
by λ1,2 + 2µ1,2. The solutions of equations (24) and (25) are

u1(z, ω) = u0(ω)
cosκ1(z−l)

cosκ1l cos κ2l0−
µ1κ1
µ2κ2

sinκ1l sinκ2l0

u2(z, ω) = u0(ω)
cosκ1l cos κ2z+

µ1κ1
µ2κ2

sinκ1l sinκ2z

cosκ1l cos κ2l0−
µ1κ1
µ2κ2

sinκ1l sinκ2l0
.

(26)

The eigenfrequencies are given now by

tanωnl/c1 · tanωnl0/c2 =
µ2κ2

µ1κ1
=

√
ρ2µ2

ρ1µ1
(27)

and amplification factors appear, similarly with a single bar. If bar 2 is much "softer" than bar 1
(µ2/ρ2 ≪ µ1/ρ1) the (lowest) eigenfrequencies are given by ωn = (c2/l0)αn, where αn are the roots
of the equation αn tanαn = ρ2l0/ρ1l. If bar 1 is "softer", the eigenfrequencies are ωn = (c1/l)βn,
where βn tanβn = µ2l/µ1l0. We can see that the eigenfrequencies are controlled by the elastic
properties of the "softer" bar. This result gives an indication regarding the vibration properties
of bars with a composite structure (e.g., including voids).

Buried bar. We consider now a bar completely buried in the ground, with both ends free (its
orientation is immaterial); we assume that the bar moves freely in the ground, with a displacement

u = A cosκz +B sin κz (28)

superposed upon the displacement u0 of the ground. We assume a ground excitation

u0(z, t) = u0θ(t)e
−αt cosω0t · cosκ0z , (29)

where κ0 = ω0/c0, c0 being the wave velocity in the soil; the Fourier transform of this excitation
is

u0(z, ω) =
i

2
u0 cosκ0z

(
1

ω − ω0 + iα
+

1

ω + ω0 + iα

)
. (30)

The condition of free ends (with the displacement u0 + u) gives

u(z, ω) = − i

2
u0

κ0 sin κ0l

κ sin κl

(
1

ω − ω0 + iα
+

1

ω + ω0 + iα

)
cosκz . (31)

The reverse Fourier transform of the displacement u includes contributions from the excitation
poles ω = ±ω0 and from the eigenfrequencies ωn = nπc/l, for n any non-vanishing integer (the
roots of the equation sinωnl/c = 0). For ω0 different from all ωn the displacement is

u(z, t) = −u0
c sinω0l/c0
c0 sinω0l/c

e−αt cosω0t · cosω0z/c−

−u0
∑

n(−1)n ω0c2

2c0lωn
sinω0l/c0

(
eiωnt

ω−ω0+iα
+ e−iωnt

ω+ω0+iα

)
cosωnz/c .

(32)

For ω0 = ωn (resonance) the displacement is given by

u(z, t) = (−1)nu0
c2

c0l
sinω0l/c0

1− e−αt

α
sinω0t · cosω0z/c . (33)
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We can see the occurrence of an amplification factor

g =
c2

c0lα
sinω0l/c0 , (34)

which now has a more complex structure; it depends on the wave velocity c0 and frequency ω0 of
the excitation (it is a spectral amplification factor).

This result may throw an interesting light upon the so-called amplification site effect.[10]-[14] It is
well known that the ground displacement, velocity and acceleration may exhibit large local varia-
tions from site to site. In the light of the above result it is easy to see that a local inhomogeneity
surrounded by a different environment may behave as a buried bar, and the normal modes set in
this inhomegeneity may exhibit large amplifications factors. The effect is enhanced for a stiff in-
homogenity (c ≫ c0), but for low attenuation factors α it may appear also for soft inhomogenities.
The conditions for its occurence are the resonance and seismic waves with wavelengths shorter
than the linear dimension of the inhomogeneity. We note that it is easy to see that the bar-
shape of the inhomogeneity is irrelevant; the amplification may occur for inhomogeneities of any
shape; the necessary conditions are c0/ω0 < l (excitation wavelength shorter than the dimension
of the inhomogeneity) and ω0 = ωn = cαn/l, where αn is a numerical coefficient which gives the
eigenfrequency ωn (increasing with incresaing n); these conditions imply c0 < cαn.

We can see that there exists a discontinuity between the soil displacement u0 and the displacement
u of the bar at the points of the bar. If we allow for a finite extension d of the bar, along, say,
the transverse direction x, then, the soil displacement along this direction can be written as
u0 cosω0(t − x/c0) and the bar (internal) displacement is u0 cosω0(t − x/c). We can see that
the displacement is continuous at x = 0, while the continuity at x = d is attained only for
ω0d(1/c0 − 1/c) = (−1)n2πn, where n is any integer; this is a vibration condition for the bar
thickness d, which, in general is not satisfied (for a given frequency ω0); equally well, it can be
viewed also as a condition for the frequency ω0. The continuity of the displacement along the bar
is not fulfilled (for given soil displacement).

Coupled oscillators. We examine here the necessary conditions for two coupled vibrating bodies
be approximated by two coupled dimensionless (point) harmonic oscillators;[15] to this end we use
the model of coupled vibrating bars described above. From equations (1) the motion of the n-th
normal mode is described by the equation

ρün + µκ2
nun = ρün + ρω2

nun = 0 ; (35)

we can see that the z-dependence becomes irrelevant, and we may view un as a global represen-
tation of the dispalcement of a point oscillator; this equation is written for the shear modes, but
it has the same form, with µ replaced by λ+ 2µ, for the longitudinal modes. This is the equation
of the harmonic oscillators with a set of eigenfrequencies. For frequencies near a certain eigenfre-
quency ω1 (e.g., the fundamental frequency) we may limit ourselves to only one harmonic-oscillator
equation, written as

ü1 + ω2
1u1 = 0 ; (36)

we have introduced the label 1 because a similar equation is written for another oscillator, denoted
by 2, coupled to the former.

At the joining point z = 0 bar 1 acts with a force density (per unit area) µ1u
′

1 |z=0 on bar 2, while
bar 2 acts with a force µ2u

′

2 |z=0 on the former (for shear displacement, equations (25)). The forces
which act upon the bars viewed as oscillators are µ1,2u

′

1,2 |z=0 S, where S is the area of the joining

surface. The derivatives of the displacement can be represented as u
′

1,2 |z=0≃ u1,2/d1,2, where d1,2
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are some fictitious distances, introduced for controlling the dimensionality of the equations. It
follows that the interaction forces are of the order µ1,2u1,2S/d1,2. In order to conserve energy we
must have µ1S/d1 = µ2S/d2; indeed, µ1Sd2 = µ2Sd1 is the interaction energy transfered between
the two oscillators. This is a necessary condition for the two bars be approximated by oscillators.
Therefore, we introduce the elastic interaction constant

K = µ1S/d1 = µ2S/d2 (37)

and write the equations of motion for the two oscillators

m1,2ü1,2 +m1,2ω
2
1,2u1,2 +Ku2,1 = 0 , (38)

where we introduced the mass m1,2 for each oscillator. It is worth comparing the interaction
constants K with the oscillator constants

m1,2ω
2
1,2 ≃ m1,2

c21,2
l21,2

α2
1,2n = (µ1,2S/l1,2)α

2
1,2n , (39)

where α1,2n are numerical factor from the eigenfrequencies ω1,2n = (c1,2/l1,2)α1,2n; these factors
increase with increasing n. For lower frequencies and l1,2 of the same order of magnitude as d12,
all the oscillation constants m1,2ω

2
1,2 and K are of the same order of magnitude. This implies a

severe restriction upon the coupled-oscillators approximation, since, rigourously speaking, these
energies are not equal; it originates in the circumstance that the model of coupled oscillators
requires the eigenfrequencies and the coupling constant derive from different forces, while for
elastic bars these quantities have the same common orgin - the elastic force. However, if we
give up the assumption of a sharp joining surface and consider that the two bars are welded,
then there exists a smooth joining and the difference between the two interaction forces and the
transferred interaction energies is taken over by the welding; during motion we have a mechanical
work dissipated in the welding. In these conditions we may assume m1ω

2
1 6= m2ω

2
2 6= K.

The potential energy associated with these two oscillators reads

V =
1

2
m1ω

2
1u

2
1 +

1

2
m2ω

2
2u

2
2 +Ku1u2 ; (40)

it must have a minimum for u1,2 = 0; this condition implies

K2 < m1m2ω
2
1ω

2
2 . (41)

With the notations introduced above this inequality reads

l1l2 < d1d2α
2
1nα

2
2n , (42)

which can be satisfied, especially for higher eigenfrequencies.

It is convenient to introduce a parameter 0 < γ < 1 through

K2 = m1m2ω
2
1ω

2
2(1− γ) ; (43)

for γ = 1 there is no coupling, for γ = 0 the coupling is maximal. The parameter γ is a
dimensionless coupling constant; we are interested in γ close to zero (maximal coupling). Also,
we introduce the notations k1,2 = K/m1,2, such that the system of equations (38) can be written
as

ü1,2 + ω2
1,2u1,2 + k1,2u2,1 = 0 . (44)
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The eigenfrequencies of this system of equations are the roots Ω1,2 of the equation

∆ = Ω2 − (ω2
1 + ω2

2)Ω
2 + ω2

1ω
2
2γ = 0 ; (45)

we get

Ω2
1 =

1

2

[
ω2
1 + ω2

2 +
√
(ω2

1 + ω2
2)

2 − 4ω2
1ω

2
2γ

]
≃ ω2

1 + ω2
2 (46)

and

Ω2
2 =

1

2

[
ω2
1 + ω2

2 −
√
(ω2

1 + ω2
2)

2 − 4ω2
1ω

2
2γ

]
≃ ω2

1ω
2
2

ω2
1 + ω2

2

γ . (47)

We can see that Ω2
1 increases from ω2

1 up to ω2
1 + ω2

2, while Ω2
2 decreases from ω2

2 (ω2
2 < ω2

1) down
to zero for K2/m1m2 going from zero to its maximum value ω2

1ω
2
2 (for γ going from 1 to 0); the

coupling lowers the low eigenfrequency and raises the high eigenfrequency.

For a realistic use of the coupled-oscillator model we consider the two oscillators as corresponding
to a building (oscillator 2) and its foundation (oscillator 1). For a stiff foundation, such that
ω1 > ω2 the eigenfrequencies of the building are reduced to an appreciable extent (down to zero),
while the eigenfrequencies of the foundation are increased by the coupling. For a soft foundation
(ω1 < ω2) the situation is reversed, the eigenfreqiencies of the building are raised by the coupling
and those of the foundation are reduced.

The solutions of the homogeneous system of equations (44) are the real part of

u0
1,2 = A1,2e

iΩ1t +B1,2e
iΩ2t , (48)

with complex constants A1,2, B1,2. These constants satisfy the system of equations (44) for Ω =
Ω1,2, respectively:

(ω2
1 − Ω2

1)A1 + k1A2 = 0 , (ω2
2 − Ω2

2)B2 + k2B1 = 0 ; (49)

we get

A2 =
Ω2

1−ω2
1

k1
A1 ≃ ω2

2

k1
A1 ,

B1 =
Ω2

2−ω2
2

k2
B2 ≃ −ω2

2

k2
B2 ;

(50)

the solution is the real part of

u0
1 ≃ A1e

iΩ1t − ω2
2

k2
B2e

iΩ2t , u0
2 ≃

ω2
2

k1
A1e

iΩ1t +B2e
iΩ2t . (51)

Let us assume now that the foundation (oscillator 1) is subject to a force θ(t)f0e
−αt cosω0t, α ≪ ω0,

arising from the ground motion; the equations of motion of the two oscillators

ü1 + ω2
1u1 + k1u2 = fθ(t)e−αt cosω0t , ü2 + ω2

2u2 + k2u1 = 0 , (52)

where f = f0/m1; a particular solution is the real part of

u1,2 = a1,2e
iω0t−αt . (53)

The constants a1,2 are given by

a1 = f
ω2
2 − ω̃2

0

∆̃
, a2 = −f

k2

∆̃
, (54)
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where ∆̃ = (ω̃2
0 − Ω2

1)(ω̃
2
0-Ω

2
2) and ω̃0 = ω0 + iα; adding the solution u0

1,2 of the homogeneous
system of equations (equations (51)) we get the full solution

u1 = A1e
iΩ1t − ω2

2

k2
B2e

iΩ2t + f
ω2
2−ω̃2

0

∆̃
eiω̃0t ,

u2 =
ω2
2

k1
A1e

iΩ1t +B2e
iΩ2t − f k2

∆̃
eiω̃0t .

(55)

The (complex) constants A1, B2 are determined from the initial conditions u1,2(t = 0) = 0,
u̇1,2(t = 0) = 0.

We focus on the resonance of the building, where ω0 = Ω2 (α ≪ Ω2) and ∆̃ ≃ αΩ2
1(α− 2iΩ2); the

initial conditions give A1 ≃ 0 and

B2 ≃
fk2

4Ω2
1Ω

2
2

(
1 + i

Ω2

α

)
; (56)

the displacements are

u1 = − fω2
2

4Ω2
1Ω

2
2

(
cosΩ2t− Ω2

α
sin Ω2t

)
(1− e−αt) +O(α) ,

u2 =
fk2

4Ω2
1Ω

2
2

(
cosΩ2t− Ω2

α
sinΩ2t

)
(1− e−αt) +O(α) .

(57)

We can see that the original damped excitation is lost in time and for long time both the building
and the foundation oscillate with the resonance frequency Ω2 of the building; the amplitudes of the
oscillations are enhanced by the attenuation factor 1/α, as expected; the oscillation amplitude of
the foundation is controlled by the exciting force, while the amplitude of the building is controlled
by the coupling constant. We note that we have considered above oscillations without a damping
factor; a damping factor a damping factor affects the contribution of the normal modes and adds
to the attenuation factor of the excitation.

Inserting K and Ω1,2 from equations (43), (46) and (47) we get the leading contribution to the
oscillation amplitude of the building

u20 =
fk2

4αΩ2
1Ω2

=
f0
4α

√
1− γ

γ

1
√
m1m2(ω2

1 + ω2
2)

; (58)

comparing it with the amplitude uis
20 = f0/m2ω

2
2 of an isolated building (without foundation)

subject to the same force and oscillating with the same frequency Ω2 ≪ ω2, we get

u20 = uis
20

ω2

4α
·
√
1− γ

γ
· ω2√

ω2
1 + ω2

2

; (59)

we can see the enhancement factors ω2/α arising from resonance and
√
(1− γ)/γ arising from the

coupling. We note the resemblance of the amplification factor ω2/α with the amplification factor
≃ c/lα of the embedded bar (ω2 being of the same order of magnitude as c/l).

It is worth connecting the force f0 to the amplitude u0 of the ground displacement u0, in order
to compare the displacement of the building with the ground displacement. According to the
discussion above, assumig a good coupling between ground and the foundation and a relatively
homogeneous structure groud+foundation+building we may use f0 = Ku0 (since, for a shear
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coupling, f0 is of the order µgu
′

0, where µg is the rigidity modulus of the soil); we get the oscillation
amplitude of the building

u20 ≃
ω1ω2

4α
√
ω2
1 + ω2

2

1− γ

γ
u0 , (60)

where we can see again the occurrence of an amplification factor ≃ ωc/α, where ωc = ω1ω2(1 −
γ/4γ

√
ω2
1 + ω2

2 is a characteristic frequency of the structure.

Finally we give the solution of coupled oscillators subject to a damped force (shock) without
oscillations, i.e. for ω0 = 0:

u1 =
fω2

2

Ω2
1Ω

2
2

(
e−αt − cos Ω2t +

α
Ω2

sinΩ2t
)
+O(α2) ,

u2 = − fk2
Ω2

1Ω
2
2

(
e−αt − cosΩ2t +

α
Ω2

sinΩ2t
)
+O(α2) ;

(61)

we can see that the shock excites the oscillations with the lowest frequency (Ω2), similar with an
oscillating shock), and there is no enhancement of the oscillations, as expected.

Concluding remarks. The vibrations of an elastic bar extending above the ground surface with
one end embedded in the ground are described and the response of the bar to various ground
excitations applied to its lower end is calculated. An oscillating shock with a sharp wavefront is
considered as the most interesting excitation, since it is deemed that such a shock may correspond
to the seismic main shock with its long tail, produced by the so-called surface waves. At resonance
it is shown that the bar exhibits amplification factors for displacement, velocity and acceleration,
which may attain large values. The amplification factors are given by a combination of the shock
duration, the height of the bar above the ground surface and the velocity of the elastic waves
in the bar; they arise as a consequence of the excitation of the normal modes in the bar. Two
bars coupled along their length are also considered; it is shown that for bars with very different
elastic properties the eigenfrequencies of the system are given mainly by the "softer" bar. Such
an information may be useful for composite structures, including, for instance, voids. A bar
completely buried in the ground may serve as a model for local inhomogeneities in the soil. It is
shown that such a bar exhibits spectral amplification factors, which may correspond to the well
known site amplification factors documented by the seismic records. Making use of the information
gained from the vibrating bars we examine the formulation of the model of two coupled harmonic
oscillators, and its application to the structure building-foundation. The coupling lowers the low
frequency of the system and raise the upper frequency. The response of two coupled oscillators
to an oscillating shock is calculated, and amplification factors similar with the vibrating bars are
highlighted.
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