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Abstract

Compressional waves are considered in an ideal fluid, as produced by sources localized
at an inner point in the fluid (e.g., explosions) or just below the seabed (seafloor) of seas or
oceans (earthquakes). It is shown that these primary waves, which have the shape of spherical
shells, generate secondary-wave sources on the surface of the fluid, which, in turn, produce
secondary waves in the fluid. We compute the secondary waves in a simplified model and
show that they are singular waves, in the sense that, on the surface, these waves exhibit a
sharp, singular wavefront and a long tail; their wavefront moves with the wave velocity which
is smaller than the velocity of the secondary sources (primary waves) moving on the surface.
The singular wavefront of the secondary waves on the surface of the fluid indicates a singular
increase in height of the fluid at the position of the wavefront, which may be viewed as a
model representation for the tsunami phenomenon.

Introduction. Let u(R, t) be a displacement field in a classical ideal fluid at rest and in equilib-
rium, where R denotes the position and t denotes the time; it produces a change δn = −ndivu in
the concentration of fluid particles n and a change δp = (∂p/∂n)δn in the pressure p. Since the
fluid is ideal (zero thermoconductivty), this change is adiabatic, i.e. it occurs at constant entropy
s; we write δp = −n(∂p/∂n)sdivu, or δp = V (∂p/∂V )sdivu = −(1/β)divu, where V = 1/n is the
volume associated with the fluid particle and β is the adiabatic compressibility. It follows that a
force density −gradδp = (1/β)grad ·divu appears in the fluid. We assume that the displacement u
is a slowly varying function of position and time, such that du/dt = ∂u/∂t + (vgrad)u ≃ ∂u/∂t,
where v is the (transport) velocity; then, the equation of motion of the displacement u reads
ρü− (1/β)grad · divu = 0, or

ü− c2grad · divu = 0 , (1)

where ρ is the mass density of the fluid and c = 1/
√
ρβ is the sound velocity. This is the sound

equation; it is a reduced form of the well-known Navier-Stokes equation for ideal fluids, and, at the
same time, a reduced form of the Navier-Cauchy equation of the elastic motion of a homogeneous
isotropic elastic body with only one Lame coefficients λ = 1/β = ρc2 (the shear elastic modulus
µ is zero).[1]

Let p0 be a pressure that appears in the fluid; we assume that it lasts a short lapse of time T ,
such that it may be written as Tp0δ(t), where δ is the Dirac function. Also, we assume that
it is localized in a small volume v at some point R0 in the fluid, such that it generates a force
density −Tvp0δ(t)gradδ(R−R0). We may consider the fluid a sea or an ocean. The position R0
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Figure 1: Various sources of compressional waves located at R0 in a fluid (depth z0).

may be placed at some depth z0 in the sea (ocean), the pressure being produced, for instance,
by an explosion. Similarly, the position R0 may be viewed as the location of an earthquake
focus placed just beneath the seabed (seafloor), as shown in Fig.1; the seismic waves with the
polarization parallel with the seabed surface (tangential waves) do not affect the ideal fluid, while
the waves normal to the seabed surface generate the pressure p0. For convenience we denote vp0
by −M , where M is similar with a seismic moment (a reduced scalar for the tensor of the seismic
moment);[2, 3] also, we use the notation m =M/ρ. Then, the equation of the motion reads

ü− c2grad · divu = Tmδ(t)gradδ(R−R0) . (2)

We assume in addition p0 ≪ ρc2, an inequality which ensures a slow variation of the displacement
u.

Primary waves. We introduce the potential Φ through u = gradΦ, which satisfies the wave
equation

Φ̈− c2∆Φ = Tmδ(t)δ(R−R0) ; (3)

the solution of this equation is the well-known spherical wave

Φ =
Tm

4πc2
· δ (t− |R−R0| /c)

|R−R0|
, (4)

which gives a far-field displacement (|R−R0| ≫ v1/3)

u =
Tm

4πc
· R−R0

|R−R0|2
· δ′

(|R−R0| − ct) ; (5)

we call this spherical-shell wave primary wave.

Interaction with the surface. We consider the plane surface of the fluid placed at z = 0 and
take the origin on this surface (epicenter), such that R0 = (0, 0, z0), z0 < 0, where z0 is the depth
where the p0-perturbation occurs. For ct >| z0 | the primary wave intersects the surface z = 0
along a circular line with radius r, such that r2 + z20 = |R−R0|2 = c2t2 (Fig.2); we can see that
the radius r "moves" on the surface with velocity v = dr/dt = c2t/r = cR/r > c, which is greater
than the wave velocity c; the notation R stands for R −R0. Since we view the functions δ and
δ
′

as functions localized over a small, undetermined distance l ≃ v1/3, it follows that the surface
spot of the primary wave is localized in an annulus with the width ∆r given by

(r +∆r)2 + z20 = (ct + l)2 , r2 + z20 = c2t2 , (6)
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Figure 2: Primary wave (spherical shell) intersecting the surface z = 0 at P .

or

∆r =
2ctl + l2√

r2 + 2ctl + l2 + r
; (7)

for r → 0 this width is ∆r ≃
√

2 | z0 | l ≫ l (| z0 |≫ l), while for sufficiently large r the width ∆r

can be approximated by ∆r ≃ ctl/r = Rl/r > l. For points on the fluid surface not very close to
the origin we may use the approximation ∆r ≃ Rl/r (which has a weak dependence on r).

From equation (1) it is easy to get the energy density E = 1
2
[u̇2i + c2(∂iui)

2] per unit mass (and
the energy flux density S = −c2u(divu)); from equation (5) we may use the representation
u ≃ Tm/cl2R for the primary wave at distance R from the source; similarly, we may use the
representation E ∼ T 2m2/l6R2 for the energy density. As long as the primary wave is included
entirely in the fluid (for ct <| z0 |) its energy E0 is equal to the energy density E multiplied by
the volume 4πc2t2l of the spherical shell (R = ct); for ct >| z0 | the energy E of the primary
wave reduces to the energy density E multiplied by the volume 2πc2t2(1 + cos θ)l, cos θ =| z0 |
/ct, where θ is the angle of the spherical sector subtended by the wave in fluid; it follows that
E = 1

2
E0(1 + cos θ) < E0; the missing energy is transferred to the surface spot, which becomes,

according to the Huygens principle, an additional wave source; we call this source secondary
source; it generates secondary waves in the fluid.

In the seismic spot with width ∆r and radius r we may expect a reaction of the (free) surface, such
as to compensate the force exerted by the incoming spherical wave. This localized reaction force
generates secondary waves, distinct from the incoming, primary spherical wave. The secondary
waves can be viewed as waves scattered off the surface, from the small region of contact of the
primary wave with the surface. The primary wave given by equation (5) produces a pressure
p = −ρc2divu; we expect the surface to react with a pressure ps = −p = ρc2divu, which generates
a force density fs = −grad(ps/ρ) (per unit mass), which derives from a potential χ = −ps/ρ; it
follows that the secondary waves are given by us = gradψ, where the potential ψ satisfies the
wave equation ψ̈ − c2∆ψ = χ. The potential χ is given by χ = −ps/ρ = −c2divu = −c2∆Φ, such
that, using equation (3), we get immediately

χ = −Φ̈ = −Tmc
4πR

δ
′′

(R− ct) (8)

in the far-field region (where R stands for |R−R0|). This potential is localized on the annulus

with radius r and width ∆r on the surface (R = ct =
√

r2 + z20) and "moves" on the surface with
the velocity v derived above. In addition, if the reaction force is strictly limited to a zero-thickness
surface region, it would not give rise to waves, since the source has a zero integration measure in
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this case. We assume that the reaction appears in a surface layer with thickness ∆z (∆z ≪| z0 |);
consequently, we multiply the potential χ given by equation (8) by ∆zδ(z); from Fig.2 we can see
that the thickness of the region of intersection of the primary wave with the surface is of the order
∆z = l | z0 | /R.

We can calculate the displacement in the secondary waves us = gradψ, by solving the wave equa-
tion ψ̈− c2∆ψ = χ with χ given by equation (8). Apart from appreciable technical complications,
this procedure brings superfluous features which obscure the relevant physical picture. This is
why we prefer to use a simplified model for χ. First, we replace δ

′′

in equation (8) by δ/l2; this
way, the potential χ becomes free of the undetermined parameter l. Then, we write

R− ct = R− | z0 | −(ct− | z0 |) , (9)

which can be transformed into

r

R+ | z0 |

(

r − R+ | z0 |
R

vt

)

, (10)

where we measure the time form the moment the primary wave reaches the origin (R =| z0 |).
The function (R+ | z0 |)/R has a weak dependence on r, such that we can approximate it by a
constant slightly greater than unity; for convenience we take it equal to unity (wich amounts to a
redefinition of the velocity v). The potential χ becomes

χ = χ0(r)δ(r − vt)δ(z) , (11)

where

χ0(r) ≃ −m | z0 | (R+ | z0 |)
4πR2r

. (12)

For a limited range of variation of r around a value of the order | z0 |(not very close to the
origin) we may consider χ0 constant. The potential given by equation (11) corresponds to wave
sources distributed uniformly along circular lines on the surface, propagating on the surface with
velocity v and limited to a superficial layer with thickness ∆z. The velocity v in equation (11)
corresponds to v = dr/dt = cR/r calculated above, which is greater than c (noteworthy, the
factor (R+ | z0 |)/R in front of v in equation (10) is also slightly greater than unity). We make
a further simplification and consider v a constant velocity. The simplified model of secondary
sources introduced here retains the main features of the exact problem, incorporated in the surface
localization and propagation of the sources with velocity v greater than the wave velocity c; on the
other hand, by using this model we lose specific details regarding the dependence on the distance.
Since the secondary sources are sources moving on the surface, we may call the secondary waves
produced by these sources "surface radiation".

Secondary waves. Making use of the potential given by equation (11), the solutions of the wave
equation is

ψ =
1

4πc2

∫

dr1
χ0(r1)δ[r1 − v(t− |R−R1| /c)]

|R−R1|
, (13)

where R1 = (r1, 0); this equation can also be written as

ψ =
1

4πvc2

∫

dr1
χ0(r1)δ

[

t− r1/v − (r2 + r21 − 2rr1 cosϕ+ z2)
1/2

/c
]

(r2 + r21 − 2rr1 cosϕ+ z2)
1/2

, (14)

where ϕ is the angle between the vectors r and r1. In order to calculate the integral with respect
to the angle ϕ in equation (14) we introduce the function

F (cosϕ) = t− r1/v −
(

r2 + r21 − 2rr1 cosϕ+ z2
)1/2

/c (15)
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and look for its zeroes, F0 = F (cosϕ0) = 0 (r1 < vt); we note that, if there exists one root of this
equation, there exists another one at least, in view of the symmetry cosϕ = cos(2π − ϕ). Then,
we expand the function F in a Taylor series in the vicinity of its zero, according to

F = F0 + (cosϕ− cosϕ0)F1 + ... = (cosϕ− cosϕ0)F1 + ..., (16)

where F1 is the derivative of the function F with respect to cosϕ for cosϕ = cosϕ0. It is easy to
see that the integral reduces to

ψ =
1

2πcvr

∫ ∞

0
dr1

χ0(r1)

sinϕ0

, (17)

where ϕ0 is the root of the equation F (cosϕ0) = 0, lying between 0 and π.

The root cosϕ0 is given by

F (cosϕ0) = t− r1/v −
(

r2 + r21 − 2rr1 cosϕ0 + z2
)1/2

/c = 0 (18)

or
(

1− c2/v2
)

r21 − 2
(

r cosϕ0 − c2t/v
)

r1 −
(

c2t2 − r2 − z2
)

= 0 (19)

for r1 < vt. The important feature brought about by the diference between the two velocities
c and v can be accounted for conveniently by assuming that the two velocities are close to one
another; we set v = c(1 + ε), 0 < ε ≪ 1 (as for sufficiently large distances). In this circumstance
we may neglect the quadratic term ∼ r21 in equation (19) and replace t by the "retarded" time
τ = t(1− ε); we get

cosϕ0 ≃ 2cτr1 − C

2rr1
, C = c2t2 − r2 − z2 (20)

for r1 < vt = ct(1 + ε). It is easy to see that this equation has no solution for C < 0 (because of
the condition r! < vt); for C > 0 (c2t2 − r2 − z2 > 0) it has two solutions

r
(1)
1 =

C

2(cτ + r)
, r

(2)
1 =

C

2(cτ − r)
(21)

corresponding to cosϕ0 = −1 (ϕ0 = π) and, respectively, cosϕ0 = 1 (ϕ0 = 0). For z = 0 the

two roots r
(1,2)
1 reduce, approximately, to r

(1,2)
1 ≃ (ct ∓ r)/2; we can see that the sources of the

secondary waves which arrive at r lie inside an anullus with radii r
(1,2)
1 and a constant width r,

which expands on the surface with velocity c/2, after a time interval t ≃ r/c.

In the integral given by equation (17) we pass from the variable r1 to the variable ϕ0; for a limited

range of integration r (from r
(1)
1 to r

(2)
1 ), we may take χ0 out of the integral sign; we get

ψ ≃ Cχ0

4πc2

∫ π

0
dϕ0

1

(r cosϕ0 − cτ)2
, (22)

or

ψ ≃ Cχ0

4πc2r2
∂

∂x

∫ π/2

0
dϕ0

(

1

cosϕ0 − x
− 1

cosϕ0 + x

)

, x = cτ/r > 1 . (23)

The integrals in equation (23) can be effected immediately; we get the potential

ψ ≃ χ0

4c2
(c2t2 − r2 − z2)cτ

(c2τ 2 − r2)3/2
, (24)
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valid for C = c2t2 − r2 − z2 > 0 (and cτ > r); otherwise, the potential ψ is zero.

We can see that the wavefront r2 + z2 = c2t2 defines a spherical perturbations which moves with
velocity c. The singular behaviour of these waves for z = 0 resembles the algebraic singularity
of the waves in two dimensions produced by localized sources.[4] The discontinuities exhibited by
these functions are present even if we allow for a slight dependence on r of the source potential, as
long as the potential remains localized; they are related to a constant, finite velocity of propagation
of the waves.

Making use of us = gradψ we can compute the displacement vector us in the secondary waves.
We are interested mainly in the waves propagating on the surface (z = 0). First, we note that
the displacement is singular at cτ = r; this indicates the existence of a shock occcurring after the
arrival of the primary wave. Indeed, the primary wave arrives at the observation point r at the
time tp = r/v = (r/c)(1−ε), while the shock occurs at ts = r/c; we can see that there exists a time
delay ∆t = ts − tp = 2(r/c)ε between the primary wave and the wavefront of the secondary wave.
The sharp singularity in equation (24) is related to our using a constant velocitiy v; actually, an
uncertainty of the form ∆v ≃ cε exists in this velocity, which entails an uncertainty τε in the time
τ , such that the smallest value of the denominator in equation (24) is of the order c2τ 2ε. In the
vicinity of the wavefront the leading contributions to the components of the surface displacement
(z → 0, in polar cylindrical coordinates) are given by

usr ≃ χ0τ
4c

· r

(c2τ2−r2)3/2
, usz ≃ χ0τ

2c
· |z|

(c2τ2−r2)3/2
→ 0 . (25)

We can see that the singular displacement tangential to the surface of the fluid (usr) generates
an accumulation of fluid at the wavefront r = cτ along the vertical, with an infinite increase in
height (while the level of the surface for r < cτ decreases); also, we can see that the pressure is
decreased by the amount δp = −ρψ̈ ≃ −(3ρχ0/4)r

3(c2τ 2 − r2)−5/2 at r = cτ , which brings about
the great increase in height of the fluid at this point (under these conditions the negative velocity
of the fluid particles given by equation (25) is irrelevant, as are the large spatial variations of
usr near the wavefront, given by equation (25)). This may be viewed as a model picture for the
tsunami phenomenon. The height h of the fluid with respect to the level of the equlibrium surface
can be computed from the equilibrium equation in gravitational field δp = −ρgh, where g is the
gravitational constant and z in δp is replaced by h; the height h is a function r and t and is infinite
at the wavefront r = cτ .

Concluding remarks. Compressional waves are considered in an ideal fluid at equilibrium,
generated by sources localized both in space and time, like explosions in seas and oceans or
earthquakes occuring just beneath the seafloor (seabed). These primary waves are spherical shells
which produce additional wave sources on the plane surface of the fluid (secondary sources).
The secondary sources "move" on the surface with a velocity greater than the wave velocity
and generate secondary waves in the fluid (radiation). The secondary waves are computed in a
simplified model. It is shown that the secondary waves have a sharp spherical wavefront which is
singular on the surface. This singularity may be viewed as a model representation of the tsunami
phenomenon. The fluid accumulates on the vertical at the wavefront, while the fluid level decreases
behind.
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