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Abstract

The inverse problem in Seismology is tackled in this paper under three particular circum-
stances. First, the inverse problem is defined as the determination of the seismic-moment
tensor from the far-field seismic waves (P and S waves). These waves provide the only di-
rectly accessible (measurable) experimental data on the earthquakes. We use the analytical
expression of the seismic waves determined in a previous work of the author; these waves are
given by the solution of the equation of the elastic waves in a homogeneous isotropic body
with a seismic-moment source of tensorial forces; the source is localized both spatially and
temporally. The far-field waves provide three equations for the sixth unknown parameters of
the general tensor of the seismic moment. Second, the Kostrov vectorial (dyadic) represen-
tation of the seismic moment is used. This representation relates the seismic moment to the
focal displacement in the fault and the orientation of the fault (moment-displacement rela-
tion); it reduces the seismic moment to four unknown parameters. Third, the fourth missing
equation is derived from the energy of the far-field waves and the mechanical work done by
forces in the focal region. In particular, this relation provides access to the focal volume of
the fault and the near-field seismic waves. The four equations derived here are solved, and
the seismic moment determined, thus solving the inverse problem in the conditions described
above. It turns out that the seismic moment is traceless, its magnitude is of the order of the
elastic energy stored in the focal region (as expected), and the solution is governed by the
unit quadratic from associated to the tensor (related to the magnitude of the longitudinal
displacement in the P wave). It is shown that a useful picture of the seismic moment is the
conic represented by the associated quadratic form, which is a hyperbola with an arbitrary
orientation in space. This hyperbola provides an image for the focal region; its asymptotics
are oriented along the focal displacement and the normal to the fault. The eigenvalues and
the eigenvectors of the associated quadratic form are calculated. Also, it is shown that the
far-field seismic waves allow an estimation of the volume of the focal region, focal strain,
duration of the earthquake and earthquake energy; the later quantity is a direct measure of
the magnitude of the seismic moment. The special case of an isotropic seismic moment is
presented.

Introduction. The inverse problem in Seismology aims at getting information about the nature
and structure of the forces acting in the earthquake’s focus from measurements of the seismic
waves at distances far away from the earthquake focus (at Earth’s surface). We present here
a solution to this problem by means of the seismic waves derived previously in a homogeneous
isotropic body with localized tensorial forces, the Kostrov vectorial representation of the seismic
moment for a fault (moment-displacement relation) and the relation between the energy of the
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earthquakes and the volume of the focal region. This relation is derived by equating the energy
carried by the far-field seismic waves to the mechanical work done by forces in the focal region.

The seismic moment and seismic energy are basic concepts in the theory of earthquakes.[1]-[4] The
seismic moment has emerged gradually in the first half of the 20th century, the first estimation of a
seismic moment being done by Aki in 1966.[5] The relations between the seismic moment, seismic
energy, the mean displacement in the focal region, the rate of the seismic slip and the earthquake
magnitude are recognized today as very convenient tools for characterizing the earthquakes.[6]-[8]

It is well known that typical tectonic earthquakes originate in a localized focal region, with di-
mensions much shorter than the distance to the observation point (and the seismic wavelengths).
Recently, the tensorial seismic force density

Fi = Mij∂jδ(R−R0) (1)

has been introduced,[9]-[11] where Mij is the tensor of the seismic moment, δ is the Dirac delta
function and R0 is the position of the focus (it can be determined by recording the longitudinal (P )
seismic waves); the labels i, j denote the Cartesian axes and summation over repeating suffixes is
assumed (throughout this paper). The seismic tensor Mij is a symmetric tensor, which, in general,
has six independent components. The force given by equation (1) is a generalization of the double-
couple representation of the seismic force; indeed, let us assume a force density F(R) = fg(R),
where f is the force and g(R) is a distribution function; a point couple associated with a force
acting along the i-th direction can be represented as

fig(x1 + h1, x2 + h2, x3 + h3)− fig(x1, x2, x3) ≃ fihj∂jg(x1, x2, x3) , (2)

where hj , j = 1, 2, 3, are the components of an infinitesimal displacement h; xi, i = 1, 2, 3, are the
coordinates of the position R and ∂j denotes the derivative with respect to xj . The force moment
(torque) tij = fihj is generalized in equation (2) to a symmetric tensor Mij , which is the seismic
moment entering equation (1); in addition, the distribution g(R) can be replaced by δ(R−R0) for
a spatially localized focal region. The δ-function used in equation (1) is an approximation for the
shape of the focal region. In equation (1) the focus is viewed as being localized over a distance of
order l (volume of order l3), much shorter than the distance R to the observation point (l ≪ R).

The seismic moment depends on the time t; we may write Mij(t) = Mijh(t), where h(t) is a
positive, localized function, which includes the time dependence of the seismic moment; we assume
max[h(t)] = 1 and denote by T the (short) duration of the seismic event; the time T is much
shorter than any time of interest, such that we may view the function h(t) as being represented
by Tδ(t). (The function h(t) should not be mistaken for the magnitude of the displacement vector
h used above).

For a homogeneous isotropic body the seismic waves generated by the tensorial force given by
equation (1) are governed by the equation of the elastic waves

üi − c2t∆ui − (c2l − c2t )∂idivu =
1

ρ
Mij(t)∂jδ(R) , (3)

where ui are the components of the displacement vector u, cl,t are the velocities of the longitudinal
and tranverse waves, respectively, ρ is the density and R is the position vector drawn from the
focus (taken as the origin of the reference frame) to the observation point. The solution of this
equation has been given in Refs. [9]-[11]; it can be written as u = u

n + u
f , where

un
i = − 1

4πρc2t

Mijxj

R3 h(t−R/ct)+

+ 1

8πρR3

(

Mjjxi + 4Mijxj −
9Mjkxixjxk

R2

)

[

1

c2
l
h(t− R/cl)− 1

c2t
h(t− R/ct)

]

(4)
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is the near-field displacement (R comparable with l) and

uf
i = − 1

4πρc3t

Mijxj

R2 h
′

(t− R/ct)− 1

4πρ

Mjkxixjxk

R4 ·
[

1

c3
l
h

′

(t− R/cl)− 1

c3t
h

′

(t−R/ct)
]

(5)

is the far-field displacement (R≫ l). The near-field region is defined by distances R of the order
l, while the far-field region is defined by distances R much larger than l. The short duration T
of the seismic event ((duration of activity of the focus) enters equations (4) and (5) through the
derivative h

′

(t), which is of the order 1/T . The displacement vectors given by equations (4) and (5)
include the longitudinal wave (denoted by suffix l, not to be confused with length l), propagating
with velocity cl, and the transverse wave (suffix t), propagating with velocity ct; in the far-field
region the displacement vector of the longitudinal wave (P wave) and the displacement vector
of the transverse wave (S wave) are orthogonal (this is not so for the l, t-waves in the near-field
region). As long as the function h(t) may be viewed as a localized function, the magnitude of
the displacement vectors varies as 1/R2 for the near-field wave and 1/R for the far-field waves.
Their direction is determined by the tensor of the seismic moment Mij (in particular the vector
with components Mijxj). The particular case h(t) = Tδ(t) is called an elementary earthquake in
Refs. [9]-[11]. A superposition of forces given by equation (1), localized at different positions R0

and different times, corresponds to a structured focus, and the elementary displacement given by
equations (4) and (5) gives access to the structure factor of the focal region.[9]-[11]

Far-field seismic waves. It is convenient to introduce the notations

Mi = Mijnj , M0 = Mii , M4 = Mijninj , (6)

where n is the unit vector along the radius drawn from the focus to the observation point (obser-
vation radius), xi = Rni, and hl,t = h(t−R/cl,t); henceforth we consider the unit vector n a known
vector. M0 is the trace of the seismic-moment tensor and M4 is the quadratic form associated to
the seismic-moment tensor, constructed with the unit vector n; we call it the unit quadratic form
of the tensor. The vector M can be called the projection of the tensor along the focus-observation
point direction (observation direction).

Making use of these notations, the seismic waves given by equations (4) and (5) can be decomposed
into l- and t-waves, written as

u
n = u

n
l + u

n
t ,

u
n
l = hl

8πρc2
l
R2 [(M0 − 9M4)n+ 4M] ,

u
n
t = − ht

8πρc2tR
2 [(M0 − 9M4)n+ 6M] ,

(7)

and
u
f = u

f
l + u

f
t ,

u
f
l = − h

′

l

4πρc3
l
R
M4n , u

f
t =

h
′

t

4πρc3tR
(M4n−M) .

(8)

For numerical purposes we take the "maximum deviation" of the near-field diplacement un
l,t (with

its sign) at t = R/cl,t, i.e. for hl,t(0) = 1. Equally well, we can take the mean values of the
vectors un

l,t over the support T of the functions hl,t, or ∆R, which is of the order cl,tT . Henceforth,

hl,t in equations (7) are understood as hl,t(0) = 1. The functions h
′

l,t are scissor-like functions
("double-shock" functions), with two sides with opposite signs, extending over T , or the distance
∆R; their "maximum deviations" are of the order ±1/T ; for numerical estimations it is convenient
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to introduce the notations vl,t = u
f
l,t/Th

′

l,t and take the "maximum deviation" of these functions

(with their sign), on any side of the functions h
′

l,t, the same side for vl and vt (vl,t may depend

on the side of the functions h
′

l,t). Similarly, we can take the mean values of vl,t over any side of

the functions h
′

l,t (the same for vl and vt). The displacement vectors vl,t are directly accessible
experimentally. Making use of these notations, equations (8) become

vl = −
1

4πρTc3lR
M4n , vt =

1

4πρTc3tR
(M4n−M) . (9)

We note that the vectors R2
u
n
l,t and Rvl,t depend on the density ρ, the duration T , the seismic

moment and the elastic coefficients of the body (velocities of the elastic waves); if local deviations
from this pattern are observed, the body is not locally homogeneous and isotropic.

The displacement in the far-field waves is determined by three independent parameters: the
magnitude of the vectors vl,t (two parameters) and the direction of the transverse vector vt (one
parameter). Consequently, we may view the equations

M = −4πρTR
(

c3l vl + c3tvt

)

, (10)

derived from equations (8), as three independent equations for the six unknown components Mij

of the seismic moment; by multipling by ni and summing over i, we get the first equation (8),

M4 = Mijninj = −4πρTRc3l (vln) (11)

which is not independent of the three equations written above. We view vl,t as quantities measured
experimentally and ρ, R, cl,t as known parameters; duration T will be determined shortly. We note
the consistency (compatibility) relation M2

4 < M2, derived from v2t > 0 (vl,t denote the magnitudes
of the vectors vl,t). The inverse problem discussed in this paper is to determine the tensor Mij from
the displacement vl,t in the far-field waves, making use of additional, model-related, information.
The model we use is provided by the fault geometry of the focal zone.

Having known M and M4 we can have access to the near-field diplacement given by equations (7),
provided we know M0.

Energy of earthquakes. If we multiply equation (3) by u̇i and sum over the suffix i, we get the
law of energy conservation

∂
∂t

[

1

2
ρu̇2

i +
1

2
ρc2t (∂jui)

2 + 1

2
ρ(c2l − c2t )(∂iui)

2
]

−

−ρc2t ∂j(u̇i∂jui)− ρ(c2l − c2t )∂j(u̇j∂iui) = u̇iMij(t)∂jδ(R) ;

(12)

according to this equation, the external force performs a mechanical work in the focus (u̇iMij(t)∂jδ(R)
per unit volume and unit time); the corresponding energy is transferred to the waves (the term
in the square brackets in equation (12)), which carry it through the space (the term including the
div in equation (12)). It is worth noting that outside the focal region the force is vanishing; also,
the waves do not exist inside the focal region; therefore, limiting ourselves to the displacement
vector of the waves, we have not access to the mechanical work done by the external force in the
focal region. This circumstance arises from the localized character of the focus.

In the far-field region we can use the decomposition u = ul + ut in longitudinal and transverse
waves, where curlul = 0 and divut = 0; this decomposition leads to

∂el,t
∂t

+ cl,tdivsl,t = 0 , (13)
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where

el,t =
1

2
ρ
(

u̇
f
l,t

)2

+
1

2
ρc2l,t

(

∂iu
f
l,tj

)2

(14)

‘ is the energy density and
sl,ti = −ρcl,tu̇f

l,tj∂iu
f
l,tj (15)

are the components of the energy flux densities per unit time (the flow vectors). From equation (13)
we can see that the energy is transported with velocities cl,t. The volume energy E =

∫

dR(el+et)
is equal to the total energy flux

Φ = −
∫

dtdR (cldivsl + ctdivst) = −
∫

dt
∮

dS (clsl + ctst) . (16)

Making use of equations (8) and taking h
′′

= −1/T 2 we get

E = Φ =
4πρ

T
R2

(

clv
2
l + ctv

2
t

)

; (17)

this relation gives the energy released by the earthquake in terms of the displacement measured
in the far-field region and the (short) duration of the earthquake. From equations (9) we get the
relation

E =
1

4πρc5tT 3

[

M2 −
(

1− c5t/c
5
l

)

M2
4

]

(18)

between energy and the seismic moment.

Geometry of the focal region. Let us consider a point torque tij = fihj, where hj are
viewed as infinitesimal distances and fi denote the components of a force f ; the force f originates
in a volume force density ∂jσij , where σij is the stress tensor; the latter can be expressed as
σij = 2µuij + λukkδij , where µ and λ are the Lame coefficients (c2l = (2µ + λ)/ρ, c2t = µ/ρ),
uij =

1

2
(∂jui+∂iuj) is the strain tensor and u, with components ui, is the displacement vector.[13]

We can write
tij = fihj =

∫

dr∂kσik · hj =

= µ
∫

dr∂2
kui · hj + (µ+ λ)

∫

dr∂k∂iuk · hj =

= µ
∮

dS · sk∂kui · hj + (µ+ λ)
∮

dS · sk∂iuk · hj ,

(19)

where the r-integration is performed over the focal volume surrounded by the surface S and s is
the unit vector of this surface. We may write ∂iuk ≃ ∆uk/∆xi for the derivatives of uk and use
∆uk

∆xi
· hj = ∆ukδij = ukδij , where uk is the displacement on the surface. These equalities follow

from the point-like nature of the torque. We note that u here is the focal displacement, which is
distinct from the displacement in the waves. It folows

tij = µS · sjui + (µ+ λ)S · skukδij , (20)

where the overbar denotes the average over the surface with area S. This relation acquires a
useful form for a localized (plane) fault. We assume that the fault focal region consists of two
plane-parallel surfaces, each with (small) area S, separated by a small distance d, sliding against
one another. The focal area is determined by two lengths l1,2, S = l1l2. In general, the lengths
l1, l2, d. In order to ensure the compatibility with the localization provided by the δ-function we
assume l1 = l2 = d = l. In these conditions the product siuj may be replaced by 2siuj, where
the vector s is the unit vector normal to the fault (we note that the integration over the surfaces
perpendicular to the fault is zero, due to the opposing (sliding) displacements) . In view of the
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Figure 1: A fault focal cross-section with area S (dimension l, focus F ); s is the unit vector
normal to the fault and a is the unit vector of the focal displacement (in the plane of the fault);
the seismic-moment tensor Mij is represented by the rectangular hyperbola with the axes along
the vectors s and a.

small extension of the focal region, we may drop the average bar over uj. In addition, this model
of fault-slip implies skuk = 0, i.e. the normal to the fault s and the focal displacement (fault slip)
u are orthogonal vectors. In order to distinguish the focal displacement from the displacement in
the seismic waves, we attach the superscript 0 to the focal displacement. The seismic moment is
obtained by symmetrizing the expression given by equation (20); we get

Mij = 2µS
(

siu
0
j + sju

0
i

)

= 2µSu0 (siaj + aisj) , (21)

where we introduce the unit vector a along the direction of the focal displacement; we write
ui = u0ai, where u0 is the magnitude of the focal displacement and a2i = 1. We can see that
the seismic moment is represented in equation (21) by two orthogonal vectors (as = 0): the unit
vector a along the focal displacement u

0 and the unit vector s, which gives the orientation of
the focal surface. This is the moment-displacement relation derived by Kostrov[7, 8] for the slip
along a (point-like) fault surface; it can be called a vectorial, or dyadic, representation of the
seismic moment. We note the invariant M0 = Mii = 0, which tells that the seismic moment in
this representation is a traceless tensor. This particularity gives access to the near-field waves
(equations (7)), which become

u
n
l = hl

8πρc2
l
R2 (4M− 9M4n) , u

n
t = − 3ht

8πρc2tR
2 (2M− 3M4n) (22)

(M and M4 are given by equations (10) and (11)). In addition, we note the relations M0
4 =

Mijsisj = 0 and M0
i = Mijsj = 2µSu0ai; the former relation shows that the quadratic form

associated to the seismic moment in the focal region is degenerate (it is represented by a conic),
while the latter relation shows that the "force" in the focal region is directed along the focal
displacement; both relations are expected from the Kostrov construction of the tensor of the fault
seismic moment.

It is worth noting an uncertainty (indeterminacy) of the dyadic construction of the seismic-moment
tensor. We can see from equation (21) that the seismic moment is invariant under the inter-change
s←→ a. This means that from the knowledge of the seismic moment Mij we cannot distinguish
between the two orthogonal vectors s and a (fault direction and fault slip). Another symmetry
of the seismic moment given by equation (21) is s ←→ −a (and s ←→ −s, a ←→ −a), which
means that we cannot distinguish between the signs of the vectors s and a (as expected from the
construction of the seismic moment in equation (21)).
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Figure 2: Two couples of sliding displacements (u0) and two orthogonal orientations (s) in a fault
focal region, illustrating the indeterminacy in the Kostrovconstruction of he seismic moemnt; F ’s
denote the forces which give the torque.

In equation (21) the seismic moment is determined by four parameters: three components of the
displacement vector u0 and one component of the (transverse) unit vector s. By using this vectorial
representation, the number of independent parameters of the seismic moment is reduced from six
to four. We have, up to this moment, only the three equations (10) for these unknown parameters.
The considerations made above for the vectorial representation of the seismic moment provides
the fourth equation, relating the mechanical work W done in the focal region to the magnitude of
the focal diplacement.

Indeed, from equation (12) the mechanical work in the focal region is given by

W =
∫

dt
∫

dRu̇0
i (t)Mij(t)∂jδ(R) ; (23)

we may assume u̇0
i (t) = ḣ(t)u0

i , and, since Mij(t) = Mijh(t), we get

W =
1

2

∫

dRu0
iMij∂jδ(R) . (24)

In this equation we may view the function δ(R) as corresponding to the shape of the focal surface,
such that we may replace ∂jδ(R) by sj/l

4; using V = l3 for the focal volume, we get W ≃
1

2l
u0
iMijsj; here, we may take approximately u0 for l, which leads to W ≃ 1

2
aiMijsj. Therefore,

making use of equation (21), we get W ≃ µSu0 = µV ; we can see that the mechanical work done
in the focal region is of the order of the elastic energy stored in the focal region, as expected. By
equating W with the energy E (and Φ) given by equation (17), the fourth equation

µV =
4πρ

T
R2

(

clv
2
l + ctv

2
t

)

(25)

is obtained, which is the missing equation, needed for determining the seismic moment Mij from
the far-field seismic waves; it can also be written as

V =
4π

c2tT
R2

(

clv
2
l + ctv

2
t

)

. (26)

This equation gives the volume of the focal region in terms of the displacement in the far-field
seismic waves (provided duration T is known); the seismic moment given by equation (21) can be
written as

Mij = 2µV (siaj + aisj) , (27)

where V can be inserted from equation (26). It remains to determine the vectors a and s from
equations (10) in order to solve completely the inverse problem.
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We note here the representation

u0
ij =

1

2
(siaj + aisj) =

1

4µV
Mij (28)

for the focal strain, which follows immediately from the considerations made above on the geometry
of the focal region; this equation relates the focal strain to the seismic moment.

We note that the estimations made above are affected by an order-of magnitude error in the
numerical factors.

Solution of the inverse problem. Making use of the reduced moment mij = Mij/2µV and
mi = Mi/2µV = Mijnj/2µV , equation (21) leads to

si(na) + ai(ns) = mi ; (29)

using equations (10) and (25) the components mi of the reduced moment are given by

mi = −
T 2

2R
·
c3l vli + c3t vti
clv2l + ctv2t

. (30)

We solve here the equations (29) for the unit vectors a and s, subject to the conditions

s2i = a2i = 1 , siai = 0 . (31)

Since M0 = 0 and M2 > M2
4 , we have m0 = mii = 0 and m2 > m2

4 (where m4 = mijninj and
m2 = m2

i ). From equation (30) we have mi < 0; the compatibility condition m2 > m2
4 can be

checked immediately from equation (30) (it arises from v2t > 0). We write equations (29) as

αs+ βa = m , (32)

where we introduce two new notations α = (na) and β = (ns); also, we have

βs+ αa = n . (33)

From these two equations we get

2αβ = m4 , α2 + β2 = m2 = 1 . (34)

The equality m2 = 1 has important consequences; it means M2 = (2µV )2, such that we can write
the seismic moment from equation (27) as

Mij = M (siaj + aisj) ; (35)

it follows the magnitude of the seismic moment (Mij
2)

1/2
=
√
2M ; M is the magnitude of the

projection of the seismic-moment tensor along the observation radius; in addition, from E = W =

µV we have E = M/2 = (Mij
2)

1/2
/2
√
2. The magnitude (Mij

2)
1/2

=
√
2M = 2

√
2E may be used

in the Gutenberg-Richter relation lg (Mij
2)

1/2
= 1.5Mw+16.1, which defines the magnitude Mw of

the earthquake; in terms of the earthquake energy this relation becomes lgE = 1.5(Mw−lg 2)+16.1
(where lg 2 ≃ 0.3). Further, from equation (30), the equality m2 = 1 can be written as

T 4

4R2
·

c6l v
2
l + c6tv

2
t

(clv2l + ctv2t )
2
= 1 , (36)
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Figure 3: The hyperbola of the displacement (a) in the fault plane (fault direction s) at the focus
(F), seen from he local frame L.

which gives the duration T in terms of the displacements vl,t measured at distance R. Inserting
T in equation (26), we get

V 2 =
8π2R3

c4t

(

clv
2
l + ctv

2
t

) (

c6l v
2
l + c6tv

2
t

)1/2
(37)

and the magnitude of the seismic moment and the energy of the earthquake

M = 2E = 2µV = 4
√
2πρR3/2

(

clv
2
l + ctv

2
t

)1/2 (

c6l v
2
l + c6t v

2
t

)1/4
. (38)

in terms of the displacements vl,t measured at distance R. In addition, eliminating R2 between
equations (26) and (36) we express the focal volume as

V =
πT 3

c2t
·
c6l v

2
l + c6tv

2
t

clv2l + ctv2t
. (39)

The solutions of the system of equations (34) are given by

α =

√

1+
√

1−m2

4

2
, β = sgn(m4)

√

1−
√

1−m2

4

2
(40)

and α ←→ ±β, α, β ←→ −α, −β. Making use of equations (30) and (36), the parameters mi

and m4 are given by

mi = −
c3l vli+c3tvti

(c6l v2l +c6tv
2

t )
1/2 , m4 = −

c3l vln

(c6l v2l +c6tv
2

t )
1/2 . (41)

Finally, we get the vectors
s = α

α2
−β2m− β

α2
−β2n ,

a = − β
α2

−β2m+ α
α2

−β2n ;

(42)

from equations (32) and (33); these solutions are symmetric under the operations s←→ a (α←→
−β) and s←→ −a (α←→ β, or α, β ←→ −α, −β). The seismic moment given by equation (35)
is determined up to these symmetry operations.

The eigenvalues of the seismic moment given by equation (35) are ±M ; the corresponding eigen-
vectors w are given by aw = ±sw, which imply mw = ±nw; the vectors w are directed along
the bisectrices of the angles made by s and a, or m and n. The associated quadratic form
Mijxixj = const is a rectangular hyperbola in the reference frame defined by the vectors s and a;
using coordinates u = sx and v = ax, the equation of this hyperbola is uv = const. Making use
of equations (35) and (42), this quadratic form can be written as

m4

(

ξ2 + η2
)

− 2ξη = const , (43)
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where the coordinates ξ = mixi and η = nixi are directed along the vectors m and n, respectively.

The asymptotics of this hyperbola are ξ = m4η/
(

1 +
√

1−m2
4

)

and η = m4ξ/
(

1 +
√

1−m2
4

)

(u = (αξ − βη)/(α2 − β2) = 0 and v = (−βξ + αη)/(α2 − β2) = 0).

The final solution for the seismic moment is

Mij =
M

1−m2
4

[minj +mjni −m4 (mimj + ninj)] , (44)

where M is given by equation (38) and mi, m4 are given by equations (41); the focal strain is
u0
ij = Mij/2M .

Isotropic seismic moment. An isotropic seismic moment Mij = −Mδij is an interesting par-
ticular case, since it can be associated with seismic events caused by explosions. In this case the
transverse displacement is vanishing (un,f

t = 0), M = −Mn, M4 = −M and vl = (R/clT )u
n
l

(equations (7) and (9)); from equations (10) and (17) we get

M = −4πρTRc3l vl , E =
4πρR2

T
clv

2
l (45)

we can see that vln > 0 corresponds to M > 0 (explosion), while the (unphysical) case vln < 0
corresponds to an implosion. The focal zone is a sphere with radius of the order l, and the
vectors s and a are both equal to the unit vector n (s = a = n); the magnitude of the focal
displacement is u0 = l. The considerations made above for the geometry of the focal region lead
to the representation

Mij = −2V (2µ+ λ)δij = −2ρc2l V δij , (46)

where V = Sl denotes the focal volume and S is the area of the focal region (we note that tij
changes sign in equation (20)). Similarly, the energy is E = W = 1

2
M (M > 0), such that, making

use of equations (45), we get clT =
√
2Rvl,

M = 2πρc2l (2Rvl)
3/2 = 2ρc2l V , (47)

and the focal volume V = π(2Rvl)
3/2.

Discussion and concluding remarks. It is convenient to have an estimation of the order of
magnitude of the various quantities introduced above. To this end we use a generic velocity c
of the seismic waves and a generic vector v of the displacement in the far-field seismic waves.
Equation (36) (which is equation m2 = 1) gives cT ≃

√
Rv, which provides an estimate of the

duration of the earthquake in terms of the displacement measured at distance R. The focal volume
can be estimated from equation (26) as V ≃ (Rv)3/2 ≃ (cT )3, as expected (dimension l of the
focal region of the order cT ; the rate of the focal slip is l/T ≃ c). Also, from equation (38) we

have the energy E ≃ µV ≃ M ≃ ρc2V , where M is an estimate of the magnitude
(

M2
ij

)1/2
of

the seismic moment (and the magnitude of the vector Mijnj). From equation (28) we get a focal
strain of the order unity, as expected.

In conclusion, it is shown in this paper that the displacement in the far-field seismic waves pro-
vides information about the structure of the focal region; in particular this displacement can be
employed to determine the seismic-moment tensor for a fault slip, localized both in space and
time (the inverse problem in Seismology). In this case the vectorial (Kostrov) representation of
the seismic moment (dyadic representation) is written only with four (unknown) parameters; one
is the magnitude of the focal displacement, while the other three define the spatial orientation of
the seismic tensor (orientation of the fault). These unknown parameters are determined from the
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three equations relating the far-field displacement to the seismic tensor and the equation which
relates the energy released in the earthquake (and carried by the seismic waves) to the focal dis-
placement (and the fault focal volume). The solution of the resulting system of equations makes
the graphical representation of the quadratic form associated to the seismic-moment tensor, which
is a hyperbola, to offer a (three-dimensional) image of the focal region. The asymptotics of the
hyperbola give the direction of the focal displacement and the orientation of the fault. Besides
solving the inverse problem in Seismology for a localized fault slip, the geometry of the fault focal
region (which leads to Kostrov representation) and the displacement in the far-field seismic waves
provide reasonable estimations of the fault focal volume, focal strain, duration and energy of the
earthquake and magnitude of the seismic moment. Also, the special case of an isotropic seismic
moment is presented.
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