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Abstract

Unphysical terms in the elastic Hertz potentials are identified and a regularization pro-
cedure is devised for removing them. The solutions of the equation of the elastic motion
are given for tensorial forces (seismic moment forces) and vectorial forces (Stokes problem)
concentrated both in space and time.

We consider the equation for the elastic motion[1]

ü− c2t∆u− (c2l − c2t )grad · divu = F , (1)

where u is the displacement, cl,t are the velocities of the elastic waves (longitudinal and transverse)
and F is the force (per unit mass); we consider a force concentrated (localized) both in space and
time, given by[2]

Fi = mijTδ(t)∂jδ(R) , (2)

where T is the short duration of the time impulse δ(t) and mij is the tensor of the seismic moment.
We follow the standard procedure for introducing the Hertz vectors.[3] To this end we introduce
the notation fi = −(1/4π)mijT∂j and write the equation as

ü− c2t∆u− (c2l − c2t )grad · divu = −4πδ(t)fδ(R) ; (3)

then, we write δ(R) = −(1/4π)∆ 1

R
; the equation becomes

ü− c2t∆u− (c2l − c2t )grad · divu = δ(t)∆
f

R
; (4)

further on, we use ∆(f/R) = grad · div(f/R)− curl · curl(f/R) and get

ü− grad · div[c2l u+ δ(t)
f

R
] + curl · curl[c2tu+ δ(t)

f

R
] = 0 ; (5)

we can see that u can be written as

u = grad · divB+ curl · curlC = −∆C + grad · div(B+C) , (6)

where

B̈− c2l∆B = δ(t)
f

R
, C̈− c2t∆C = −δ(t)

f

R
; (7)

the vectors B and C are known in Electromagnetism as the Hertz vectors.[4]-[6]
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We are led to study the potential equation

Ψ̈− c2∆Ψ = δ(t)
1

R
, (8)

where the vectors B, C are given by fΨ. For the tensorial force given in equation (2) we get the
potentials B and C by applying the operator fi = −(1/4π)mijT∂j to the scalar potential Ψ; the
displacement is given by

ui = −
T

4π
mij∂j∆Ψt −

T

4π
mjk∂i∂j∂k(Ψl −Ψt) , (9)

where Ψl,t correspond to cl,t in equation (8). For a vectorial force F = fTδ(t)δ(R) (Stokes
problem[7]) we get the potentials B and C by applying the constant vector −(1/4π)T f to Ψ; from
equation (6) the displacement is given by

u = −
T

4π
f∆Ψt −

T

4π
grad(fgrad)(Ψl −Ψt) . (10)

The solution of equation (8) is of the form Ψ = χ(R, t)/R, where

χ̈− c2χ
′′

= δ(t) ; (11)

we get

Ψ =
tθ(t)

R
+ θ(ct− R)

χ(R− ct)

R
, (12)

where χ is an arbitrary function and the factor θ(ct − R) is introduced to satisfy the natural
boundary condition for t < 0 (causality condition). The function χ is determined by imposing the
boundary condition for R → 0. It is natural to assume that the time dependence of Ψ is much
slower than its spatial dependence, such that Ψ → 0 for R → 0 and

t

R
+

χ(−ct)

R
= 0 (13)

from equation (12). We can see that this condition amounts to assuming that the focal pertur-
bation occurs with a slower velocity than the wave velocity c (it follows l < cT , where l is the
localization length of the focus, i.e. the localization length of the function δ(R)). It follows from
equation (13) χ(x) = x/c as the leading term; we get the solution

Ψ =
t

R
+

1

c
(1−

ct

R
)θ(ct− R) + const =

1

c

[

θ(ct−R) +
ct

R
θ(R− ct)

]

+ const , (14)

where const = −1/c; up to this constant, this is precisely the Kirchhoff solution

Ψ =
1

4πc2

∫

dR
′ δ(t−

∣

∣

∣R−R
′
∣

∣

∣ /c)

|R−R
′|R′ =

1

4πc2

∫

dr
δ(t− r/c)

r |R− r|
; (15)

indeed, the integral in equation (15) gives the θ-functions in equation (14).

The potential Ψ given by equation (14) satisfies the homogeneos equation Ψ̈− c2∆Ψ = 0, except
for ct = R, where the solution is not determined (the functions θ are not determined for R = ct).
It follows that we should disregard contributions to Ψ for R 6= ct and determine the solution in
the vicinity of R = ct by other means; this is the regularization (calibration) procedure; the θ-
prefactors have not a physical relevance for R = ct. It is known that the potentials have not a direct
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physical relevance; in particular, including the advanced solution in the half-space, the boundary
conditions at the surface of the half-space cannot be satisfied with the unregularized solution
(Lamb problem[8]-[11]). Similarly, for mij = mδij the solution of equation (1) is u = gradΦ,
where

Φ =
Tm

4πc2l

∫

dR
′ δ(t−

∣

∣

∣R−R
′
∣

∣

∣ /cl)

|R−R
′|

δ(R
′

) =
Tm

4πcl

δ(R− clt)

R
, (16)

while equations (9) and (14) give u = −Tm
4π

grad∆Ψl, i.e. Φ = −Tm
4π

∆Ψl,

Φ = −
Tm

4π
∆Ψl =

Tm

2πcl

δ(R− clt)

R
; (17)

we can see that these two expressions (equations (16) and (17)) differ by a factor 1/2.

Since second-order derivatives (at least) may have relevance (equations (9), (10)), we apply the
calibration procedure to expressions like

c∂i∂jΨ = −
δij
R
(1− ct/R)δ +

xixj

R3 (1− 3ct/R)δ −
xixj

R2 (1− ct/R)δ
′

−
ctδij
R3 θ +

3ctxixj

R5 θ (18)

(where we neglect the argument R− ct); hence

c∆Ψ = −
2

R
δ − (1− ct/R)δ

′

. (19)

If we apply the laplacian to equation (8) we get

∂2

∂t2
∆Ψ− c2∆(∆Ψ) = −4πδ(t)δ(R) , (20)

whence, with the Kirchhoff solution,

∆Ψ = −
δ(R− ct)

cR
; (21)

comparing equation (19) against equation (21) we can see that the δ
′

-contributions should be
neglected in equation (18), as well as the θ-functions, and a factor 1/2 should be inserted; we get
the calibrated expression

c∂i∂jΨ = −
δij
2R
(1− ct/R)δ +

xixj

2R3 (1− 3ct/R)δ . (22)

Making use of equations (9) and (22) we get immediately the displacement u = u
nf + u

ff , where
the near-field displacement is

unf
i = −Tmijxj

4πctR3 δ(R− ctt)+

+ T
8πR3

(

mjjxi + 4mijxj −
9mjkxixjxk

R2

) [

1

cl
δ(R− clt)−

1

ct
δ(R− ctt)

]

(23)

and the far-field displacement is

uff
i =

Tmijxj

4πctR2 δ
′

(R− ctt) +
Tmjkxixjxk

4πR4

[

1

cl
δ
′

(R− clt)−
1

ct
δ
′

(R− ctt)
]

. (24)

These are spherical-shell waves. Similarly, using equations (10) and (22) we get the solution

u =
T f

4πctR
δ(R− ctt) +

TR(Rf)

4πR3

[

1

cl
δ(R− clt)−

1

ct
δ(R− ctt)

]

(25)

for the Stokes problem.
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