
1

Journal of Theoretical Physics

Founded and Edited by M. Apostol 253 (2016)

ISSN 1453-4428

Elastic waves interacting with a plane surface

B. F. Apostol
Department of Engineering Seismology

Institute of Earth’s Physics,
Magurele-Bucharest MG-6, POBox MG-35, Romania

email: afelix@theory.nipne.ro

Abstract

The interaction of far-field spherical elastic waves (spherical shells) with the plane surface
of a homogeneous isotropic elastic half-space is investigated in the transient regime. The
transient regime is produced by wave sources localized both in space and time, like seismic
sources. The problem investigated here may bear relevance upon the earthquake effects
on Earth’s surface, where the transient regime of wave propagation in finite bodies brings
new technical aspects which received little attention. We consider spherical (shell) waves
(primary waves) produced by a tensorial force located at an inner point in the half-space.
On the surface, these waves create new wave sources which generate secondary waves. The
secondary waves are computed here by means of a simplified model. It is shown that the
secondary waves have a delay time in comparison with the primary waves and produce on
the surface a main shock with a sharp wavefront and a long tail. Similar calculations are
presented for an internal discontinuity surface parallel with the surface of the half-space; it is
shown that the secondary waves generated on the surface of the half-space may be reduced
appreciably in this case.

Introduction. This paper is motivated by the interaction of the elastic waves in the transient
regime with a plane surface of an elastic half-space. This particular problem bears relevance on
the effect of the seismic waves on the Earth’s surface. It is well known that earthquakes are
produced by forces localized both in space and time; the seismic source is located at an inner
point beneath the Earth’s surface and its action lasts a finite, relatively short, duration of time.
The problem originates with the classical works of Rayleigh, Lamb and Love (and it is sometime
known as Lamb’s problem).[1]-[3] The transient regime due to the finite active life of the source
implies relevant aspects, which have not received sufficient attention.

For our particular purpose we may approximate the local extension of the Earth by a homogeneous
isotropic elastic half-space (a semi-infinite solid) bounded by a plane surface. It is widely accepted
that a seismic source can be represented by a tensorial force with the components

Fi(R, t) = mij(t)∂jδ(R−R0) , (1)

(see, e.g., Ref. [4], 2nd edition, p.60, Exercise 3.6), where mij(t) is the tensor of the seismic
moment (divided by the density of the medium for convenience) and R0 is the point of location of
the source; δ is the Dirac delta function and the symbol ∂j stands for the derivative with respect to
the coordinate xj , i, j = 1, 2, 3, of the position vector R = (x1, x2, x3). A short temporal impulse
is represented by mij(t) = Tmijδ(t), where T is a measure of the duration of the impulse. While
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a general tensor mij of the seismic moment correspond to a faulting slip, an isotropic tensor mij

is associated with an explosion.

The seismic moment offers the opportunity to give an estimation of the dimension of the focal
region of the earthquake. Indeed, if, generically, we denote by M the magnitude of the seismic
moment (and by m = M/ρ the magnitude of the seismic moment divided by density ρ of the
medium), we may assume that the rupture of the material in the volume V of the the focal region
occurs for M/V = ρc2, where c is a mean velocity of the seismic waves; this equality indicates
that an energy density released in an earhquake equals the density of the elastic energy. For
M = 1026dyn · cm (corresponding to an earthquake magnitude Mw = 7, from the Gutenberg-
Richter definition[5, 6] lgM = 1.5Mw + 16.1), ρ = 5g/cm3 for the average Earth’s density and
c = 5km/s for a mean value of the velocity of the elastic waves we get a volume V = 8×1013cm3 of
the focal region and a localization length l = V 1/3 ≃ 400m. The Dirac delta function used in the
representation of the tensorial force may be viewed as being localized over a distance of the order l
(volume l3). This spatial uncertainty leads to a time uncertainty of the order T = l/c = 0.08s (for
c = 5km/s; the rupture velocity may be much smaller than the wave velocity). The magnitude of
the seismic moment is currently estimated from seismic records.[4, 7, 8]

Primary waves. The equation of the elastic waves in an isotropic body is

ü− c2t∆u− (c2l − c2t )grad · divu = F , (2)

where u is the displacement vector, cl,t are the wave velocities and F is the force (per unit
mass).[9] We consider this equation in an isotropic elastic half-space extending in the region z < 0
and bounded by the flat surface z = 0. The elementary source, which generates the force F, is
placed at R0 = (0, 0, z0), z0 < 0; the force is given by equation (1) (with mij(t) = Tmijδ(t)). The
coordinates of the position vector R are denoted by (x1, x2, x3); also, the notation x = x1, y = x2,
z = x3 is used. We use the Helmholtz decomposition F = gradφ+ curlH (divH = 0), whence

∆φ = divF , ∆H = −curlF ; (3)

similarly, the displacement u is decomposed as u = gradΦ + curlA, with the notation u
l =

gradΦ and u
t = curlA, by using the Helmholtz potentials Φ and A (divA = 0); equation (2) is

transformed into two standard wave equations

Φ̈− c2l∆Φ = φ , Ä− c2t∆A = H ; (4)

we can see that the l, t-waves are separated.

From equations (3), and making use of the force distribution given by equation (1), we get imme-
diately

φ = − 1
4π
Tmijδ(t)

∫

dR
′ 1

|R−R
′|
∂

′

i∂
′

jδ(R
′

−R0) =

= − 1
4π
Tmijδ(t)∂i∂j

1
|R−R0|

(5)

and
Hi =

1
4π
Tεijkmklδ(t)

∫

dR
′ 1

|R−R
′|
∂

′

j∂
′

lδ(R
′

−R0) =

= 1
4π
Tεijkmklδ(t)∂j∂l

1
|R−R0|

,

(6)

where εijk is the totally antisymmetric tensor of rank three. Making use of these sources in



J. Theor. Phys. 3

equations (4), and using the Kirchhoff retarded solutions, we get the potentials

Φ = − T
(4πcl)2

mij

∫

dR
′
δ(t−

∣

∣

∣

R−R
′
∣

∣

∣

/cl)

|R−R
′|

∂
′

i∂
′

j
1

|R′−R0|
=

= − T
(4πcl)2

mij∂i∂j
∫

dR
′
δ(t−

∣

∣

∣
R−R

′
∣

∣

∣
/cl)

|R−R
′|

1

|R′−R0|

(7)

and

Ai =
T

(4πct)2
εijkmkl

∫

dR
′
δ(t−

∣

∣

∣
R−R

′
∣

∣

∣
/ct)

|R−R
′|

∂
′

j∂
′

l
1

|R′
−R0|

=

= T
(4πct)2

εijkmkl∂j∂l
∫

dR
′
δ(t−

∣

∣

∣

R−R
′
∣

∣

∣

/ct)

|R−R
′|

1

|R′−R0|
.

(8)

We extend the integral

I =
∫

dR
′
δ(t−

∣

∣

∣

R−R
′
∣

∣

∣

/c)

|R−R
′|

1

|R′−R0|
=

=
∫

dR
′′ δ(t−R

′′
/c)

R′′
1

|R−R0−R
′′|

(9)

(where c stands for cl,t) occurring in the above equations to the whole space, where it can be
effected straightforwardly by using spherical coordinates; we get

I = 4πc

[

θ (ct− |R−R0|) +
ct

|R−R0|
θ (|R−R0| − ct)

]

; (10)

inserting this result in equations (7) and (8) we get the Helmholtz potentials

Φ = − T
4πcl

mij∂i∂j
[

θ (clt− |R−R0|) +
clt

|R−R0|
θ (|R−R0| − clt)

]

,

Ai =
T

4πct
εijkmkl∂j∂l

[

θ (ctt− |R−R0|) +
ctt

|R−R0|
θ (|R−R0| − ctt)

]

.

(11)

Making use of the notation

Fl,t =
T

4πcl,t

[

θ (cl,tt− |R−R0|) +
cl,tt

|R−R0|
θ (|R−R0| − cl,tt)

]

, (12)

the potentials can be written as

Φ = −mij∂i∂jFl , Ai = εijkmkl∂j∂lFt ; (13)

it follows the displacement

uli = ∂iΦ = −mjk∂i∂j∂kFl ,

uti = εijk∂jAk = mjk∂i∂j∂kFt −mij∂j∆Ft .
(14)

We can see that these solutions consist of two parts: spherical waves propagating with velocities cl,t,
given by δ-functions and derivatives of δ-functions (arising from the derivatives of the θ-functions
in equation (12)), and a quasi-static displacement which includes the functions θ(|R−R0| − cl,tt)



4 J. Theor. Phys.

and extends over the distance ∆R = (cl − ct)t (notation R is used for R−R0). The quasi-static
contributions, being proportional to third-order derivatives of t/R, are solutions of homogeneous
wave equations. In the transient regime, the quasi-static contributions should be omitted, and we
may limit ourselves to the δ-functions and derivatives of δ-functions arising from the derivatives of
the θ-functions in equation (12). Outside the support of the δ-functions and their derivatives (i.e.,
for R = |R−R0| 6= cl,tt) the displacement is zero. We note also that for R 6= ctt the function Ft in
equation (12) is either T/4πct or T t/4πR; in both cases the term with the laplacian in the second
equation (14) cancels out (including the limit R = ctt), and u

t acquires the same expression as
−uli with cl replaced by ct.

The solution is given by the potentials in equation (13), provided we leave aside the quasi-static
displacement; expressions like mjk∂i∂j∂kF becomes

mjk∂i∂j∂kF = [
mjjxi

2R3 (1− 2ct/R) +
mijxj

R3 (1− 3ct/r)−
3mjkxixjxk

2R5 (1− 4ct/R)]δ(R− ct)−

−[mjjxi

2R2 (1− ct/R)−
mjkxixjxk

2R4 (1− 3ct/R)]δ
′

(R− ct) ,

(15)

where F is a generic notation for Fl,t with cl,t replaced by c and the factor 1/4πc omitted; the
coordinates of the position vector are given by R = (x1, x2, x3). We may put R = ct in this
equation and get

uli =
T

8πclR3 [mjjxi + 4mijxj − 9mjkxixjxk
1
R2 ]δ(R− clt)+

+ T
4πcl

mjkxixjxk
1
R4 δ

′

(R− clt) ,
(16)

where cl and the factor 1/4πcl are restored. Similarly, from equations (14) we get

uti = − T
8πctR3 [mjjxi + 6mijxj − 9mjkxixjxk

1
R2 ]δ(R− ctt)−

− T
4πct

(

mjkxixjxk
1
R4 −mijxj

1
R2

)

δ
′

(R− ctt) .
(17)

We can see that in the far-field region (wave region) the source generates two (double-shock)
spherical waves (derivatives of the δ-function), propagating with velocities cl,t, given by

ufi ≃
Tmijxj

4πctR2 δ
′

(R− ctt) +
Tmjkxixjxk

4πR4

[

1
cl
δ
′

(R− clt)−
1
ct
δ
′

(R− ctt)
]

; (18)

these are the leading contributions to the solution in the wave region. Equivalent formulae for
spherical seismic waves produced by a localized vector force have been derived by Stokes long time
ago[10] (see also Refs. [4],[7, 8] and [11]).

The waves propagating with velocity cl are the primary P waves (compressional waves), while the
waves propagating with velocity ct are the primary S-waves (they include the shear contribution).
The second term on the right in equation (18) is longitudinal (∼ R), while the polarization of
the first term depends on the moment tensor. It is worth noting that the far-field waves given
by equations (18) have the shape of spherical shells (zero thickness). These waves are associated
with the feeble tremor produced by the P , S-waves in earthquakes.[3, 4, 7]

Interaction with the surface. The wavefront of the spherical waves given by equation (18) in-

tersects the surface x3 = z = 0 along a circular line defined by R = (x1, x2,−z0), R = (r2 + z20)
1/2

,

where r = (x21 + x22)
1/2

is the distance from the origin (placed on the surface, the epicentre)
to the intersection points (we recall that R and R are in fact R − R0 and R − R0). The
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Figure 1: Spherical wave intersecting the surface z = 0 at P .

radius R moves with velocity c, R = ct, t >| z0 | /c, and the in-plane radius r moves accord-

ing to the law r =
√

R
2
− z20 =

√

c2t2 − z20 , where c stands for the velocities cl,t; its velocity

v = dr/dt = cR/r = c2t/r is infinite for r = 0 (R = ct =| z0 |) and tends to c for large distances.

The finite duration T of the source makes the δ
′

-functions in equation (18) to be viewed as
functions with a finite spread l = ∆R = cT ≪ R; consequently, the intersection line of the waves
with the surface has a finite spread ∆r, which can be calculated from

R
2
= r2 + z20 , (R + l)2 = (r +∆r)2 + z20 ; (19)

hence,

∆r ≃
2Rl

r +
√

r2 + 2Rl
; (20)

we can see that for r → 0 the width ∆r ≃
√

2 | z0 | l of the seismic spot on the surface is much

larger than the width of the spot for large distances ∆r ≃ l (2 | z0 |≫ l). We limit ourserves to an
intermediate, limited range of variation of r arund a value of r of the order | z0 | (not very close
to the origin). A spherical wave intersecting the surface z = 0 is shown in Fig.1.

The energy density of the spherical waves goes like 1/R2. As long as the spherical wave is fully
included in the half-space its total energy E0 is given by the energy density integrated over the
spherical shell of radius R and thickness l. If the wave intersects the surface of the half-space, its
energy E is given by the energy density integrated over the spherical sector which subtends the
solid angle 2π(1 + cos θ), where cos θ =| z0 | /R (see Fig.1). It follows E = 1

2
E0 (1+ | z0 | /ct) for

ct >| z0 |. We can see that the energy of the wave decreases by the amount Es =
1
2
E0 (1− | z0 | /ct),

ct >| z0 |. This amount of energy is transferred to the surface, which generates secondary waves
(according to Huygens principle).

In the seismic spot with the width ∆r and radius r generated on the surface by the far-field
primary waves given by equation (20) we may expect a reaction of the (free) surface, such as
to compensate the force exerted by the incoming spherical waves. This localized reaction force
generates secondary waves, distinct from the incoming, primary spherical waves. The secondary
waves can be viewed as waves scattered off the surface, from the small region of contact of the
surface seismic spot (a circular line). If the reaction force is strictly limited to the zero-thickness
surface (as, for instance, a surface force), it would not give rise to waves, since its source has a
zero integration measure. We assume that this reaction appears in a surface layer with thickness
∆z (∆z ≪| z0 |), where it is produced by volume forces. The thickness ∆z of the superficial layer
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activated by the incoming primary wave may depend on R (and r), as the surface spread ∆r does
(equation (20)); for instance, from Fig.1 we have ∆z = l | z0 | /R.

The volume elastic force per unit mass is given by ∂jσij/ρ, where σij = ρ [2c2tuij + (c2l − 2c2t )ukkδij ]
is the stress tensor and uij is the strain tensor. The reaction force which compensates this elastic
force is

fi = −∂jσij/ρ = −∂j
[

2c2tuij + (c2l − 2c2t )ukkδij
]

. (21)

We calculate the strain tensor from the displacement given by equation (18); in order to compute
the secondary waves we use the decomposition in Helmholtz potentials. We denote by us the
displacement vector in the secondary waves, and introduce the Helmholtz potentials ψ and B

(divB = 0) by us = gradψ+curlB; then, we decompose the force f according to f = gradχ+curlh
(divh = 0), where ∆χ = divf and ∆h = −curlf ; by the equation of the elastic waves, the
Helmholtz potentials satisfy the wave equations (4); by straightforward calculations we get χ =
−c2l uii and h = c2t curlu, where u is u

f given by equation (18):

χ = −
clTmjkxjxk

4πR3 δ
′′

(R− clt) ,

hi = εijk
ctTmklxjxl

4πR3 δ
′′

(R− ctt) ;

(22)

we can see that the potentials χ and h "move" with velocities cl and, respectively, ct (vl and,
respectively, vt in the plane z = 0).

We can calculate the displacement in the secondary waves us = gradψ + curlB, by solving the
wave equations (equations (4))

ψ̈ − c2l∆ψ = χ , B̈− c2t∆B = h ; (23)

with χ = −c2l uii and h = c2t curlu restricted to the superficial layer of thickness ∆z. Apart
from appreciable technical complications, this procedure brings many superfluous features which
obscure the relevant physical picture. This is why we prefer to use a simplified model which makes
use of potentials of the form

χ = χ0(r)δ(z)δ(r − vlt) , h = h0(r)δ(z)δ(r − vtt) (24)

(divh0 = 0); equations (24) describe wave sources, distributed uniformly along circular lines on the
surface, propagating on the surface with constant velocities vl,t and limited to a superficial layer
with "zero" thickness and a circular line (with "zero" width); their magnitudes χ0(r) and h0(r)
have an approximate 1/r, 1/r2-dependence, which has a slow variation for r ∼| z0 | (and r not very
close to the epicenter); for this range of the variable r we may consider χ0 and h0 as being constant.
The velocities vl,t in equation (24) correspond to the velocities vl,t = dr/dt = cl,tR/r = c2l,tt/r
calculated above, which are greater than cl,t, depend on r and tends to cl,t for large values of the
distance r. We make a further simplification and consider them as constant velocities slightly
greater than cl,t (over an intermediate, limited range of variation of r). Also, in the subsequent
calculations we consider the origin of the time at r = 0 (the epicentre) for each primary wave and
the associated secondary source. The simplified model of secondary sources introduced here retains
the main features of the exact problem, incorporated in the surface localization and propagation
of the sources with velocities vl,t greater than wave velocities cl,t; on the other hand, by using
this model we lose the anisotropy induced by the tensor of the seismic moment and specific
details regarding the dependence on the distance. Since the secondary seismic sources are sources
moving on the surface we may call the secondary waves produced by these sources "surface seismic
radiation".



J. Theor. Phys. 7

−1

1
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r

r′
1 r′

2

r′

cosϕ0

O

Figure 2: The function cosϕ0 vs r
′

for C > 0 (equation (32)).

Secondary waves. Making use of the potentials given by equation (24), the solutions of equations
(23) can be represented as

ψ = 1
4πc2

l

∫

dt
′ ∫

dR
′ χ0(r

′
)δ(z

′
)δ(r

′
−vlt

′
)

|R−R
′|

δ
(

t− t
′

−
∣

∣

∣R−R
′
∣

∣

∣ /cl
)

,

B = 1
4πc2t

∫

dt
′ ∫

dR
′ h0(r

′
)δ(z

′
)δ(r

′
−vtt

′
)

|R−R
′|

δ
(

t− t
′

−
∣

∣

∣R−R
′
∣

∣

∣ /ct
)

.

(25)

First, we focus on the potential ψ, which can be written as

ψ = 1
4πvc2

∫

dr
′ χ0(r

′
)

(r2+r′2−2rr′ cosϕ+z2)
1/2 ·

·δ
[

t− r
′

/v −
(

r2 + r
′2 − 2rr

′

cosϕ+ z2
)1/2

/c
]

,

(26)

where ϕ is the angle between the vectors r and r
′

and we use c and v for cl and, respectively, vl,
for the sake of simplicity. In order to calculate the integral with respect to the angle ϕ in equation
(26) we introduce the function

F (cosϕ) = t− r
′

/v −
(

r2 + r
′2 − 2rr

′

cosϕ+ z2
)1/2

/c (27)

and look for its zeroes, F0 = F (cosϕ0) = 0 (r
′

< vt); we note that, if there exists one root of this
equation, there exists another one at least, in view of the symmetry cosϕ = cos(2π − ϕ). Then,
we expand the function F in a Taylor series in the vicinity of its zero, according to

F = F0 + (cosϕ− cosϕ0)F
′

0 + ... = (cosϕ− cosϕ0)F
′

0 + ... , (28)

where F
′

0 is the derivative of the function F with respect to cosϕ for cosϕ = cosϕ0. It is easy to
see that the integral reduces to

ψ =
1

2πcvr

∫ ∞

0
dr

′χ0(r
′

)

sinϕ0

, (29)

where ϕ0 is the root of the equation F (cosϕ0) = 0, lying between 0 and π.

The root cosϕ0 is given by

F (cosϕ0) = t− r
′

/v −
(

r2 + r
′2 − 2rr

′

cosϕ0 + z2
)1/2

/c = 0 , (30)
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or
(

1− c2/v2
)

r
′2 − 2

(

r cosϕ0 − c2t/v
)

r
′

−
(

c2t2 − r2 − z2
)

= 0 (31)

for r
′

< vt. The important feature brought by the diference between the two velocities c and v can
be accounted for conveniently by assuming that the two velocities are close to one another; we set
v = c(1 + ε), 0 < ε ≪ 1 (as for sufficiently large distances). In this circumstance we may neglect
the quadratic term ∼ r

′2 in equation (31) and replace t by the "retarded" time τ = t(1− ε) (i.e.,
τl,t = t(1− εl,t)); we get

cosϕ0 ≃
2cτr

′

− C

2rr′ , C = c2τ 2 − r2 − z2 (32)

for r
′

< vt = cτ(1 + 2ε); the insertion of τ in place of t in C is a matter of technical convenience.
It is easy to see that this equation has no solution for C < 0 (because of the condition r

′

< vt);
for C > 0 (c2τ 2 − r2 − z2 > 0) it has two solutions

r
′

1 =
C

2(cτ + r)
, r

′

2 =
C

2(cτ − r)
, (33)

corresponding to cosϕ0 = −1 (ϕ0 = π) and, respectively, cosϕ0 = 1 (ϕ0 = 0) (Fig.2). For z = 0
the two roots r

′

1,2 reduce to r
′

1,2 = (cτ ∓ r)/2; we can see that the sources of the secondary waves

which arrive at r lie inside an anullus with radii r
′

1,2 and a constant width r, which expands on
the surface with velocity c/2, after a time interval τ = r/c. In the integral given by equation (29)
we pass from the variable r

′

to the variable ϕ0; for a limited range of integration r (from r
′

1 to r
′

2),
we may take χ0 out of the integral sign; we get

ψ ≃
Cχ0

4πc2

∫ π

0
dϕ0

1

(r cosϕ0 − cτ)2
, (34)

or

ψ ≃
Cχ0

4πc2r2
∂

∂x

∫ π/2

0
dϕ0

(

1

cosϕ0 − x
−

1

cosϕ0 + x

)

, x = cτ/r > 1. (35)

The integrals in equation (35) can be effected immediately; we get the potential

ψ ≃
χ0

4c2l

(c2l τ
2
l − r2 − z2)clτl

(c2l τ
2
l − r2)

3/2
, (36)

where the velocity cl is restored. Similarly, we get from equations (25) the vector potential

B ≃
h0

4c2t

(c2t τ
2
t − r2 − z2)ctτt

(c2t τ
2
t − r2)

3/2
; (37)

these potentials are valid for c2l,tτ
2
l,t − r2 − z2 > 0. We can see that the wavefront r2 + z2 = c2l,tτ

2
l,t

defines a spherical perturbation which moves with velocity cl,t. The singular behaviour of these
waves (for z = 0) resembles the algebraic singularity of the waves in two dimensions produced by
localized sources.[12, 13] The discontinuities exhibited by these functions are present irrespective
of the particular dependence on r of the source potentials, as long as these potentials remain
localized; they are related to a constant, finite velocity of propagation of the waves.

Making use of us = gradψ + curlB we can compute the displacement vector us in the secondary
waves. We are interested mainly in the waves propagating on the surface (z = 0). First, we
note that the displacement is singular at cl,tτl,t = r; this indicates the existence of two main
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Figure 3: Primary wave (PW ), moving with velocity v on the Earth’s surface, secondary wave
(SW ), moving with velocity c < v, the main shock (MS) and the long tail (LT ); the separation
between the two wavefronts is ∆s = 2(v − c)t and the time delay is ∆t = (2r/c)(v/c− 1), where
r is the distance on the surface from the epicentre.

shocks, occcurring after the arrival of the primary waves. Indeed, the primary waves arrive at the
observation point r at the time tp = r/vl,t = (r/cl,t)(1− εl,t), while the main shocks occur at tm =
τl,t/(1−εl,t) ≃ (r/cl,t)(1+εl,t); we can see that there exists a time delay ∆t ≃ tm−tp ≃ 2(r/cl,t)εl,t
between the primary waves and the wavefronts of the secondary waves (the main shocks). The
sharp singularity in equations (36) and (37) is related to our using constant velocities vl,t; actually,
an uncertainty of the form ∆v ≃ cε exists in these velocities, which entails an uncertainty τε in
the time τ , such that the smallest value of the denominator in equations (36) and (37) is of the
order c2τ 2ε. In the vicinity of the two main shocks the leading contributions to the components
of the surface displacement (z = 0, in polar cylindrical coordinates) are given by

usr ≃
χ0τl
4cl

· r

(c2l τ2l −r2)
3/2 ,

usϕ ≃ −h0zτt
4ct

· r

(c2t τ2t −r2)
3/2 ,

usz ≃
h0ϕτt
4ct

·
c2t τ

2

t

r(c2t τ2t −r2)
3/2 ;

(38)

we can see that there exists a horizontal component of the displacement perpendicular to the
propagation direction (usϕ) and both the r-component and the ϕ, z-components, which make
right angles with the propagation direction, are of the same order of magnitude.[3] For long times
(cl,tτl,t≫ r) the displacement (from equations (36) and (37)) goes like

usr ≃
χ0r
4c4

l
τ2
l
, usϕ ≃ − h0zr

4c4t τ
2

t
, usz ≃

h0ϕ

4c2t r
, (39)

which show that the displacement exhibits a long tail, especially the z-component; it subsides
as a consequence of the time-dependence induced in the potential h0 by the integration variable
r
′

, a circumstance which is neglected in the calculations presented here. Primary and secondary
waves, the main shock and the long tail are shown in Fig.3. These are the main characteristics of
a seismogram.[3, 14, 15]

Internal discontinuity. Let us consider a homogeneous isotropic elastic half-space extending in
the region −∞ < z < z1 with a superposed homogeneous isotropic elastic layer extending from
z = z1 to z = 0, in welded contact with the half-space at the plane surface z = z1; we assume
z1 < 0. The elastic properties of the half-space and the layer are distinct. This model can serve as
a representation of an internal discontinuity in the elastic properties of the half-space investigated
above. An elementary seismic source as given by equation (1) is located at depth z0, either above
(z0 > z1) or beneath the discontinuity (z0 < z1). In the subsequent calculations we assume z0 < z1.
We denote the half-space by 1 and the superposed layer by 2. A primary spherical wave generated
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by the elementary z0-source arrives at the z1-interface, along a circular line of contact, where it
generates secondary waves; the secondary waves propagate both in the half space 1 and in the
layer 2, where they arrive at the surface z = 0; we estimate here these secondary waves generated
by the z1-interface.

By analogy with equations (24) we assume that the primary waves in the half-space 1 generate
on the interface z = z1 the force Helmholtz potentials

χ = χ0(r)δ(z − z1)δ(r − vl1t) , h = h0(r)δ(z − z1)δ(r − vt1t) ; (40)

the velocities vl,t1 are considered constant and the r-dependence in χ0(r), h0(r) is weak for a finite,
intermediate range of distances r. It is easy to see, by analogy with the calculations described in
the previous section, that the Helmholtz potentials ψ and B of the secondary displacement are
given by

ψ ≃
χ0

4c2l2

[c2l2τ
2
l − r2 − (z − z1)

2] cl2τl

(c2l2τ
2
l − r2)

3/2
. (41)

(for z close to z = 0). Similarly, we get from the wave equation the vector potential

B ≃
h0

4c2t2

[c2t2τ
2
t − r2 − (z − z1)

2] ct2τt

(c2t2τ
2
t − r2)

3/2
; (42)

they differ from the potentials given above by equations (36) and (37) by the presence of z1 6= 0.
The origin of the time is considered here the moment when the primary wave touches the z1-
interface. The above formulae are valid for Cl,t = c2l,t2τ

2
l,t − r2 − (z − z1)

2 > 0; for Cl,t < 0 the
potentials are equal to zero.

We are interested mainly in the surface z = 0. The presence of z1 6= 0 in equations (41) and
(42) gives rise to a qualitatively different behaviour of the secondary waves generated by the
discontinuity. The difference arises fom the condition Cl,t = c2l,t2τ

2
l,t − r2 − z21 > 0, which prevents

the singularity at c2l,t2τ
2
l,t−r

2 = 0 to be reached; consequently, the secondary waves in the presence
of the discontinuity do not exhibit the singular main shock on the surface z = 0; the main shock
is reduced appreciably in this case.

We note also the retarded time τl,t = tl,t(1−εl,t) in the above formulae (where τl,t is measured from
the moment the primary waves touches the z1-interface). For z0 < z1 the primary waves do not
arrive on the surface and the us2-waves generated by the interface are the only secondary waves
which arrive on the surface z = 0. For z1 < z0 < 0, primary waves arrive on the surface z = 0,
(delayed) secondary waves are generated on the surface z = 0 and, afterwards, much reduced
secondary waves generated by the interface arrive on the surface z = 0.

We emphasize also that the results given above are valid for small values of εl,t, i.e. for the
elastic properties of the layer 2 differing slightly from the elastic properties of the half space 1. In
addition, the secondary waves us2 generate in their turn additional waves an the surface z = 0,
which, however, are too small to present any further interest here (they may be called "tertiary"
waves).

Concluding remarks. Primary elastic waves generated in a homogeneous isotropic elastic half-
space by tensorial forces localized in space and time are derived here, as a model for the seismic
waves produced by a seismic moment placed at an inner point in the half-space with a δ-type
temporal dependence (temporal impulse). The primary waves have the shape of spherical shells.
It is shown, mainly by using energy-balance arguments, that the primary waves interact with the
surface of the half-space and transfer part of their energy to the surface; consequently, additional,
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secondary wave sources occurr on the surface, which generate secondary waves. Since the sec-
ondary sources move on the surface, the secondary waves they generate may be called "surface
seismic radiation". A similar suggestion was implied long ago by Lamb.[2, 12] The secondary
wave sources are localized on the surface along circular lines. It is worth noting that the sec-
ondary sources move on the surface with velocities greater than the elastic waves velocities. A
simplified model is put forward here of secondary waves sources, which allows the estimation of the
secondary waves produced by these sources. The model assumes a uniform distribution of sources
along circular lines, moving with constant velocities greater than the velocities of the elastic waves;
it does not account for the anisotropy of the sources, and gives only a qualitative dependence of
the waves on the distance. The secondary waves generated by the surface sources are estimated
within this model, with emphasis on the secondary waves propagating on the surface. It is shown
that these secondary waves are responsible for the seismic main shock and the long tail exhibited
usually by earthquakes in the seismic records. These two latter items have indeed been associated
long ago to waves generated and propagating on the surface.[12], [14]-[16] The secondary waves
generated by an internal discontinuity of the half-space are also estimated; it is shown that they
exhibit a much reduced main shock.

Finally, a special situation deserves attention. If the source of the primary waves is located on
the surface, the primary waves it generates are those given above in the corresponding section for
z0 = 0 (for an elementary source). The interaction of these primary waves with the surface is null,
since the thickness ∆z = l | z0 | /R of the intersecting layer is zero for z0 = 0 (see Fig.1). The
support of the interaction force with the surface reduces to zero and, consequently, there will be
no secondary waves in this case.
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