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Abstract

The cross-section is computed for non-relativistic charged particles (like electrons, ions)
scattered by electromagnetic radiation confined to a finite region (like the focal region of
optical laser beams). The cross-section exhibits maxima at scattering angles given by the
energy and momentum conservation in multi-photon absorption or emission processes.
For convenience, a potential scattering is included and a comparison is made with
the well-known Kroll-Watson scattering formula. The scattering process addressed in
this paper is distinct from the process dealt with in previous studies, where the scattering is
immersed in the radiation field.
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The potential scattering of charged particles in the presence of electromagnetic radiation has en-
joyed much interest in the past,[1]-[9] and is still enjoying.[10] In the context of lasers development,
these studies revealed the potential scattering assisted by multiple-photon exchange, as shown by
the well-known Kroll-Watson cross-section.[1, 2] In the formulation of this problem the scattering
is immersed in the radiation field, i.e. the asymptotic incoming and outgoing particle states and
the scattering potential are included in the region containing the radiation. The duration of the
laser pulse is much longer than the scattering time. The starting point of these approaches is the
standard non-relativistic hamiltonian where the particle momentum p = mv+ eA/c includes the
electromagnetic contribution eA/c beside the purely mechanical contribution mv (the notations
are the usual ones, i.e. m and e denote the particle mass and, respectively, charge, v is the particle
velocity, A is the vector potential of the radiation field and c denotes the speed of light in vac-
uum). The Kroll-Watson cross-section corresponds to radiation-assisted potential scattering, i.e.

it shows how the potential cross-section is modified by the presence of the radiation; it becomes
zero when the potential is removed.

With the advent of high-intensity lasers and strongly focused laser beams,[11]-[18] it appears the
possibility of scattering charged particles by the radiation field confined to the focal region of the
beam (the radiation is vanishing smoothly ouside the focal region). In this case the asymptotic
scattering states are radiation free; they are eigenstate of the quantum-mechanical momentum
corresponding to the purely mechanical momentum, without including the electromagnetic con-
tribution. This is the scattering problem addressed in this paper. It resembles to some extent the
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electron diffraction from standing light waves, where the scattering proceeds by spontaneous emis-
sion of Compton photons (Kapitsa-Dirac effect).[19] We envisage charged particles like electrons
or ions, with non-relativistic energies, scattered off electromagnetic radiation confined to the focal
region (in vacuum) of an optical laser beam. Usually, the order of magnitude of the dimension of
the focal region is a few tens of radiation wavelengths, and the radiation field has a reasonably
high intensity, such that the non-relativistic character of the particle motion be preserved. For
convenience, we include in the focal region a static potential. We assume first a laser pulse much
longer than the radiation period.

We consider a non-relativistic particle with mass m and charge e scattered by an electromagnetic
radiation field with the vector potential A = A0 cos(ωt−kr) (linear polarization), where A0 is the
amplitude and ω and k are the radiation frequency and, respectively, wavevector; t and r denote
time and, respectively, position. Since the phase velocity of the non-relativistic charge is much
smaller than the speed of light c in vacuum (ω = ck), we may neglect the spatial phase kr in
comparison with the temporal phase ωt; consequently, the vector potential may be approximated
by A ≃ A0 cosωt. The hamiltonian of the particle in the radiation field becomes the well-known
dipole hamiltonian[20]-[25]

H =
1

2m
p2 − erE(t) + V (r) , (1)

where E(t) = E0 sinωt, E0 = ωA0/c, is the electric field and V (r) is a potential which does
not depend on time. The non-relativistic character of the motion is preserved in the radiation
field provided eA0/mc

2 ≪ 1. Making use of the notations H0 = p2/2m and U = −erE, the
wavefunction ψi of the incident particle satisfies the Schrodinger equation

i~
∂ψi

∂t
= (H0 + U + V )ψi (2)

with the initial condition (incoming state)

ψ0
i =

1
√
v
e−

i
~
Eit+

i
~
pir , (3)

where pi is the initial momentum, Ei is the initial energy and v denotes the volume (~ is Planck’s
constant); the solution of equation (2) is given by

ψi = ψ0
i −

i

~
e−

i
~
H0t

∫ t

−∞

dt
′

e
i
~
H0t

′

(U + V )ψi . (4)

The wavefunction of the final scattering state (outgoing state) is

ψf =
1
√
v
e−

i
~
Ef t+

i
~
pf r , (5)

where pf is the final momentum and Ef is the final energy. The transition amplitude (S-matrix)
reads

afi = −
i

~

∫ +∞

−∞

dt(ψf , (U + V )ψi) . (6)

In equation (2) we insert successively the Goeppert-Mayer transform[26]

ψi = eiS1φi , Si = −1
~

∫ t

−∞
dt

′

U(t
′

) = − e
~c
rA ,

i~∂φi

∂t
=

[
1
2m

(p− e
c
A)2 + V

]
φi

(7)



J. Theor. Phys. 3

and the Kramers-Henneberger transform[27]-[30]

φi = eiS2χi , S2 =
e

~mc

∫ t

−∞
dt

′

pA− e2

2~mc2

∫ t

−∞
dt

′

A2 =

= e
~mcω

pA0 sinωt− e2

8~mc2ω
A2

0(sin 2ωt+ 2ωt) ,

i~∂χi

∂t
=

(
H0 + Ṽ

)
χi , Ṽ (r) = V (r− eE/mω2) .

(8)

We recognize in equations (7) the standard non-relativistic hamiltonian of the particle in the radi-
ation field. As regards the potential V we limit ourselves to the Born approximation; consequenty,
the wavefunction χi can be written as

χi = ψ0
i −

i

~
e−

i
~
H0t

∫ t

−∞

dt
′

e
i
~
H0t

′

Ṽ ψ0
i (9)

and the transition amplitude becomes

afi = − i
~

∫ +∞

−∞
dt(ψf , (U + V )eiS1eiS2ψ0

i )+

+
(
− i

~

)2 ∫ +∞

−∞
dt(ψf , Ue

iS1eiS2e−
i
~
H0t

∫ t

−∞
dt

′

e
i
~
H0t

′

Ṽ ψ0
i ) .

(10)

The advantage of the canonical transformations carried out above consists in the possibility of
applying the Born approximation. The U -term in equation (10) corresponds to the scattering by
the radiation field; we can see in equation (10) that the scattering by the potential V is dressed

with radiation (terms ∼ V eiS1eiS2 , ∼ Ṽ ); in addition, there appears an interference term, which

includes the product UṼ .

We may make certain simplifications in equation (10). It is easy to see that the phase S1(equations
(7)) is of the order (r/λ)(eA0/~ω) ≫ eA0/~ω, where λ is the radiation wavelength; while the phase
S2 (equations (8)) is of the order (p/mc , eA0/mc

2)(eA0/~ω) ≪ eA0/~ω; consequently, we may

neglect the phase S2 in equation (10). In addition, the position given by the argument of Ṽ
(equations (8)) is of the order r − λc(eA0/~ω), where λc = ~/mc is the Compton wavelength of

the particle; it takes the potential Ṽ far away from its short range in very short times, especially
for (reasonably) high-intensity radiation; similarly, the Coulomb potential is rapidly reduced to

an appreciable extent by the radiation, such that we may neglect the potential Ṽ in equation (10).

Making use of these simplifications the transition amplitude given by equation (10) becomes

afi ≃ − i
~

∫ +∞

−∞
dt(ψf , Ue

iS1ψ0
i )−

i
~

∫ +∞

−∞
dt(ψf , V e

iS1ψ0
i ) =

=
∫ +∞

−∞
dt(ψf ,

(
∂
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eiS1

)
ψ0
i )−

i
~

∫ +∞
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dt(ψf , V e

iS1ψ0
i ) ,

(11)

or
afi =

1
v

∫ +∞

−∞
dtdre

i
~
(Ef−Ei)t ∂

∂t
e−

ie
~ω

rE0 cosωte
i
~
pr−

− i
~v

∫ +∞

−∞
dtdre

i
~
(Ef−Ei)tV e−

ie
~ω

rE0 cosωte
i
~
pr ,

(12)

where p = pi − pf is the momentum transfer. In equation (12) we use the decomposition

e−
ie
~ω

rE0 cosωt =

+∞∑

n=−∞

(−i)nJn(erE0/~ω)e
−inωt , (13)
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where Jn are Bessel functions (n being any integer), and get

afi = −
2πi

v

+∞∑

n=−∞

(−i)nδ(Ef − Ei − n~ω)

∫
dr [n~ω + V (r)]Jn(erE0/~ω)e

i
~
pr ; (14)

we can see the occurrence of multiple-photon scattering processes with energy conservation Ef =
Ei + n~ω. The transition probability per unit time is given by

wfi =
2π

~v2

+∞∑

n=−∞

δ(Ef − Ei − n~ω)

∣∣∣∣
∫
dr [n~ω + V (r)]Jn(erE0/~ω)e

i
~
pr

∣∣∣∣
2

; (15)

we multiply wfi by the density of final states vp2fdpfdΩ/(2π~)
3, where dΩ is the element of solid

angle, divide by the current density vi/v, where vi is the initial velocity, and integrate over the
final momentum pf in order to get the differential cross-section for the n-process

dσn =
pfn
pi

∣∣∣∣
m

2π~2

∫
dr [n~ω + V (r)]Jn(erE0/~ω)e

i
~
pr

∣∣∣∣
2

dΩ ; (16)

the momentum pfn is given by the energy conservation p2fn/2m = p2i /2m+ n~ω.

We can see in equation (16) the cross-section of the scattering by radiation and the cross-section of
the scattering from the potential V ; in addition, there appear mixed radiation-potential scattering
terms; for n = 0 we get from equation (16) the elastic Born scattering in the field of the potential
V affected by radiation, due to the presence of the function J0; the occurrence of J0 is due to the
zero-point fluctuations.1 The argument of the Bessel function in equation (16) varies rapidly over
the integration domain; therefore, we may use the asymptotic expression for the Bessel function;
doing so, we can see easily that the r-integration in the contribution of the radiation scattering is
non-vanishing for p ≃ eE0/ω, i.e. the momentum is trasferred along the direction of the electric
field, as expected; this is the momentum conservation. Making use of this relation and the energy
conservation, we get pfn ≃ pi(1 + n~ω/2Ei) (for n~ω ≪ Ei) and

−1 < cos θn =
1− epiE0/p

2
iω

1 + n~ω/2Ei

< 1 , (17)

where θn is the scattering angle. For n > 0 (photon absorption) the scattering angle θn increases,
while for n < 0 (photon emission) the scattering angle decreases, with respect to the elastic
scattering angle θ0. Equation (17) indicates that there exists a limitation which can be written
as −n~ω/2Ei < (eA0 cosα/2Ei)(v/c) < 2 + n~ω/2Ei, where α is the angle the initial momentum
makes with the electric field; for very low incident energies the scattering occurs only for angles
close to the right angle made by the incident momentum with the electric field. Finally, we
note that the order of magnitude of the cross-section of the scattering due to radiation is ≃
d2[n~ω/(~2/md2)]2(~c/eA0d), where (~c/eA0d) ≪ 1 and d is the dimension of the region where
the radiation is confined to. We can see from equation (16) that the cross-section due to radiation
may acquire large values, as a consequence of the large dimension of the region containing radiation;
the cross-section increases with increasing n, i.e. for large scattering angles, where, however, the
scattering maxima coalesce.

As regards the modification brought about by the presence of the radiation in the scattering
produced by the potential V (r), there are two differences in the present case, where the radiation

1This sentence is not included in the text appeared in Z. Naturforschung A (2017).
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is limited to a finite region, in comparison with the case where the scattering is immersed in
radiation. If, in the latter case, we neglect the interaction U , leave aside the corresponding
transformation given by U1 and start directly with the standard non-relativistic hamiltonian given
by equation (7), then it is easy to see that we get from equations (11) and (16) the Kroll-Watson
formula dσn = (pfn/pi)J

2
n(epE0/m~ω2)dσB, where dσB is the elastic Born cross-section.[1, 2, 31]

This formula shows that the Born cross-section is modulated by the function J2
n, whose argument

includes the energy conservation with exchange of n photons. In our case the first difference
consists in the presence of the interference term ∼ n~ωV (r)Jn(erE0/~ω) in equation (16), arising
from both potentials U and V , which is absent in the Kroll-Watson formula. The second difference
is related to the Bessel function Jn(erE0/~ω), which is included in the integral in equation (16) and
depends on the range of the interaction V (r) through its argument erE0/~ω, while in the Kroll-
Watson formula the Bessel function depends on epE0/m~ω2 and is placed outside the integral.
These differences are important, especially for Coulomb potentials. In addition, while in the Kroll-
Watson formula the momentum transfer p is given by the potential V (r), in our case it is given
both by the potential V (r) and the radiation potential U(r) through the function Jn(erE0/~ω).

The above calculations are done for a sufficiently long laser pulse. In practice, the pulse has a
finite duration τ and a repetition time ∆t. In these conditions the expansion given by equation
(13) remains valid, but the function δ(∆E) in the scattering amplitude afi (equation (14)), where

∆E = Ef−Ei−n~ω), is replaced by the function ζ(∆E) = e
i
~
∆E·ti sinα∆E/π∆E, where α = τ/2~

and ti denotes the time moment of the pulse (the pulse lasts from ti − τ/2 to ti + τ/2). For large
α the function ζ(∆E) has a maximum for ∆E = 0 and extends approximately over a bandwidth
δE ≃ π/α = 2π~/τ . Since, usually τ is much longer than the radiation period T = 2π/ω, the
energy separation δE is much smaller than the radiation quanta of energy ~ω. It folows that the
functions ζ(∆E) for different n can be viewed as being well separated. In these conditions the
cross-section dσn (equation (16)) preserves its form, except that it is multiplied by the reduction
factor τ/(τ +∆t).

In conclusion, it is shown in this paper that non-relativistic charged particles may suffer scattering
as a result of their interaction with the electromagnetic radiation in the focal region of laser beams.
The cross-section of this scattering process is computed in this paper for a single-mode radiation
with linear polarization. As expected, the cross-section exhibits maxima at certain scattering
(diffraction) angles θn, as given by equation (17), determined by the energy and momentum
conservation in multiple-photon exchange processes. The calculations can be easily extended
to any polarization; for realistic laser beams, or for multi-mode radiation, we should take into
account the particular beam shape[32] and the amplitude and frequency fluctuations.[33] For
convenience, we included also the scattering from a potential placed in the radiation field, in the
Born approximation. The cross-section of the potential scattering is modified by the presence of
the radiation, because the scattering states are dressed by radiation. The cross-section is reduced
for high-intensity radiation (preserving the non-relativistic character of the particle motion) and,
similarly, the multi-photon scattering is diminished for high energy of the particle, when the
process reduces to elastic scattering in the forward direction. In contrast with previous studies,
where the scattering process is immersed in the radiation field, in the scattering process addressed
in this paper the radiation field is confined to a finite region. The modifications brought by
the radiation in this circumstance to the potential scattering are different from the well-known
Kroll-Watson formula.
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