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Abstract

The geometric-growth model of seismic focus is presented and the geometric parameter r
is introduced, related to the reciprocal number of effective dimensions of the focus. This pa-
rameter governs the relationship between the accumulation time and the energy accumulated
in the seismic focus. The time, energy and magnitude earthquake probability distributions
are derived, in particular the magnitude (Poisson) distribution ∼ e−βM , where β = br, b = 3.5
(3/2 in decimal logarithms) being the well-known Gutenberg-Richter constant (and M de-
noting the magnitude). The main concept employed in deriving these probabilities is the
seismicity rate. The mean recurrence time, the empirical magnitude frequency, the excedence
rate and the energy released by earthquakes are discussed. These laws are used to fitting
3640 earthquakes with magnitude M ≥ 3 which occurred in Vrancea between 1981 − 2018
(38 years). The results are compared with those corresponding to a similar analysis of 1999
earthquakes with magnitude M ≥ 3, recorded in Vrancea between 1974 − 2004 (31 years).
The main result is the parameter r which increased from r = 0.54 in the former period to
r = 0.65 in the more recent period; at the same time, an increased rate of seismicity is re-
ported lately. These results suggest that the collective, generic seismic focus in the seismic
region Vrancea (i.e. the spatial distribution of the seismic foci) has changed in the recent
years, from a two-dimensional distribution towards a distribution with a more pronounced
content of a one-dimensional distribution. These changes have important consequences in
the accumulation time of the great earthquakes, which become longer. The results are very
sensitive to small variations in the parameter r, such that a refined statistical anlysis (the
only access way to to this parameter) is useful for estimating the seismic hazard.

By using the background distributions indicated above, the conditional probabilities for
time, energy and magnitude distributions are derived and employed to analyze the short-
term seismic activity, especially the accompanying (associated) distributions of foreshocks
and aftershocks. It is shown that the temporal accompanying seismic activity is governed by
the Omori law, with a (short-) time cutoff. The Omori distribution is derived by using the
branching concept, as well as, equivalently, by means of the self-replication processes. While
for long times a Poisson distribution may be included, power laws with a fractional exponent
at short times (gamma distributions) are equivalent with Omori law (time exponent −1 ).
Making use of the magnitude distribution the empirical Bath’s law for aftershocks (foreshocks)
is derived. On this occassion, the disparity between the temporal and magnitude (energy)
scales is noted. The conditional probabilities have been used to analyze the next-earthquake
distributions (inter-event time distributions) for 3640 earthquakes with magnitude M ≥ 3
recorded in Vrancea between 1981− 2018. These probabilities exhibit a correlation extended



2 J. Theor. Phys.

over 20 − 25 days, with a mean time ≃ 6 days and a deviation ≃ 9.5 days. The highest
probability of occurence of an earthquake is the next day after an earthquake, at least for small
and moderate earthquakes. Such probability tables can be used for short-term forecasting and
estimating the seismic hazard and risk. The correlations disappear gradually with increasing
magnitudes, such that such tables become useless in these (probably the most interesting)
cases. Finally, a discussion is included, concerning the Statistical Seismology and its evolution
ways.

1 Introduction

Seismic observations indicate that typical earthquakes release suddenly, in a short lapse of time,
energy accumulated in a focus localized in Earth’s crust. The dimension of the focus is very small
in comparison with the distance to Earth’s surface, such that the focus may be vieved as a point.
Very likely, the energy accumulation in the focus is due to the movement of the tectonic plates,
such that the focus may be viewed as a shearing fault.1

During an earthquake the seimographs placed on Earth’s surface record a succession of longitudinal
waves (P waves), transverse waves (S waves), followed by a surface main shock.2 It was shown
recently that the focal elastic force density can be represented as fi = Mij∂jδ(R−R0), where Mij

is a seismic moment tensor associated to the focus placed at R0. The P and S waves and the main
shock have been computed with this force density; the seismic waves are shell spherical waves,
while the main shock has an abrupt front, followed by a long tail.3 From the measurement of the

P and S waves the seismic moment Mij and the released energy E = M/2
√
2, M =

(

M2
ij

)1/2
,

can de deduced, as well as all the parameters of the focal source, like the dimension of the focus,
the orientation of the fault, the direction of the fault slip, the focal strain and the duration of the
earthquake.4

2 Focal accumulation model

According to energy conservation, the energy accumulation in an earthquake focus obeys the
continuity equation

∂E

∂t
= −vgradE , (1)

where E is the energy at time t and v denotes the velocity of energy accumulation; the energy loss
by dissipation (thermoconduction and friction by viscosity) may be taken into consideration by
empirical parameters which appear immediately in this equation. For a localized focus, equation

1A. Wegener, "Die Herausbildung der Grossformen der Erdrinde (Kontinente und Ozeane) auf geophysikalis-
cher Grundlage", Petermanns Geographische Mitteilungen 63 185-195, 253-256, 305-309 (1912); A. Wegener, Die

Entstehung der Kontinente und Ozeane, Vieweg & Sohn, Braunschweig (1929).
2C. G. Knott, The Physics of Earthquake Phenomena, Clarendon Press, Oxford (1908); A. E. H. Love, Some

Problems of Geodynamics, Cambridge University Press, London (1926).
3B. F. Apostol, "Elastic waves inside and on the surface of an elastic half-space", Q. J. Mech. Appl. Math. 70

289 (2017); The Theory of Earthquakes, Cambr. Int. Sci. Publ. (2017); Introduction to the Theory of Earthquakes,
Cambr. Int. Sci. Publ. (2017).

4B. F. Apostol, "On an inverse problem in elastic wave propagation", Roum. J. Phys., to appear ("The inverse
problem in Seismology. Seismic moment and energy of earthquakes. Seismic hyperbola", arxiv: 1808.03049v1
[physics. geo-ph], 9 August 2018).
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Figure 1: Geographical distribution in longitude and latitude of earthquakes in Vrancea between
1981-2018 with magnitude M ≥ 3 (ROMPLUS Catalog).

(1) can be written as
dE
dt

= vx
∆E
∆x

+ vy
∆E
∆y

+ vz
∆E
∆z

=

=
(

vx
ux

+ vy
uy

+ vz
uz

)

∆E
∆t

,

(2)

where u is the local velocity of the rocks in time lapse ∆t and x, y, z denote the coordinates. In the
absence of other agencies, we may take ∆E = E and ∆t = t; in order to avoid the indeterminacy
in the limit E, t → 0 we introduce a cutoff energy E0 and a cutoff time t0. For long times the
velocity u is small, such as to preserve the localization. In general, the velocity u is different from
velocity v. However, the energy accumulates by a direct elastic shear, so we may take u = v

(compression may appear in artificial foci, like explosions); we can see that these parameters
disappear from equation (2), where we are left with a factor 3. However, the accumulation may
proceed anisotropically, for instance along only one direction, or two directions as in a fault, so
we get a factor 1 or 2 in equation (2). Consequently, we write equation (2) as

dE

dt
=

1

r

E + E0

t+ t0
, (3)

where the parameter r remains undetermined. In principle, this parameter may take any value,
but, very likely, it lies in the range 1/3 < r < 1. From equation (3) we get the energy E
accumulated in time t as given by5

1 + t/t0 = (1 + E/E0)
r . (4)

We note that the variables in this equation are the reduced (scaled) energy E/E0 and the reduced
time t/t0; this feature and the power law are reminiscent of critical phenomena.6

Originally, a relationship E/E0 = (R/R0)
3 has been suggested, where two characteristic lengths R

and R0 are associated either with the central core of the critical focal zone where the seismic energy
accumulates, or R may correspond to the characteristic length of the seismic region disrupted by
the earthquake, R0 being in this case a scale length.7 For a uniform energy accumulation in the
focus in the time interval t we get E/E0 = (R/R0)

3 = (t/t0)
3, (E ≫ E0, t≫ t0), hence r = 1/3.

5B. F. Apostol, PhD Thesis, Institute for Earth’s Physics, University of Bucharest, Magurele, 2005; "A Model
of Seismic Focus and Related Statistical Distributions of Earthquakes", Rom. Reps. Phys. 58 583 (2006); "A
Model of Seismic Focus and Related Statistical Distributions of Earthquakes", Phys. Lett. A357 462 (2006).

6P. Bak and C. Tang, "Earthquakes as a self-organized critical phenomenon", J. Geophys. Res. 94 15635
(1989); P. Bak, How Nature Works: The Science of Self-Organized Criticality, Copernicus, NY (1996).

7C. G. Buffe and D. J. Varnes, "Predictive modeling of the seismic cycle of the Greater San Francisco Bay
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Figure 2: Depth distribution of earthquakes in Vrancea between 1981-2018 with magnitude M ≥ 3
(ROMPLUS Catalog).

3 Probability distributions. Gutenberg-Richter law

In time t = 0 the energy released is E = 0, i.e. the energy E0 accumulated in time t0 is either the
background energy, or it is released by quasi-static relaxation processes, or dissipated. It follows
that in a time T > t0 there may appear a maximum number N0 = T/t0 of "seismic events" with
released energy E = 0. 1/t0 is called seismicity rate; t0, defined as T/N0, is a mean accumulation
time. Similarly, the number N of earthquakes with an accumulation time t (t0 + t, characteristic
time t) and energy E is given by N = T/(t0 + t), whence

N

N0

=
1

1 + t/t0
= (1 + E/E0)

−r . (5)

Therefore, the density of time probability P (t) is given by

P (t)dt = −d
(

1

1 + t/t0

)

=
1

(1 + t/t0)
2

dt

t0
(6)

and the density of energy probability P (E) is8

P (E)dE =
r

(1 + E/E0)
1+r

dE

E0
. (7)

A power law

P (E) ∼ E−α (8)

for earthquake energy distributions has been suggested before, by an analysis of the earthquakes
in Japan, where the exponent is α = 1.7 − 2.3.9 Since α = 1 + r, we get the parameter r in the
range r = 0.7− 1.3.

region", J. Geophys. Res. 98 9871 (1993); D. L. Wells, K. J. Coppersmith, "New empirical relationships among
magnitude, rupture length, rupture width, rupture area, and surface displacement", Bull. Seism. Soc. Am. 84

974 (1994); D. D. Bowman, G. Ouillon, C. G. Sammis, A. Sornette and D. Sornette, "An observational test of the
critical earthquake concept", J. Geophys. Res. 103 24359 (1998) and References therein.

8B. F. Apostol, "A Model of Seismic Focus and Related Statistical Distributions of Earthquakes", Rom. Reps.
Phys. 58 583 (2006); "A Model of Seismic Focus and Related Statistical Distributions of Earthquakes", Phys.
Lett. A357 462 (2006).

9K. Wadati, "On the frequency distribution of earthquakes", J. Meteorol. Soc. Japan 10 559 (1932).
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The density of energy probability given by equation (7) can be written as

P (E) =
r

E0

e−(1+r) ln(1+E/E0) ≃ r

E0

e−(1+r) ln(E/E0) (9)

for E ≫ E0, which suggests the notation

ln (E/E0) = bM , (10)

where b is a numerical coefficient, or

lnE = a + bM , (11)

where a = lnE0. This is the Gutenberg-Richter law, where M is the earthquake magnitude.10

Since E = M/2
√
2 we can also write

lnM =

(

a+
3

2
ln 2

)

+ bM ; (12)

M is also called the moment magnitude. The values of the coefficients a and b are conventional.11

The coefficient b has the value b ≃ 3.5, or b = 3/2 in decimal logarithms (ln 10 = 2.3). It seems that
this value comes from the estimation µSl of the seismic moment M , where µ is the Lame elastic
shear coefficient, S is the fault area and l denotes the fault slip; the volume Sl can be written as
A3/2, where A has the dimensions of an area; hence, the coefficient b = 3/2.12 The value of the
coefficient a is uncertain. For seismic moments measured in dyn · cm the value a + 3

2
lg 2 = 16.1

is used in decimal logarithms, i.e. a = 15.65 (lg 2 = 0.3); for moments measured in J this value
corresponds to a = 8.65.13 Since the measurement of lgE is expected to have ±0.5 an error, it is
likely that the error in magnitudes is ±0.33.14

Making use of the definition (10) of the magnitude, we get from equation (9) the magnitude
distribution15

P (M)dM = βe−βM , β = br , (13)

for M ≫ 1/b (a Poisson distribution). We can see that this distribution is free of the parameter
a (E0).

3.1 Magnitude frequency

The magnitude probability can be written as

P (M) =
∆N

N0∆M
=

t0∆N

T∆M
, (14)

10B. Gutenberg and C. Richter, "Frequency of earthquakes in California", Bull. Seism. Soc. Am. 34 185 (1944).
11T. Utsu and A. Seki, "A relation between the area of aftershock region and the energy of the mainshock", J.

Seism. Soc. Japan 7 233 (1954).
12T. Lay and T. Wallace, Modern Global Seismology, Academic Press, San Diego (1995); D. L. Wells, K. J.

Coppersmith, "New empirical relationships among magnitude, rupture length, rupture width, rupture area, and
surface displacement", Bull. Seism. Soc. Am. 84 974 (1994).

13H. Kanamori, "The energy release in earthquakes", J. Geophys. Res. 82 2981 (1977).
14It is worth noting that equation (10) and the relation E ∼ R3 lead to R2 ∼ e2bM/3 and lgS ≃ 1.02M + const,

where S is interpreted as the area of the aftershock region and M is the magnitude of the main shock. This is
an empirical law (T. Utsu and A. Seiki, cited above; T. Utsu, "Aftershocks and earthquake statistics (I): some
parameters which characterize an aftershock sequence and their interaction", J. Faculty of Sciences, Hokkaido
Univ., Ser. VII (geophysics) 3 129 (1969)).

15B. F. Apostol, "A Model of Seismic Focus and Related Statistical Distributions of Earthquakes", Rom. Reps.
Phys. 58 583 (2006); "A Model of Seismic Focus and Related Statistical Distributions of Earthquakes", Phys.
Lett. A357 462 (2006).
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Figure 3: Logarithmic distribution ln∆N = lnC − βM fitted to data given in Table 1.
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Figure 4: Exponential distribution ∆N = C exp(−βM) fitted to data in Table 1.

where ∆N is the number of earthquakes with magnitude in the range (M, M+∆M) and N0 = T/t0
is the total number of earthquakes with recurence time t0 in time T (1/t0 is the seismicity rate).
From equation (13) we get

lg (∆N/T ) = A− BM , (15)

where

A = lg

(

β∆M

t0

)

, B =
β

2.3
. (16)

This magnitude-frequency (∆N/T ) relationship has been checked for a large set of global earth-
quakes with 5.8 < M < 7.3 (∆M = 0.1).16 By fitting these experimental data the parameters
A = 4.6 and B = 0.6 have been determined, leading to β = 1.38 and 1/t0 = 105.5 per year. We
note that t0 and β are fitting parameters. From β = br, b = 3.5, we get r = 0.4, which suggests an
intermediate two/three-dimensional focal mechanism. It is worth noting that an isotropic three-
dimensional accumulation mechanism leads to r = 1/3 and β = 1.17, while a two-dimensional
accumulation mechanism leads to r = 1/2 and β = 1.75. Deviations from the linear law given
by equation (15) exist for small magnitudes, which are consistent with the corrections brought
by equation (7) to the Gutenberg-Richter law for low energies. Large deviations from this linear
law occur for large magnitudes, which show that strong earthquakes, being rare, are not fully
statistical, as expected.

16K. E. Bullen, An Introduction to the Theory of Seismology, Cambridge University Press, London (1963).
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Figure 5: Excedence law lnNex = lnN0 − βM fitted to the cumulative distribution of data given
in Table 1.

3.2 Mean recurrence time

From the magnitude frequency ∆N/T (equation (15)) we get the mean recurrence time

tr =
t0

β∆M
eβM (17)

for an earthquake with magnitude M (i.e. in the interval (M, M +∆M)). This time should be
compared with the accumulation time ta = t0e

βM , which can be derived from equations (4) and
(10). These times are related by ta = (β∆M)tr, whence one can see that ta < tr, a relationship
which shows that the energy may be lost by seismc events with lower energy, as expected. Since the
parameters t0, β, and ∆M are known from statistical analysis of data, equation (17) might suggest
a possibility to predict the earthquake occurrence. This might be the case for small earthquakes,
which are frequent (short tr), though it is not very useful. In fact, the distribution βe−βM of the

inverse of the recurrence times implies an error of the order
(
√

M2 −M
)

/M =
√
2 − 1, i.e.,

∆tr/tr ≃ 0.41, which is too large to be useful. For a maximal entropy with mean recurrence
time tr we get a Poisson distribution (1/tr)e

−t/tr for the recurrence time, which has a standard

deviation

√

(t− tr)2 = tr.

In principle, there may exist a recurrence-time scale for some large earthquakes, which may lead,
for instance, to a normal (Gauss) distribution; if the standard deviation is small, it may be used
in forecasting such earthquakes. However, such a possibility is very unrealistic.

4 Earthquakes in Vrancea

The seismic area of the geographic region Vrancea is centered on 45.7◦ (northern) latitude and
26.6◦ (eastern) longitude. The earthquakes occur here in the depth range 60−180km. The region
exhibits occasionally small crustal, or surface, earthquakes. Strong earthquakes occur sometimes
in Vrancea, as, for instance, M = 7.4, March 4, 1977, depth 94km, or M = 7.1, August 30, 1986,
depth 131km. Nine earthquakes with magnitude M > 7 have been recorded in Vrancea in the
past two centuries. 3640 earthquakes with M ≥ 3, which ocurred in Vrancea between 1981 and
2018 (38 years), are analyzed here (∆M = 0.1).17 The distribution ∆N(M) of these data is given
in Table 1 for ∆M = 0.1.

17Romanian Earthquake Catalogue (ROMPLUS Catalog), National Institute for Earth Physics, Romania (2018).
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M=3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

∆N=787 605 827 324 315 394 183 151 227 96
M=4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
∆N=83 98 55 74 30 7 17 13 5 5
M=5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
∆N=2 1 3 1 3 5 4 0 1 0
M=6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9...
∆N=1 0 0 0 1 0 0 0 0 1
M=7.1 ...
∆N=1 ...

Table 1: Magnitude distribution of earthquakes in Vrancea from 1981 to 2018 (magnitude M ≥ 3,
ROMPLUS Catalog).
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Figure 6: Earthquakes with magnitude M > 5.5 in the last two centuries in Vrancea (ROM{LUS
Catalog).

The geographical distribution in longitude and latitude of earthquakes in Vrancea between 1981−
2018 with magnitude M ≥ 3 is shown in Fig. 1, while the depth distribution of the same set of
data is shown in Fig. 2.

The logarithmic distribution (15) is used in the form

ln∆N = lnC − βM (18)

for fitting the data in Table 1, where C = βN0∆M , lnC = 14.67, β = 2.6 (error ≃ 10%,
∆M = 0.1), as shown in Fig. 3. It follows a seismicity rate − ln t0 ≃ 12.49 (in years) and a
coefficient B = β/2.3 ≃ 1.13. A similar fit, using ∆N = C exp(−βM) is shown in Fig. 4, where
lnC = 12.9 and β = 2.07 (error ≃ 30%), corresponding to a seismicity rate − ln t0 ≃ 10.84 and a
coefficient B = β/2.3 ≃ 0.9. It is also convenient to introduce the so-called recurrence law, or the
excedence rate, which gives the number Nex of earthquakes with magnitude greater than M . The
corresponding probability is readily obtained from (13) as Pex = e−βM , such that the excedence
rate reads

lnNex = lnN0 − βM . (19)

This formula is fitted to the experimental data given in Table 1) with lnN0 = 14.25 and β = 2.1
(Fig. 5, error ≃ 10%). These values correspond to a rate of seismicity − ln t0 ≃ 10.62 and
B = β/2.3 ≃ 0.9.

The three fits described above have a different quality and a different accuracy. The direct expo-
nential fit to the data has probably the best quality, because it takes into account all the data,
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Figure 7: Next-earthquake distribution of seismic events in Vrancea 1981 − 2018 (3640 events,
M ≥ 3, panel a) and probabilities P = P (t) (in %, panel b). The fitting curve in panel a is
1066.45/(1.15 + t) (coefficient of determination ≃ 0.96).

in contrast to the logarithmic fits were vanishing data are excluded. Unfortunately, its accuracy
is poor, due to the abrupt variation of the exponential function and data scattering. Similarly,
the best accuracy (10%) is for the logarithmic fit given by equation (18), as the function vari-
ation is the smallest. However, the quality of this fit is poor, as it loses all the vanishing data.
Finally, the excedence law (19) produces a fit which is situated in-between, with a moderate ac-
curacy and a moderate quality. It is reasonable to use an average value for the seismicity rate
−ln to = (12.49 + 10.84 + 10.62)/3 = 11.32 and an average β̄ = (2.6 + 2.07 + 2.1)/3 = 2.26
(error ≃ 18%). The value β = 2.26, which corresponds to a coefficient B = β/2.3 ≃ 1, indicates
a value r = β/b = 0.65 for the parameter r of the focus model, where b = 3.5 is used. This
may show that the geometry of the Vrancea focus is different from an isotropic point-like source,
accumulating seismic energy with a uniform velocity; the focus seems to resemble more an inter-
mediate one/two-dimensional geometry (1/r = 1.5) (with the hypothesis of uniform accumulating
velocities).

The statistical analysis gives a generic image of a collective, global earthquake focus (a distribution
of foci). Its results should be corroborated with the spatial distribution of the seismic foci in
Vrancea, shown in Figs. 1, 2. Making use of the values obtained here for the average seismicity
rate and average β-parameter, one may attempt to estimate the accumulation time, by using
equation ta = t0e

βM . The value ta ≃ 90 years is obtained this way, for the accumulation time
of earthquakes with magnitude M = 7 in Vrancea. It must be recalled that the error of such
an estimation is ∼ 41%, i.e. ∼ 37 years (leaving aside the errors in determining the statistical
parameters t0 and β). An error ∆M = −0.33 reduces this accumulation time to ta ≃ 42 years.
If we use − ln t0 = 10.62 and β = 2.1 obtained from the fit to the excedence rate Nex, then the
accumulation time for M = 7 is ≃ 59 years. These periodicities can be compared with data in
Fig. 6, where Vrancea earthquakes in Vrancea with magnitude M > 5.5 are shown for the last
two hundreds years (ROMPLUS Catalog).

A similar statistical analysis has been done for 1999 earthquakes with M ≥ 3, which occurred in
Vrancea between 1974−2004 (31 years).18 The parameters given by that analysis are − ln t0 = 9.68
and β = 1.89 (r = 0.54). An estimate of the accumulation time for M = 7 is ta ≃ 34.9 years.
In comparison with that previous period we note that the seismicity rate increased and the focus
geometry changed from two dimensions towards one dimension. This latter change is responsible
for an increase in the accumulation time. It seems that the seismic-focal region of Vrancea, i.e.

the spatial distribution of the seismic foci, as shown in Figs. 1, 2, has changed in the last 30
years, in comparison with the previous period 1974 − 2004. The modification consists in the

18B. F. Apostol, "A Model of Seismic Focus and Related Statistical Distributions of Earthquakes", Rom. Reps.
Phys. 58 583 (2006); "A Model of Seismic Focus and Related Statistical Distributions of Earthquakes", Phys.
Lett. A357 462 (2006).
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apparition of more foci, responsible for small earthquakes, distributed mainly along the depth.
This modification means an increase in the seismicity rate (− ln t0) and, at the same time, an
evolution of the geometry of the collective focus towards a one-dimensional geometry. The latter
change leads to an increase in the parameter r, which entails an appreciable increase in the long
accumulation times.

Making use of the energy distribution given by equation (7), we can estimate the mean energy
released by earthquakes with magnitudes M < Mc

E ≃ r

1− r
E0e

b(1−r)Mc =
r

1− r
ea+b(1−r)Mc , (20)

or
E ≃ r

1− r
108.65+1.5(1−r)Mc (21)

(energy in J). Leaving aside a few great earthquakes, the upper cutoff magnitude may be taken
Mc = 5.6, since, beyond this value there exist only a few great earthquakes in Vrancea between
1981−2018. We get E ≃ 1012J/yr (r = 0.65). An additional factor ≃

√
10 may occur if we include

the great earthquakes; the rate of the seismic moment is E/2
√
2. We can see from equation (20)

that the energy released by all the earthquakes with magnitude smaller than Mc is much smaler
than the energy of the earthquake with magnitude Mc (by a factor e−βMc).

5 Conditional distributions

What is the probability for an earthquake to occur at time τ after the occurrence of an earthquake
at time tm? We can view this process as a fictitious seismic event which would occur at time
t = tm + τ , where tm is fixed and 0 < τ < ∞. The probability distribution ∼ 1/(1 + t/t0)

2

(equation (6)) becomes

P (τ) =
1 + tm/t0

(1 + tm/t0 + τ/t0)2
1

t0
(22)

(properly normalized). Obviously, it is also the probability for an earthquake to occur at time τ
before an earthquake which will occur surely at time tm. If we measure time τ with negative value
in the past with respect to time tm, τ should be replaced by | τ | in equation (22). The distri-
bution is symmetric with respect to reflection τ −→ −τ . This is a conditional distribution. The
earthquake occurring at time tm is called conventionally main shock. The earthquakes occurring
at times τ > 0 are called succeeding earthquakes, while those occurring at times τ < 0 are called
preceding earthquakes. All form a seismic activity associated with the main shock.

Similarly, the conditional probability for an earthquake to occur with an energy ε when an earth-
quake with energy Em occurred (or will surely occur) is

P (ε) =
r(1 + Em/E0)

r

(1 + Em/E0 + ε/E0)1+r

1

E0

(23)

(equation (7)). We may relate the energies ε and Em to the times τ and tm, respectively, through
equation (4), but the sum Em + ε is not related to tm+τ through this relation.

An associated earthquake with magnitude µ has a probability ∼ e−βµ, like any earthhquake
(equation (13)). The magnitude µ may be viewed either as µ = Mm −M , where M < Mm, or
µ = M −Mm for M > Mm; we may use µ =| Mm −M | in both cases, or, if M > Mm, we
may inter-change M ←→ Mm, i.e. the main shock is the earthquake with magnitude M and the
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Figure 8: Next-earthquake distributions P = P (M, t) (in %) for Vrancea 1981− 2018 for M0 ≥ 3
and 3 ≤M < 4 (panel a), 4 ≤M < 5 (panel b), 5 ≤M < 6 (panel c) and 6 ≤M (panel d).

earthquake with magnitude Mm is an earthquake with a magnitude M < Mm. In any case, µ
becomes the difference m between the higher magnitude and the lower magnitude; its probability
distribution is βe−βm (which may be written also βe−β|m|, either for m > 0, or m < 0).19 Since
√

m2 =
√
2/β, we may conclude that the highest earthquake associated with a main shock is by√

2/β lower in magnitude than the main shock. Making use of β = 1.17 given above (for r = 0.33)
we get

√
2/β = 1.2, an estimate known as Bath’s law.20 For Vrancea, making use of β = 2.26

obtained before, we get
√
2/β ≃ 0.62.

It is worth noting the different scales of τ , ε and m. We may view these variables as small changes
δt, δE and δM , such that δt/t0 = r(E/E0)

r−1δE/E0, δE/E0 = be(b−1)M δM and δt/t0 = βeβMδM ;
we can see that, for large energies, δM ≪ δt/t0 ≪ δE/E0 (for r < 1). It follows that for short
times τ the energies differ much from the energy of the main shock, while higher magnitudes occur
at longer times, as expected (hence the "highest aftershock" with magnitude lower by

√
2/β than

the main shock).

6 Short-term seismic activity

Let us assume tm ≫ t0 in equation (22) and τ ≪ tm; if we limit ourselves to 0 < τ < tm/2, the
time distribution becomes

P (τ) =
1

ln 2

1

tm/2 + τ
. (24)

This is the distribution of short-term seismic events associated with a main shock occurring at tm.
Since τ < tm/2, it includes events which are lower in energy than the main shock. The parameter
tm in equation (24) remains an empirical parameter.

In the time interval 0 < τ < tm/2, measured from tm both in the future and in the past, there may
exist seismic events lower in energy than the main shock which are causaly related to the main
shock. These are the aftershocks (suceeding events) and the foreshocks (preceding events). Their
distribution is given by equation (24); they are expected to dominate the short-term activity in
the limit τ ≪ tm/2. In the same time interval 0 < τ < tm/2 there may exist regular earthquakes,
some with higher energy than the main shock. We can use a cutoff time tc instead of tm/2, in

19D. Vere-Jones, "A note on the statistical interpretation of Bath’s law", Bull. Seismol. Soc. Amer. 59 1535
(1969).

20M. Bath, "Lateral inhomogeneities of the upper mantle", Tectonophysics 2 483 (1965).
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Figure 9: Next-earthquake (conditional) probability P = P (t,M ;M0) (in %, Vrancea) for 3 ≤
M0 < 4 and 3 ≤ M < 4 (panel a), 4 ≤ M < 5 (panel b), 5 ≤ M < 6 (panel c) and 6 ≤ M (panel
d).

order to include only earthquakes lower in energy than the main shock. The distribution given
by equation (24) with a cutoff time tc can be used for adjacent earthquakes (next-earthquake
distribution, or inter-event time distribution, or waiting-time distribution), where in the interval
0 < τ < tc exists only one succeeding event and only one preceding event.

Similarly, from equation (23) we get the short-term energy distribution

P (ε) =
1

ln 2

1

Em/(1 + r) + ε
(25)

for 0 < ε < Em/(1 + r). The energy released in the short-term seismic activity is

ε =
1− ln 2

ln 2
· Em

1 + r
. (26)

Making use of the magnitude partition M = Mm + µ, we get

P (µ) =
1

ln 2

1

1/β + µ
(27)

from the magnitude distribution βe−βM (equation (13)), where Mm is the magnitude of the main
shock and µ is the magnitude of the short-term earthquake, 0 < µ < 1/β. However, the scale of
these variables (τ , ε, µ) are very different.

The short-term distributions are applicable to associated earthquakes lower in energy than the
main shock. The associated earthquakes comparable in energy with the main shock are interesting.
From equation (24), such an earthquake occurs at time τ ≃ tm/2, as expected. Let us write
equation (4) as

1 + t/t0 = (E/E0)
r(1 + E0/E)r ≃ (E/E0)

r(1 + rE0/E) (28)

for E close to Em ≫ E0. Let us estimate the variation

δ [(E/E0)
r · rE0/E]Em

=

=

[

r
E0

(

Em

E0

)r−1
rE0

Em
−

(

Em

E0

)r
rE0

E2
m

]

δE =

= r
(

Er−2
m

Er−1

0

)

(r − 1) δE ;

(29)
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Figure 10: Same as in Fig. 9 for 4 ≤M0 < 5.

we can see that for 0 < r ≪ 1 the contribution of the factor (E/E0)
r to this variation is much

smaller than the contribution of the factor rE0/E. it follows that we may write approximately

tm/t0 = (Em/E0)
r ,

τ
t0
= r(Em/E0)

r E0

E
.

(30)

For E ≃ Em we have τ/t0 ≃ r(Em/E0)
r−1 ≪ 1. Comparing with

τ

t0
= r(Em/E0)

r−1 ε

E0

(31)

used above, we get εE = E0Em. Using the approximation procedure described above in the energy
distribution 1/(1 + E/E0)

1+r, we get the distribution

P (E) ≃ 1

Em

1

(1 + r)E0 + E
· 1
E

, (32)

where the integration has been extended from ≃ Em to ∞. From equation (30) we can see that
the rate of released energy is21

dE

dτ
= rt0E0(Em/E0)

r 1

τ 2
. (33)

The change E −→ 1/ε implies that the energy goes as e−bM and the magnitude probability
goes as eβM = eβMmeβ(M−Mm). It follows the distribution βe−βm for the magnitude difference
m = Mm −M > 0. The approximation procedure described above has a very limited range of
validity.

7 Omori law

Let us use a cutoff time tc in equation (24); we have the series of approximations

P (τ) ∼ 1

tc + τ
∼ 1− τ/tc ≃ e−τ/tc (34)

21T. Utsu, "A statistical study on the occurrence of aftershocks", Geophys. Mag. 30 521 (1961); D. Sornette,
C. Vanneste and L. Knopoff, "Statistical model of earthquake foreshocks", Phys. Rev. A45 8351 (1992).



14 J. Theor. Phys.

for τ/tc < 1. Since 1/(1 + τ/tc) is larger than e−τ/tc , it is reasonable to associate the distribution
e−τ/tc with aftershocks (and foreshocks), which have a causal relation with the main shock. We may
extend this distribution to τ −→∞, where it decreases appreciably in comparison with 1/(1+τ/tc);
the latter may include regular earthquakes for longer times. Therefore, the distribution

p(τ) = αe−ατ (35)

with α = 1/tc may be taken tentatively as the distribution of the accompanying seismic activity,
consisting of aftershocks and foreshocks, of a main shock. If the main shock generates aftershocks
and foreshocks, the latter may generate their own foreshocks and aftershocks, in a self-replication
(or branching, or avalanche) process.22 Then, we may view the distribution given by equation
(35) as a distribution in the variable α, i.e.

dP

dα
∼ e−ατ (36)

and

P ∼ 1

τ
. (37)

This is known as Omori’s distribution (Omori’s law).23 In fact, the integration in equation (36)
implies a cutoff, which leads to

P (τ) ∼ 1

tc + τ
, (38)

i.e. we recover the original distribution given by equation (34). This is why short-term distribu-
tions are called Omori-type distributions. The exponential distribution given by equation (35) is
called generating distribution.

In a self-replication process the probability P generated by a distribution p is given by

P = p+ spP , (39)

where s is the rate of continuity of the process; hence,

P =
p

1− sp
=

1

1/p− s
, (40)

which is an Euler’s transform between sp and −sP (p = P/(1 + sP ). If we expand p in a power
series, we get the Omori-type law; for instance, with the exponential generating distribution, we
get

P =
1

(1− αs)/α+ τ
; (41)

if αs < 1, the process slows down.

8 Next-earthquake distributions

The probability density of N serial events denoted by i and occurring at time ti can be written
as N−1

∑

i δ(ti − t). Similarly, the pair distribution of nearest-neighbours separated by time t is
given

22B. F. Apostol, "Euler’s transform and a generalized Omori’s law", Phys. Lett. A351 175 (2006).
23F. Omori, "On the after-shocks of earthquakes", J. Coll. Sci. Imper. Univ. Tokyo 7 111 (1894).
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Figure 11: Same as in Figs. 9 and 10 for 5 ≤M0 < 6.

P (t) =
dN

Ndτ
=

1

N

∑

i

δ(ti+1 − ti − t) . (42)

This function is also known as the next-earthquake distribution, recurrence, or waiting time dis-
tribution, or inter-event time distribution.

The earthquakes occurred in Vrancea between 1981− 2018 with M ≥ 3 (ROMPLUS Catalog) are
distributed in Fig. 7 on the inter-event time (panel a); the corresponding probabilities P (t) (in %)
are shown in Fig. 7 panel b (time is measured in days on the abscissa). We can see that the rate
of occurrence per day of the next earthquake follows a power-law time dependence (Omori-type
law) over a time window of about 25 days. The distribution is fitted with the law a/(b+ t), where
a = 1066.45, b = 1.15 and t denotes the time (coefficient of determination R = 0.96).24 The
mean time for P (t) is ≃ 5.89 days, and the variance is σ = 9.55 days. We note the presence
of the cutoff time b. To check whether this behavior is biased by the aftershock sequences of
the strongest seisms of the investigated time period (four earthquakes with magnitude ≥ 6.0), it
was considered also two shorter time intervals: 1991 − 2018, avoiding the aftershock sequences
of three events with M > 6.0 (occurred on August 30, 1986, M = 7.1, May 30, 1990, M = 6.9,
and May 31, 1990, M = 6.4), and 2005 − 2018, when no earthquake larger than magnitude 5.6
occurred. The results show very similar next-earthquake probabilities of occurrence, in all three
cases (a = 881.85, b = 1.25, R = 0.94 for 1991 − 2018 and a = 492.6, b = 1.16, R = 0.93 for
2005− 2018).

From the practical standpoint a relevant question in short-term earthquake forecasting seems to
be "what happens next?". Let us assume that an earthquake occurs at time t0 and the next one
occurs at some time t measured with respect to t0. We can define a distribution P (t) of these
next earthquakes, and determine it from a set of relevant statistical data. Once determined, it
can be used for estimating the time probability of occurrence of the next earthquake, based on
the principle "what happened will happen again". For instance, from Fig. 7, panel b, we can
say that the probability for an earthquake with magnitude M ≥ 3 to occur in the next day after
an earthquake with magnitude M ≥ 3 have occurred is ≃ 27%. Let the earthquakes be labeled
by some generic parameter x, like magnitude, location, depth, etc. Then, we may distribute
the next earthquakes with respect to x, and introduce the time probability distribution P (x, t)
of the next earthquake characterized by parameter x occurring at time t. Another distribution
P (x, t | x0) may also be introduced with respect to an earthquake labeled by parameter x0, which

24The coefficient of determination R is defined by R2 = 1−∑

i(di− fi)
2/

∑

i(di− d)2, where di denote the data,
fi denote the fit and d is the mean value of the data.
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Figure 12: Next-earthquake distribution for Vrancea 1981−2018, M ≥ 3 fitted with ae−0.22t/t0.12,
a ≃ 683 (t ≥ 1).

is a conditional probability. The procedure may obviously be extended, by introducing, similarly,
the probability distributions P (x, t | x01, x02, ...), or P (x1, x2, ..., t | x01, x02, ...), which resemble
the hierarchy of n-point correlation functions. Characteristic scale time or size, or correlation
range could be identified from the statistical analysis of such functions, providing the statistical
set of data is large enough, which may shed light on the statistical patterns of a seismic activity.
The statistics is rather poor, in general, precisely for those range of x where the estimation of the
seismic hazard and risk is most interesting, like, for instance, for x corresponding to high values
of magnitude M . The generic parameter x in the analysis of the inter-event time distributions
described here is the magnitude M .

The probabilities P (M, t) for M0 ≥ 3 for Vrancea 1981−2018 are shown in Fig. 8 for 3 ≤M ≤ 4,
4 ≤ M ≤ 5, 5 ≤ M ≤ 6, and 6 ≤ M (panels a, b, c and d, respectively). First, we note that the
inter-event distributions P (M, t) for Vrancea exhibit a characteristic decrease in time, with the
highest probability of next-earthquake occurrence in the same day as the reference earthquake,
at least for small magnitudes (M < 5). Then, we note the decreasing maximum values of these
probabilities ∼ 22.7 for 3 ≤ M < 4, ∼ 2.75 for 4 ≤ M < 5, while the probability P (M, t)
vanishes practically for M > 5. Also, it is worth noting that P (t) and P (3 ≤ M < 4, t) are
similar, obeying, Omori-type power laws, at least for short times, while the distributions become
gradually irregular, exhibiting large fluctuations on increasing magnitude above M = 4− 5. The
statistics becomes poor for higher magnitude (M > 5), as expected. A correlation time of 20− 25
days can be estimated, after which the probabilities decrease appreciably (below 1), as well as a
size correlation of M = 4 − 5, above which the distributions acquire very small values, and are
very irregular. The null hypothesis was tested on these distributions, by comparing the results of
the first half of data with those derived from the second half of data.

The conditional probabilities including the magnitude M0 of the former earthquake P(M, t | M0)
are shown in Figs. 9-11 for 3 ≤ M0 < 4 (Fig. 9), 4 ≤ M0 < 5 (Fig. 10) and 5 ≤ M0 < 6
(Fig. 11). The first observation is that distributing the time-magnitude events with respect
to the magnitude M0 does not change practically the characteristic time-decreasing behavior
of the next-earthquake activity for small magnitudes. It can be seen in Fig. 2 (panel a) and
Fig. 9 that P (M, t) and P (M, t | 3 ≤ M0 < 4) are very similar, while considerable differences
appear for P (M, t | 4 ≤ M0 < 5), even for small magnitudes 3 ≤ M < 4. This reflects again
the size correlation M = 4 − 5, and makes useless the estimation of the confidence levels for
higher magnitudes, as the corresponding distributions are affected by large fluctuations. Higher-
order correlation functions (as well as higher-magnitude analysis, or enlarging the magnitude gap
∆M = 1) reduce considerably the statistical set, thus exhibiting a poor confidence.
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9 "Scaling" and cutoff parameters

The next-earthquake distribution given by equation (42) have an interesting scaling property; it
may be written as

P (t) =
dN

Ndτ
=

R

N

∑

i

δ(Rti+1 − Rti −Rt) , (43)

where R is a scaling factor. This equation seems to show that P (t) = R · P (Rt). The only
function which has this property is the Omori distribution P (t) = 1/t. Such a representation
would be true if ti+1 − ti = t would go from zero to infinity, because R takes any value in this
range. Unfortunately, in analyzing the experimental data there is always a lower cutoff time tc
(an upper cutoff time is not important since P (t) vanishes at infinity). In addition, a cutoff time
t0 is needed in a theoretical description.

The substantial behaviour of the function P (t) pertains to the short-time seismic activity. The
short-time distributions are Omori-type laws ∼ 1/(tc+ t). The cutoff time tc depends on the main
shock. We may use a distribution averaged over a short time ∆t from a lower cutoff time tl; it is
given by

1
∆t

∫ tl+∆t

tl
dtc

1
tc+t

= 1
∆t

ln tl+∆t+t
tl+t

=

= 1
∆t

ln
(

1 + ∆t
tl+t

)

≃ 1
tl+t

;

(44)

we can see that such an averaged distribution depends only on the lower cutoff time. Usually, this
cutoff time is associated with a lower cutoff magnitude Ml, through

tl/t0 ≃ eβMl . (45)

Using the fitting parameters − ln t0 = 11.32 (in years) and β = 2.26 obtained before for Vrancea
seismic activity between 1981− 2018 with Ml = 3, we get t0 ≃ 4.6× 10−3 days and tl ≃ 5.8 days.
The probability given by equation (43) is

∆N

N
=

∆t

tl + t
, (46)

where ∆t is the time step. If we take R = t−1
l , we get ∆N/N = R∆t/(1 +Rt); since R≪ 1, the

data colapse and the quality of the fit is better. Equation (46) can be written as

∆N
N

= 1
t//∆t+t/∆t

∼ 1
1+∆t

tl

t
∆t

≃

≃ 1
(1+t/∆t)∆t/tl

∼ 1
t∆t/tl

,

(47)

since α = ∆t/tl ≪ 1 (usually ∆t = 1 day). Power laws 1/tα with 0 < α < 1 are used for
fitting next-earthquake distributions, multiplied by Poisson laws e−γt in order to account for the
rapid decaying of these distributions to infinity (the probability density t−αe−γt is called gamma
distribution). The fits are used in the form ∆N/N ∼ (Rt)−αe−γRt. The property P (t) = A ·P (Bt)
for functions P (t), where A, B are constants, is called scaling property. For a global seismic
activity α ≃ 0.33,25 while α ≃ 0.25 for the seismic activity in Vrancea, 1974 − 2004 (M ≥ 3).26

25A. Corral, "Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes", Phys.
Rev. Lett. 92 108501 (2004); "Renormalization-group transformations and correlations of seismicity", Phys. Rev.
Lett. 95 028501 (2005).

26B. F. Apostol, L. C. Cune and M. Apostol, "Scaling and universal power laws in time series of seismic events",
Roum. J. Phys. 53 593 (2008).
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The same function is used in Fig. 12 with α ≃ 0.12 and γ ≃ 0.22 to fit the next-earthquake
distribution for Vrancea 1981 − 2018 (M ≥ 3, t ≥ 1). The value α ≃ 0.12 agrees well with
α = ∆t/tl = 1/5.8 ≃ 0.17.

10 Concluding remarks

It seems that Statistical Seismology begun with Wadati in 1932, who viewed the earthquakes as
probabilistic events, distributed by a power law E−α in energy, where 1.7 < α < 2.3 for earth-
quakes in Japan.27 Later,28 power (and exponential) laws for earthquake distributions suggested a
connection between earthquakes and the critical phenomena in statistical mechanics of the phase
transitions.29

This association is of a very limited validity. First, the phase transitions exhibit a driving (tuning)
parameter which approaches a critical value (like temperature, density), while the earthquakes do
not exhibit such a parameter; so, they were called "self-organized" critical phenomena. Second,
the laws of the critical phenomena exhibit the scaling property, i.e. the absence of a characteristic
scale, like the power laws. The laws of the earthquakes do not exhibit such scaling laws, because
of the cutoff parameters, like t0, E0, etc. The cutoff parameters are essential for earthquakes,
because they ensure the finite values of the distributions for small values of the variables (e.g., the
energy). Most of the seismic events occur with small values of energy, such that the distribution
value in this limit is extremely important. The threshold values of the parameters are critical
in fitting the experimental data for earthquakes. The scaling property may make the power
laws to look universal, a property which is not fully enjoyed by earthquakes. Moreover, the
critical phenomena are cooperative phenomena, which imply interaction and correlations between
many constituents of the macroscopic bodies, a property which is difficult to be recognized for
earthquakes. In order to sustain the self-organized criticality the statistical mechanics has been
pushed to the critical behaviour of dynamical, i.e. mechanical, systems. To this end several
models have been devised, like the Burridge-Knopoff model,30 the Carlson-Langer model,31 the
Olami-Feder-Christensen model.32 So, the self-organized criticality has been replaced gradually
by stochastic models of earthquakes (the so called point processes33), which view the earthquakes
as phenomena which occur with probabilities. (This general view is adopted here).

With the advent of the stochastic approach the temporal distributions for earthquakes have been
brought to attention, especially the Omori law. The accompanying seismic activity of foreshocks
and aftershocks is related and, probably, to some extent even caused, by the main shock, but
still it has a stochastic character. It indicates correlations in the seismic activity, to some extent
(which brings again in discussion a self-organized criticality).

27K. Wadati, "On the frequency distribution of earthquakes", J. Meteorol. Soc. Japan 10 559 (1932).
28P. Bak and C. Tang, "Earthquakes as a self-organized critical phenomenon", J. Geophys. Res. 94 15635

(1989); P. Bak, How Nature Works: The Science of Self-Organized Criticality, Copernicus, NY (1996).
29M. E. Fisher, "The theory of equilibrium critical phenomena", Reps. Progr. Phys. 30 615 (1867); H. E.

Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, NY (1971).
30R. Burridge and L. Knopoff, "Model and theoretical seismicity", Bull. Seism. Soc. Am. 57 341 (1967).
31J. M. Carlson and J. S. Langer, "Properties of earthquakes generated by fault dynamics", Phys. Rev. Lett.

62 2632 (1989); "Mechnical model of an earthquake fault", Phys. Rev. A40 6479 (1989).
32Z. Olami, H. J. S. Feder and K. Christensen, "Self-organized criticality in a continuous, nonconservative cellular

automaton modeling earthquakes", Phys. Rev. Lett. 68 1244 (1992).
33Y. Ogata, "Seismicity analysis through point-process modeling: A review", Pure Appl. Geophys. 155 471

(1999).
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Omori’s law brought to the forefront of research the next-earthquake distributions (inter-event
time distributions). These are conditional probabilities of occurrence of an adjacent earthquake
at the time τ ellapsed from the occurrence of another earthquake, both earthquakes with various
characteristics. The exponential distribution ∼ e−γτ may subsist for long times, when replication
diminished and the events are rare. At the same time, it may be connected with 1 − γτ =
1 − γτ0(τ/τ0) ≃ (1 + τ/τ0)

−γτ0 for small times, where τ0 is a characteristic time. Leaving aside
this time, we may use the function τ−αe−γτ as a fit function for the next earthquake distributions,
where α and γ are fitting parameters. This is the gamma distribution introduced by Corral.34 It
is worth noting the equation

(1 + τ)−αe−γτ = (1 + τ)−1e(1−α) ln(1+τ)−γτ ≃

≃ (1 + τ)−1e(1−α−γ)τ

(48)

for small values of τ , which leads to Omori-type law 1/(1 + τ) (i.e. 1/(1 + τ/τ0)) for α + γ ≃ 1.
Indeed, it is reasonable to assume that the short-term seismic activity involves correlations and
self-replication, reflected by Omori-type laws, where the aftershocks and foreshocks are only a
particular way of viewing the short-term inter-event temporal seismic activity.

The functions used to fit the short-term seismic activity involve scaling parameters. In gen-
eral, a function f(x, y, ...) which enjoys the scaling property obeys an equation f(x, y, ...) =
Af(Λxx, Λyy, ...), where Λx,y,... are scale factors and A is a constant. If the scale is reduced,
the spread of the data is reduced (the data "collapse"), and the fit quality increases; in addition,
the data distribution look the same, such that the fitting function looks universal. Fitting the
gamma distribution to experimental data for space-time-energy (magnitude), etc variables (the
so-called dynamical scaling models) and the deviations of these fits is the substance of the main
line of research in present Statistical Seismology.35 The deviations occur especially for small val-
ues of the data, where the statistics is already poor, and are very sensitive to small values of the
cutoffs (threshold values), where a non-stochastic behaviour may be expected.

11 Point processes

A special type of statistical analysis (i.e., fitting approach) is of much interest today; it is called
the point-process approach. First, we recall that probabilities imply, to some extent, an "insuf-
ficient reason", or a "principle of indifference", like in a perfect molecular chaos.36 On the other
hand, we would prefer the probabilities to be meaningful to some extent. Such probabilities are
conditional probabilities.37 Let us assume that N0 events happen in an interval from 0 to T ; then
the probability for an event to occur in the range N to N + dN after N events occurred already is

dP =
dN

N0 −N
; (49)

34A. Corral, "Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes", Phys.
Rev. Lett. 92 108501 (2004); "Renormalization-group transformations and correlations of seismicity", Phys. Rev.
Lett. 95 028501 (2005).

35L. de Arcangelis, C. Godano, J. R. Grasso and E. Lippiello, "Statistical physics approach to earthquake
occurrence and forecasting", Phys. Reps. 628 1 (2016).

36M. Apostol, "On probabilities" (Lecture four of the Course of Theoretical Physics) , J. Theor. Phys. 98 (2005).
37T. Bayes, "An essay towards solving a problem in the doctrine of chance" (communicated by R. Price in a

letter to J. Canton), Phil. Trans. Roy. Soc. London 53 370 (1763).
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the number of events N is
N = N0

(

1− e−P
)

. (50)

Let us define the density of probability λ = dP/dt and the frequency density f = dN/N0dt with
respect to a variable t; equation (49) reads38

λ =
f

1−
∫ t

0
fdt′

(51)

and equation (50) gives

f = λe−
∫ t
0
λdt

′

; (52)

for a constant λ the frequency density is the Poisson distribution f = λe−λt.

The density f and the cummulative probability F =
∫ t

0
fdt

′

are known experimentally; then,
we may derive the conditional probability density λ; it may be used for inferrence. However,
the events are discrete, not continuous. We can divide the interval T in small segments ∆ti,
such that in every segment there exists one event or none. Such a sequence is a point process.
The probability density λi becomes a random variable, which we can compute from data. The
frequency density for each segment ∆ti is

fi = λie
−λi∆ti ; (53)

the total "probability"
∏

i

fi =
∏

i

λi · e−
∑

i λi∆ti , (54)

or its logarithm

L =
∑

i

lnλi −
∑

i

λi∆ti =
∑

i

lnλi −
∫ t

0

λdt
′

, (55)

should be maximal, with respect to the parameters defining a theoretical (fitting model) λ; L is
called likelihood. Various model λ are used to fit seismological data.39
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