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Abstract

The ringing of the bells is analyzed within the frame of a simple model of vibrations of

a thin spherical shell. Near- and far-field elastic waves propagating in air are derived, as

produced by bell’s vibrations. The audibility threshold distance and the limit of permanent

daage to to human ear are estimated for a large bell. Also, a solution to the "lower octave"

paradox is suggested.

An octave lower. The vibrations of a ringing bell is an instance of an intractable problem.
The intractability arises from the fact that the bell is a shell, not a bulky body, and from its
particular shape. Even if the bell’s shape is approximated by an empty hemisphere, or a cone, or
a hyperboloid, there still remain difficulties related to the shell structure, curvilinear coordinates
and the boundary conditions. In particular, the bell’s appex should be fixed and the bell’s rim
should vibrate freely. The shell elasticity is different from the bulk elasticity. The elastic energy
should include invariants of the symmetry group of the body’s shape constructed from the strain
tensor; in most cases the non-linearities of the thin shell should be included. An example of elastic
energy of an empty sphere is given in Ref. [1]. The curvilinear coordinates make the vibrations
to take place in an inhomogeneous body, which greatly complicates the problem. It is believed
that dividing the structure in finite elements and using classical elasticity, including free-surface
conditions on the shell’s surfaces, may, in principle, lead to a numerically solvable problem, though
simplifying assumptions are needed. However, the elasticity inside the shell plays a minor role,
and the elasticity moduli of a shell are different from those of a bulky body. A model is necessary,
even for numerical calculations. An important help arises from the cutoff frequency related to the
finite thickness of the shell.

A great simplification arises from limiting ourselves to the vibrations of the bell’s rim. The
excitation of the bell by a hammer, or a clapper, produces a sufficiently large deformation, which
lasts a sufficiently long time in comparison with the elastic waves periods, to give rise to many
stationary waves of the form cosωnt cos knx (and similar expressions with sin), where x is the
coordinate along the rim and t denotes the time. The wave equation requires ωn = vkn, where v
is the velocity of the waves; the boundary conditions require kn = 2πn/L, where L is the length
of the rim and n is any positive integer. Since the excitation is sufficiently localized on the rim
(δ-function), the amplitudes of these vibrations are equal, from initial conditions. The vibrations
look like cosnωt cos(2πnx/L), where ω = 2πv/L.

Rayleigh[2] noticed that the pitch of the bells, i.e. the frequency heard by the human ear, is
close to ω/2, though the physical frequencies measured by resonators are, of course, nω; this is an
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octave below the fundamental frequency ω, and it does not belong to the series of eigenfrequencies.
Other observations indicate other pitch frequencies.

Let us consider the sum

S = cosωt+ cos 2ωt+ cos 3ωt+ ... cosNωt , (1)

where N is very large; S is the signal heard by the human ear. If we group the terms in pairs and
transform the sums in products, we get
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+ (cosNωt) ; (2)

the last term in equation (2) is present if N is odd. The bracket in equation (2) is heard, practically,
as a constant, the last term, if present, is not audible; therefore, the human ear hears ω/2. If ω
varies slighty with n, or there exist several subgroups of frequencies of the form given by equation
(1), the pitch differs from ω/2.

Waves produced by bells. Let us assume a spherical shell with radius a and thickness d
(d ≪ a). We may suppose that, at large distances, this shell approximates a bell. The longitudinal
vibrations, which imply motion along the shell, do not affect the fluid the shell is immersed in (air).
We adopt a simple model of transverse vibrations of the shell, consisting of a series of wavelengths
λn = v/ωn = a/n, where v is the velocity of the elastic waves in shell, ωn = (v/a)n are frequencies
and n is any positive integer. ω = v/a is the fundamental frequency and the frequency series is
limited by the cutoff frequency v/d, i.e. the integer n is limited by N = a/d. The energy stored
by a transverse vibration with frequency ωn may be approximated by En = µV (u0/λn)

2, where µ
is the elastic moduli, V = a2d is the volume of the shell and u0 is the vibration amplitude. This
energy can also be written as En = (µV/v2)ω2

nu
2

0
, or En = ρV ω2

nu
2

0
, where ρ is the density of the

shell. The total energy is given by
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N
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n=1
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ρv2a2

d
u2

0
. (3)

From equation (3) we get the amplitude u0 = (Ed/ρ)1/2/va. For numerical purposes we take
E = 108erg (corresponding to 10kg with velocity 1m/s), d = 10cm, ρ = 10g/cm3, a = 3m and
v = 3× 105cm/s; we get u0 ≃ 10−4cm. Very likely, the cutoff frequency is much lower, such that,
introducing the factor (a/d)3 ≃ 104, we get the more realistic amplitude u0 ≃ 1cm. We note that
the result is the same when we restrict ourselves to the rim vibrations.

The force produced by the n-th vibration is obtained from the energy µV (un/λn)
2 as Fn =

(µV/λ2

n)un, where un = u0 cosωnt; this force can also be written as Fn = ρV ω2

nu0 cosωnt. The
force Fn is concentrated on the shell, such that we may represent its density as

Fnr =
ρV

a3
ω2

nu0dδ(r − a) cosωnt =
ρd2

a
ω2

nu0δ(r − a) cosωnt ; (4)

the suffix r indicates that this force density is the radial component. The equation of the (longi-
tudinal) elastic displacement of the fluid is

ρür − ρc2gradr(divu) =
ρd2

a
ω2

nu0δ(r − a) cosωnt , (5)

where c is the speed of the elastic waves in fluid; or,

ür − c2
∂

∂r
(divu) =
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a
ω2

nu0δ(r − a) cosωnt . (6)
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The displacement u derives from a potential Φ, through u = gradΦ; equation (6) becomes

∂Φ̈

∂r
− c2

∂

∂r
∆Φ =

d2

a
ω2

nu0δ(r − a) cosωnt , (7)

or

Φ̈− c2∆Φ =
d2

a
ω2

nu0θ(r − a) cosωnt . (8)

For r ≫ a we may write this equation as

Φ̈− c2∆Φ =
d2

a
ω2

nu0 cosωnt− d2ω2

nu0δ(r) cosωnt (9)

(θ(r) = 1). The first term on the right in equation (9) gives a uniform contribution to Φ, which
does not contribute to the displacement u; the second term gives the solution

Φ = −
d2ω2

nu0

4πc2

∫

dr′
δ(r′)

| r− r
′ |

cosωn(t− | r− r
′ | /c) . (10)

Within our approximations we may replace δ(r′) by δ(r′) = 2πa2δ(r′); we get

Φ ≃ −
d2a2ω2

nu0

2c2r
cosωn(t− r/c) (11)

and

ur ≃
d2a2ω2

nu0

2c2r2
cosωn(t− r/c)−

d2a2ω3

nu0

2c3r
sinωn(t− r/c) , (12)

where we can see the near-field and the far-field waves. The result given by equation is valid for
r ≫ a. For the fundamental mode ωn ≃ v/a we can represent the far-fied waves as

ur ≃ (v/c)3(d2u0/2ar) sinω(t− r/c) ; (13)

a better numerical estimation is obtained by replacing a in equation (13) by a smaller value. For
a bulk sphere d should be replaced in equation (13) by a.

For v = 3× 105cm/s, c = 3× 104cm/s, a = 300cm, d = 10cm and u0 = 1cm we get the amplitude
u0

r of the displacement ur of the order u0

r ≃ 102/r(cm) (fundamental frequency ≃ 103s−1). The
elastic modulus µ for shells is lower than the elastic modulus for bulk materials, such that v in
equation (13) should be smaller (say, 3 × 104cm/s); also, the frequency should be smaller; more
realistic values are ω ≃ 100s−1. The energy density in this wave is ρu̇02

r ≃ 107/r2(erg/cm3)
(pressure) and the energy flux is I = ρu̇02

r c ≃ 1011/r2(erg/cm2 · s), where ρ ≃ 103g/cm3 is the
density of the air.

The sound intensity in decibels (dB) is given by L = 10 lg(I/I0), where I is the energy flux and I0
is a reference energy flux of the order I0 ≃ 10erg/cm2 · s; making use of I ≃ 1011/r2(erg/cms · s)
given above, we get L ≃ 10 lg(1010/r2)(dB); the audibility limit is L = 0, which means that such a
sound can be heard at a distance r ≃ 1km. Allowing for higher frequencies, this limit is probably
of the order 10km.

It is worth estimating the sound intensity in the near-field region; making use of the numer-
ical data given above, we get the amplitude is u0

r ≃ 104/r2(cm), the energy density (pres-
sure) is ≃ 1011/r4(erg/cm3) and the energy flux is I ≃ 1015/r4(erg/cm2 · s); the intensity is
L = 10 lg (1014/r4). For r = 1cm we get the intensity L = 140dB, which is the threshold of
permanent damage to the human ear.
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