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Abstract

The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound
charges placed in electromagnetic radiation in the non-relativistic approximation. The con-
sistent inclusion of the interaction with the radiation field provides the time evolution of the
wavefunction with both structural interaction (which ensures the bound state) and the inter-
action caused by the radiation. It is shown that after a short time since switching on a high-
intensity radiation the bound charges are set free; in these conditions a statistical criterion
is used to estimate the rate of atom ionization. The results correspond to a sudden applica-
tion of the interaction with the radiation, in contrast with well-known ionization probability
obtained by quasi-classical tunneling through classically unavailable non-stationary states, or
other equivalent methods, where the interaction is applied adiabatically. For low-intensity
radiation the charges oscillate and emit higher-order harmonics, the charge configuration is
rearranged and the process is resumed. Extension of the approach to other applications in-
volving radiation-induced charge emission from bound states is discussed, like ionization of
molecules, atomic clusters or proton emission from atomic nuclei. Results for a static electric
field are included.
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The investigation of the laser-matter interaction was focused since the beginning on the radiation-
induced atom ionization.[1, 2] Originally, the transitions between the atomic non-stationary states
have been approached by time-dependent perturbation theory. Keldysh[3] noticed that the pres-
ence of the radiation implies a quasi-classical tunneling through states which are not allowed by
the classical dynamics (including imaginary time tunneling[4]). Later, it was realized[5] that the
radiation-dressed states play an important role in the ionization process through the Kramers-
Henneberger transformation.[6, 7] Similarly, the ionization rate in static electric field was computed
in classical works,[8]-[10] either by quantum transitions or by tunneling through the potential bar-
rier generated by the field. These calculations assume an adiabatic introduction of the interaction
with the radiation, which allows the use of atomic stationary states.[11] Typically, the dynamics
of the electrons in the presence of the radiation field is neglected in these approaches, which re-
sults in ionization probabilities proportional to e−const/E, where E is the strength of the electric
field[12]-[15] (this is a well-known result, valid also for static fields[4]). In current experiments
envisaging atom ionization, especially in high-intensity electromagnetic radiation, the interaction
occurs suddenly in the focal region of the laser beam. In this case, the atomic states are not
stationary anymore, and a time evolution of the wavefunction is needed. On a sudden application
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of the interaction, both in static and time-dependent electromagnetic field, the particle energy
is not determined. The need of a time-evolving picture of radiation-induced atom ionization has
often been emphasized.[16]-[18] We present here an investigation into the time-evolution of bound
states of charges for a sudden application of the interaction with the electromagnetic radiation.

First, we show that the consistent inclusion of the interaction with the radiation field by means
of the unitary transformations of the Goeppert-Mayer and Kramers-Henneberger type offers the
opportunity to follow the time evolution of the wavefunction with both the structural interaction
(which is responsible for the charge bound state) and the interaction caused by the radiation.
Second, it is shown that in high-intensity radiation, after a short lapse of time since its applica-
tion, the well-known radiation-dressed atomic interaction resulting from the Kramers-Henneberger
transformations vanishes, setting the electrons free; using a statistical criterion we derive the atom
ionization rate, which differs from the known results obtained by introducing the interaction adi-
abatically. The effect of low-intensity radiation is that of an adiabatic perturbation. During its
slow action, the electrons oscillate among stationary states, leading to well-known multi-photon
absorption and production of high-order electromagnetic harmonics, the rearrangement of the
charge configuration, the process being periodically resumed. We apply the results of this new
context to the ionization of atoms, assuming, for convenience, (non-relativistic) single-electron
states in atomic mean-field. The extension of the results to multiply-charged ions, ionization of
large molecules, atomic clusters, or proton emission from atomic nuclei is discussed.

To start with, we assume a charge q with mass m in the atomic potential V (r) in the presence of
an electric field E; in the non-relativistic approximation the dipole hamiltonion is

Hd = H0 − qrE , H0 =
1

2m
p2 + V (r) , (1)

where r denotes the relative position and p is the charge momentum. We assume that the electric
field E is a radiation field; in the non-relativistic approximation we may limit ourselves to its
time dependence; consequently, we assume a typical component of the electric field of the form
E = E0 sin(ωt + α), where ω is the radiation frequency (linear polarization), t denotes the time
and α is an initial phase. We consider the associated Schrodinger equation i~∂ψ/∂t = Hdψ and
introduce the unitary transformation

ψ = eiS1φ , S1 = − q

~ω
rE0 [cos(ωt+ α)− cosα] , (2)

where we recognize the vector potential A = (c/ω)E0 [cos(ωt+ α)− cosα] (E = −(1/c)∂A/∂t), ~
being the Planck’s constant and c the speed of light in vacuum; we can write S1 = −(q/~c)rA. The
transformation given by equation (2) leads to p → p̃ = p−qA/c and the standard non-relativistic
hamiltonian

H̃d = e−iS1Hde
iS1 =

1

2m

(
p− q

c
A
)2

+ V (r) , (3)

with the associated Schrodinger equation i~∂φ/∂t = H̃dφ. The transformation given by equation
(2) is known as the Goeppert-Mayer transformation.[19]

Let us write

H̃d = H0 −
q

mc
Ap+

q2

2mc2
A2 (4)
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and continue with the unitary transformation

φ = eiS2eiS3χ ,

S2 = − q2

2~mc2

∫ t

0
dtA2 = − q2E2

0

8~mω3 [sin 2(ωt+ α)−

−8 cosα cos(ωt+ α) + 2ωt(2 + cos 2α) + 3 sin 2α] ,

S3 =
q

~mc

∫ t

0
dtpA = q

~mω2 [sin(ωt+ α)− ωt cosα− sinα]E0p ;

(5)

it leads to the Schrodinger equation

i~
∂χ

∂t
=

[
1

2m
p2 + Ṽ (r)

]
χ (6)

with the radiation-dressed atomic potential

Ṽ (r) = e−
q

mω2
[sin(ωt+α)−ωt cosα−sinα]·E0gradV (r) ; (7)

we note that the interaction with the radiation is applied suddenly at t = 0, where ψ(t = 0) =
φ(t = 0) = χ(t = 0) and the electromagnetic interaction vanishes at t = 0 in the standard

non-relativistic hamiltonian given by equation (4) and in Ṽ (r); this establishes the equivalence of
the three hamiltonians (equations (1), (4) and (6)) and the consistent inclusion of the interaction
with the radiation field (see, for instance, Refs. [20]-[22]). The unitary transformations given
by S2,3 are the well-known Kramers-Henneberger transformations, including the radiation-dressed

potential Ṽ (r).[5]-[7] The wavefunction ψ = exp(iS1) exp(iS2) exp(iS3)χ given by the above formu-
lae is known as the non-relativistic Volkov wavefunction;[18] its expansion in a temporal Fourier
series indicates the presence of multiple "photons" with frequencies n~ω, where n = 0, 1, 2, ....
integer.[14, 23, 24]

We proceed now to apply these results to the ionization of atoms; we assume that in the absence
of the radiation field the potential V (r) is the mean-field potential which generates atomic bound
single-electron states. Let us assume that the electric field E is directed along the z-axis; then,
equation (7) gives

Ṽ (x, y, z) = V + ζ(t)V1 +
1
2!
ζ2(t)V2 + ... =

= V (x, y, z + ζ(t)) ,

(8)

where V1 = ∂V/∂z, V2 = ∂2V/∂z2, ... and

ζ(t) =
qE0

mω2
[ωt cosα− sin(ωt+ α) + sinα] . (9)

We can see that the potential Ṽ at the position of the charge is the original potential V at
coordinate z + ζ(t). It is convenient to introduce the parameter ξ = |q|E0/mω

2a, where a
denotes a length of the order of the dimension of the atom (in its ground-state); we asssume
a ≃ aH = ~

2/me2, where aH is the Bohr radius,q = −e being the electron charge.

For ξ ≪ 1 (low-intensity radiation) the electronic charge oscillates and emits higher-order harmon-
ics, due to the oscillations brought about by ζ(t) in the z-coordinate; during this process the charge
is reconfigured, the time of charge re-arrangement being given approximately by ta = ~/∆E , where

∆E is the perturbation energy generated by the radiation field via the potential Ṽ . During the
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time ta the potential V changes and its radiation-dressing process is resumed periodically. This is
a well-known process.[25]-[28]

For ξ ≫ 1 (high-intensity radiation) the deviation ζ(t) may get rapidly larger than the atom
size, and the electrons are set free. The attractive potential of the resulting ion is surpassed by
the kinetic energy of the ejected electron. The parameter ξ can also be written as ξ = η(λ/a),
where η = |q|A0/mc

2, A0 = cE0/ω, λ being the radiation wavelength. In order to preserve
the non-relativistic approximation we should have η ≪ 1. The conditions ξ > 1 and η < 1
are satisfied for radiation intensity I in the range 1011w/cm2 < I < 1018w/cm2 for electrons in
atoms (a = 10−8cm) and optical radiation (ω = 1015s−1, λ ≃ 10−4cm). Even for moderate laser
intensities the parameter ξ is large (ξ ≃ 103 for I = 1018w/cm2). Under these circumstances the
duration τ for setting the electrons free is given by

|ζ(τ)| /a = ξ |ωτ cosα− sin(ωτ + α) + sinα| ≃ 1

2
ξ(ωτ)2 |sinα| = 1 . (10)

We can see that the displacement of the electrons is in the direction opposite to the electric field
at the initial moment, as expected. Depending on the sign of sinα, this displacement is either
positive or negative. We assume the phase α randomly distributed and take the mean value
|sinα| = 2/π; we use ξ(ωτ)2/π = 1 as a statistical criterion for ionization.

Let us consider an atom with the nucleus charge Ze; according to the Thomas-Fermi model for
heavy atoms (Z ≫ 1) the electrons are concentrated mainly up to a distance of the order aH/Z

1/3

from the nucleus; therefore, we may estimate the release time τ from ξ(ωτ)2/π = 1 − 1/Z1/3.
For an ion with one electron and the nuclear charge Ze the radius of the electron orbit is of
the order aH/Z

2 and the time τ can be estimated from ξ(ωτ)2/π = 1 − 1/Z2. In general, for
a heavy ion with charge ne, n ≪ Z, the charge localization distance b can be estimated from
Ze2/b ≃ ~

2(Z − n)2/3/mb2, which gives b ≃ aH(Z − n)2/3/Z. In all these cases, for large Z, we
may take approximately the condition ξ(ωτ)2/π ≃ 1 for estimating the release time τ . Similary, the
same condition is valid for light atoms. In these conditions, the statistical criterion of ionization
makes no distinction between successive ionization acts or multiple ionization, the very short
release time being the same for each electron. After each process of electron ejection the electronic
core suffers a reconfiguration (re-arrangement) process and the potential V (r) is modified; this is
the well-known process of core "shake-up" (or core excitation).[27]-[30] As a consequence of this
reconfiguration process, the condition of setting the electrons free derived from equation (8) is
not valid anymore; a new bound state is formed and a new transformation process begins for the
modified potential V (r). For high-intensity radiation the re-arrangement time is comparable with
the release time τ , such that we may estimate the ionization rate as

1

τ
≃

√
ξ/πω =

√
qE0/πma ; (11)

the decay law of atom population N is N = N0e
−t/τ , where N0 is the initial number of atoms.

We can see from equation (11) that the uncertainty in energy brought about by the ionization
is ∆E = ~/τ ≃

√
(~2/ma2)qE0a; the mechanical work qE0a done by the field to extract the

electron is of the same order of magnitude as the localization energy ~
2/ma2 for atomic fields

E0 ≃ 106statvolt/cm (intensity I ≃ 1014w/cm2), as expected; in this case ξ = (~2/ma2)2/(~ω)2 =
102 and 1/τ = [(~2/ma2)/π(~ω)]ω = (10/π)ω (it is assumed that the laser pulse duration is
longer than the time τ). For E > E0 the process of interaction with the radiation is dominated by
ionization. For weaker fields the ionization process slows down appreciably for mechanical work
qE0a smaller than −Eb, where Eb (< 0) is the binding energy of the electron.

We can get a critical value E0c of the electric field for the transition from the low- to high-intensity
regime from ξ = 1; this condition gives E0c = mω2a/q. For electrons (q = 4.8× 10−10esu), optical
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radiation ω = 1015s−1 and a = 10−8cm we get E0c ≃ 2 × 104statvolt/cm; this field corresponds
to a radiation intensity I ≃ 1011w/cm2. We can see from equation (11) that the ionization
rate increases with increasing field strength. In the intermediate-intensity range corresponding to
ξ ≃ 1 the interplay between highly-excited states and ionization may generate a transient regime
of atomic stabilization, with a lower ionization rate.[31] In this region the ionization rate 1/τ can
be estimated by solving the equation |ζ(τ)| /a = 1 for τ ; it is easy to see that the solution τ(E)
exhibits oscillations with respect to the field strength E.

We note that the above calculations are done for linearly polarized radiation; it is easy to see that
similar calculations can be done for a general polarization.

An interesting question arises here related to very high-intensity radiation in the so-called rel-
ativistic regime, where η ≫ 1. As long as the bound state of the charge subsists, the motion
is, practically, non-relativistic; this means that the electromagnetic momentum p is sufficiently
large to reduce to a large extent the contribution qA/c, such that the velocity is small; the above
non-relativistic formalism may be applied. However, this situation lasts a very short time (since
ξ ≫ 1), the charge being rapidly injected in the high-intensity radiation, where it is accelerated
up to relativistic velocities.[32]-[34]

We include here similar calculations for a static uniform electric field E, which may be viewed as
being derived from a vector potential A = −cEt. The wavefunction is

ψ = e−
iq2E2t3

6~m e
iqt

~
Ere−

iqt2

2~m
Epχ , (12)

where χ satisfies the Schrodinger equation

i~
∂χ

∂t
=

1

2m
p2χ+ Ṽ (r)χ (13)

with the transformed potential given by

Ṽ (r) = e
qt2

2m
EgradV (r) . (14)

It is easy to see that the ionization rate is 1/τ = (qE/2ma)1/2; it coincides practically with the
ionization rate in oscillating fields (equation (11)).

Finally we note that the displacement occurring in the radiation-dressed interaction (equation (8))
is given, in general, by

ζ(t) =
q

m

∫ t

0

dt1

∫ t1

0

dt2E(t2) ;

by using this equation we can estimate the ionization rate for a general time-dependence of the
electric field in the laser pulse. For example, for a very short δ-like pulse E = TE0δ(t − t0)
occurring at t0 with a width T we get a ionization rate 1/τ ≃ qTE0/ma; this equation differs from
the

√
E0-dependence given above. Since strong fields are obtained usually with very short pulses,

the linear dependence on the field indicated here may be more suitable for analyzing experimental
data in this case.[35]

In conclusion, we may say that by means of suitable unitary transformations of the Goeppert-
Mayer and Kramers-Henneberger type the interaction of bound charges with the electromagnetic
radiation can be consistently taken into account for a sudden application of the interaction with the
radiation. It is shown that the radiation-dressing of the structural interaction (which is responsible
of the charge bound state) favours, in this case, the dissociation of the bound state (ionization)
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in high-intensity radiation; the atom ionization rate is estimated by using a statistical criterion.
The new picture of atomic ionization described in this paper implies an explicit time evolution of
the charge wavefunction with both structural and radiation interaction; in a short time τ after
turning-on the high-intensity radiation the bound charges are set, practically, free.

The approach presented here can be extended to the ionization of molecules[36, 37] or atomic
clusters,[38] or to proton emission from atomic nuclei,[39] or even ion emission from molecules
(atomic clusters). For electrons in atoms the conditions of ionization and non-relativistic ap-
proximation imply a radiation intensity in the range 1011w/cm2 < I < 1018w/cm2, for atomic
dimensions of the order a = 10−8cm and optical radiation with frequency ω = 1015s−1; simi-
lar conditions lead to 107w/cm2 < I < 1023w/cm2 for proton emission from atomic nuclei and
1017w/cm2 < I/A2 < 1023w/cm2 for ion emission from molecules, where A is the mass number of
the ion.

A note on the difference between adiabatic application of the interaction and its sudden appli-
cation. The radiation wavefront is extending much into space, in advance of the front, by the
macroscopic process of creating the wave (e.g., by opening the aperture of the laser cavity for
releasing the radiation beam, or by switching on the electric circuit of lighting up the lamp, etc);
the radiatin wavefront is not sharp. As such, the particle suffers first a very small interaction,
which increases gradually in long time. Strictly speaking, the first impact with the radiation is
sudden, and, therefore, an uncertainty in energy occurs in a very short time, of the order a/c.
However, if there exists energy loss (as in case of condensed matter), this time is longer, and we
may consider the interaction application as being adiabatic; it is expressed by the characteristic
factor e−αt in the interaction. If we inject (inevitably) slowly non-relativistic charges into the focal
region of the laser beam, we introduce again adiabatically the interaction. But, if the laser beam
hits the charge, the interaction is applied suddenly. This sudden application of the interaction
(which is frequent, for example, in gases), if weak, gives a transient regime, which fads out in time
as a consequence of the re-arrangement process; such that, in the stationary regime which follows
we may again admit that the interaction is introduced adiabatically. If the interaction is strong,
it is the transient regime which dominates.
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