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Abstract

The equations of motion of an electric charge in a plane wave of radiation field is solved.
It is shown that in high radiation field the charge becomes ultrarelativistic and the Landau-
Lifshitz reaction (damping) force is very small and has no measurable effects.

Let us consider, with usual notation, the motion of a charge q with mass m in an electromagnetic
field generated by the vector potential Az = A0 cos

ω
c
(ct− x) = A; the equation of motions are

mc
dui

ds
=

q

c
F ikuk , (1)

where ui is the four-velocity. The field intensity (E = −(1/c)∂A/∂t, H = curlA) is given by

F ik =











0 0 0 −E
0 0 0 −E
0 0 0 0
E E 0 0











, Fik =











0 0 0 E
0 0 0 −E
0 0 0 0

−E E 0 0











, (2)

where E = Ez =
ω
c
A0 sin

ω
c
(ct− x) (and Hy = −E). The world-line element is usually written as

ds = cdt/γ, γ = 1/
√

1− v2/c2; however, this is not convenient for the integration of the equations
of motion, since the field depends on s = ct − x. Consequently, the equations of motion are
re-written as

mcdu
0

ds
= qE

c
u3 , mcdu

1

ds
= qE

c
u3 ,

mcdu
3

ds
= qE

c
(u0 − u1)

(3)

(u2 = 0); we get immediately u0 − u1 = const = 1, for a charge initially at rest in the origin (we
recall u0 = γ, u = γv/c); it follows

u1 = q2A2

2m2c4
, u0 = γ = 1 + q2A2

2m2c4
,

u3 = −
q

mc2
A

(4)

(we can check uiu
i = 1). The velocities are given by

vx = c
q2A2/2m2c4

1 + q2A2/2m2c4
, vz = −c

qA/mc2

1 + q2A2/2m2c4
(5)
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and the energy is

E = mc2γ = mc2 +
q2A2

2mc2
. (6)

We can see that for high fields the charge reaches the ultrarelativistic limit along the direction of
propagation of the radiation field (vx → c, vz → 0). From ui = dxi/ds we get the coordinates

x =
q2A2

0
/4m2c3

1+q2A2

0
/4m2c4

[

t + 1

2ω
sin 2ω

c
(ct− x)

]

,

z = −
qA0

mcω
sin ω

c
(ct− x) .

(7)

The reaction force[1] is given by

gi =
2q3

3mc3
∂F ik

∂xl
uku

l
−

2q4

3m2c5

[

F ilFklu
k
− (Fklu

l)(F kmum)u
i
]

;

it must be much smaller than q2/cγa2, where a = q2/mc2 is the classical electromagnetic radius of
the charge; this condition, which indicates the limits of applicability of the electromagnetism, does
not imply always that the damping (reaction) force is smaller than the electromagnetic (Lorentz)
force; in the limit v → c the damping may be higher than the driven force.

Making use of the field given by equations (2) we get the reaction force

g0 = 2q3

3mc3
(u0 − u1)

{

ω2

c2
Au3 + qE2

mc2
[1− (u0 − u1)u0]

}

,

g1 = 2q3

3mc3
(u0 − u1)

{

ω2

c2
Au3 + qE2

mc2
[1− (u0 − u1)u1]

}

,

g3 = 2q3

3mc3
(u0 − u1)2

(

ω2

c2
A−

qE2

mc2
u3

)

(we can check uig
i = 0). Making use of the four-velocity given in equation (4) we get

g0 = −
2a2ω2A2

3c3

(

1 + a E2

2mω2

)

,

g1 = −
2a2ω2

3c3

[

A2 −
c2E2

ω2

(

1− q2A2

2m2c4

)]

,

g3 = 2aqAω2

3c3

(

1− a E2

mω2

)

,

or, in the limit of high-intensity fields,

g0 = g1 ≃ −
a3A2E2

3mc3
, g3 ≃ −

2a2qAE2

3mc3
.

We consider an electron in a high-intensity field E = 1010statvolt/cm, corresponding to a laser
radiation with intensity I = 1022w/cm2, focalized in a pulse of dimension d = 10µm. The vector
potential is A0 = cE0/ω = 10−5E0 = 105statvolt for the optical frequency ω ≃ 3 × 1015s−1 (λ =
0.5µm); the corresponding energy for an electron is qA0 = 4.8× 10−5erg ≃ 30MeV . This energy
is much higher than the rest energy of the electron mc2 = 0.5MeV ; the electron is accelerated
along the direction of propagation of the radiation up to energies of the order 1GeV . Under
these conditions the damping force (g0 = g1 ≃ 10−12g/s, g3 ≃ 10−13g/s) is much smaller than
the Lorentz force (qEu3/c ≃ 10−8g/s, qE/c ≃ 10−10g/s; γ ≃ 104) and the validity condition
gi ≪ q2/cγa2 is satisfied (q2/cγa2 ≃ 10−8g/s).
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We may conclude that in high-intesnity radiation field the motion of the charge becomes ultrarel-
ativistic and the damping force has no measurable effect on the motion.
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