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Abstract

The drag force in a gas (previously derived by Stokes and Rayleigh) is derived by means
of the molecular kinetics (transport equation of the momentum). Two regimes of resistance
to motion are identified, governed by the relation of the velocity to the thermal (molecular)
velocity. They correspond to the molecular movement, for small velocities, or to the hydrody-
namic motion for high velocities. In the former case sound waves are not excited, and energy
is dissipated by viscosity (friction), while in the latter case the energy is dissipated by the
excitation of the sound waves. Also, the treatment is applied to plasma. It is shown that in
usual plasmas it is unlikely that the body motion excites plasmons.

Let us consider a plane solid surface (solid body) lying vertically in the y, z-plane and moving
horizontally with velocity v > 0 along the x-axis through an ideal classical gas. The energy and
momentum conservation laws for an elastic collision of the surface with a gas molecule are

Mv2 +mv2x = Mv
′2 +mv

′2
x ,

Mv +mvx = Mv
′

+mv
′

x ,
(1)

where M is the mass of the body, m is the molecule mass, v
′

is the velocity of the body after
collision and vx, v

′

x are the molecule velocities before and after collision, respectively. We assume
that the collisions along the y, z-directions are balanced, such that they do not change the states
of motion. Also, we note that the velocities in equations (1) are algebraic (with their sign). From
equations (1) we get

v
′

= 1−m/M
1+m/M

v + 2m/M
1+m/M

vx ,

v
′

x = 2
1+m/M

v − 1−m/M
1+m/M

vx .

(2)

The momentum (∆P ) and energy (∆E) changes for the body are

∆P = M(v
′

− v) = − 2m
1+m/M

(v − vx) ,

∆E = 1
2
M(v

′2 − v2) = − 2m(v−vx)
(1+m/M)2

(

v + m
M
vx
)

.

(3)

Let us consider now those molecules with velocity vx < 0 along the x-axis. These molecules collide
with the body, on the right side (x > 0). The number of collisions per unit time and unit area is
n(v − vx), where n is the gas density. It follows that a force per unit area

p1 = ∆P · n(v − vx) = −
2mn

1 +m/M
(v − vx)

2 , vx < 0 (4)
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occurs on the right side of the body; it is directed along the negative x-axis. If we average this
force over all velocities vx < 0, we get the corresponding pressure. Let us consider now the
molecules with velocity vx > 0. For vx > v, they collide with the body on the left side; the
number of collisions per unit time and unit area is n(vx − v). If vx < v, the body collides with
these molecules on the right side; the number of these collisions per unit time and unit area is
n(v + vx). It follows that we get the pressure

p2 =
2mn

1+m/M
(vx − v)2 , vx > v ,

p2 = − 2mn
1+m/M

(v2 − v2x) , 0 < vx < v ,
(5)

where the average must be taken over the values of vx which are indicated in each row of equations
(5). These averages imply truncated integrals of gaussians. It is convenient to estimate the
pressure in two distinct cases: v ≪ vth and v ≫ vth, where we take for the thermal velocity
vth = (T/2πm)1/2, T being the temperature. For v ≪ vth we may neglect the second raw in
equations (5), such that the total pressure is given by adding the first row of equations (5) to
equation (4). We get

p ≃ −
8mn

1 +m/M
vvx , vx > 0 , v ≪ vth . (6)

In the second case, v ≫ vth, we may neglect the first row in equations (5) and add the second row
to equation (4) to get the total pressure

p ≃ −
4mn

1 +m/M

(

v2 + vvx

)

≃ −
4mn

1 +m/M
v2 , vx > 0 , v ≫ vth . (7)

The final result is
p ≃ − 8mn

1+m/M
vvth , v ≪ vth ,

p ≃ − 2mn
1+m/M

v2 , v ≫ vth .
(8)

We can see that in both cases a drag force occurs (opposite to the direction of motion). An
interpolation formula is

p ≃ −
2mn

1 +m/M

(

v2 + 4vvth
)

. (9)

We may neglect the ratio m/M in the denominator of equation (9) and replace mn by the mass
density ρ; for a macroscopic body the force implies the area A of its cross-section, such that, for
small velocities the drag force is

F ≃ −8ρvthAv ; (10)

for a small body with dimension r the effective area is reduced by transverse collisions to δA = rΛ,
where Λ is the mean freepath and the force becomes F ≃ −8ρΛvthrv; the product ρΛvth is the
viscosity η, such that the force is ≃ −8rηv, which is approximately Stokes’ formula[1] −6πrηv for
a sphere of radius r. For high velocities the formula was derived by Rayleigh by means of the fluid
dynamics.[2] It is worth noting that the pressure p ≃ −2ρv2 given by equation (8) for v ≫ vth is
four times larger than the hydrodynamic pressure 1

2
ρv2.

The drag force is derived here by using molecuar kinetics (equivalent to transport equation with
a macroscopic velocity v); the transported quantity is momentum. If we leave aside the molecular
velocities, as for microscopic, but large, amounts of fluid, we may get Euler’s equation of motion
of fluids (Navier-Stokes equations). This was the original approach of Stokes (who used the
empirical viscosity) and Rayleigh. Further on, for low velocities, from Euler’s equation we may
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get the Navier-Cauchy equations of elastic motion. For low velocities these equations predict
sound waves, in particular the hydrodynamic sound, with velocity c =

√

cpT/cvm in an ideal
classical gas, where cp,v are specific heats at constant pressure and volume, respectively. We note

that c is close to the molecular thermal velocity ≃
√

T/m. Sound is a collective excitation, which
implies local thermal equilibrium, but not a global equilibrium: the pressure, the density and
the temperature vary on a global scale (it is a mechanical motion compatible with the statistical
motion; sound is not a transport phenomenon).

Let us examine first the case v ≪ vth. Let us assume a local displacement u in the gas; we assume
that it is sufficiently small to produce a small pressure imbalance δp; since u ≪ Λ, this imbalance
is adiabatic, i.e. the molecules have not enough time to collide to each other. This displacement
produces a small density imbalance δρ = −ρdivu. According to Euler’s equation ü = −1

ρ
gradδp,

we get
∂2
u

∂t2
= −

1

ρ

(

∂p

∂ρ

)

s

(−ρgrad divu) =

(

∂p

∂ρ

)

s

grad divu , (11)

which is equation of sound propagating with velocity given by c2 = (∂p/∂ρ)s, where the suffix s
means constant entropy (s). Since (∂p/∂ρ)s = (cp/cv) (∂p/∂ρ)T , we get the sound velocity given
above (where (∂p/∂ρ)T = T/m). This is the hydrodynamic sound in an ideal gas. Since it is
collisionless, it follows that it cannot be excited by the motion of the body through the gas, as
long as v ≪ vth. In particular, the density variations produced by the sound are δp = c2δρ =

−ρc2divu = −ρcpT
cvm

divu, while the pressure variation given by equations (8) is δp = −8ρ
√

T
2πm

v.

This latter pressure does not produce variations of the density. The sound is a local-equilibrum
phenomenon, while the drag force is caused by friction (viscosity), which, on its short scale, is a
non-equilibrium phenomenon. The drag force dissipates energy, by mechanical work, which, per
unit time, can be computed from the lost energy given by equations (3).

The situation is different in the regime v ≫ vth; in this case the body generates variations of the
density, and, therefore, excites sound waves. It is worth noting that the pressure −2ρv2 given by
equations (8) in this case does not depend on vth, as if the molecular movement would be imma-
terial. This is the hydrodynamic regime. Indeed, let us assume that V h(r) is the characteristic
function of the body, where V is the volume of the body; the characteristic function of the gas
is f(r) = 1 − V h(r). For a pointlike body we can take h(r) = δ(r). We are interested in the
variation δf of this function due to the movement of the body, i.e. the variation of the function
. f(r − vt) = 1 − V h(r − vt), where t denotes the time. The variation δF of any quantity F
associated to the body is given by δF = Fδf . The variation of this function can be written as
δf = V vgradh(r− vt)δt. As long as v ≪ vth the time δt is much longer than the mean collision
time τ , such that the equlibrium is restored rapidly, and the variation δf is zero. If v ≫ vth, the
time δt is much shorter than τ , and we have an estimate δf = V τvgradh(r−vt) for the variation
δf . Therefore, we have a variation of the pressure δp = −(2ρv2)V τvgradh(r−vt) and a variation
of the density

δρ = ρV τvgradh(r− vt) = ρV τdiv[vh(r− vt)] . (12)

Since δρ = −ρdivu, where u is the displacement associated with the density variations, we get
the displacement

u = −V τvh(r− vt) ; (13)

obviously, this displacement satisfies the equation

∂2
u

∂t2
− (vgrad)2 u = 0 , (14)
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or
∂2u

∂t2
− v2

∂2

∂r2
u = 0 , (15)

where u and r are directed along the velocity v (and u is restricted to the cross-section of the
body); this is a shock wave. Due to the equilibrium movement, the thickness of the tail increases
in time with velocity vth/v. The displacement u can be expanded in a Fourier series

u = −V τv
1

(2π)3

∫

dkh(k)ei(kr−kvt) , (16)

which shows that the disturbance is a superposition of sound waves with frequency ω = vk =
c(v/c)k; since the wavevector is localized over a range ∆k ≃ 1/l, where l is the dimension of the
body, it follows that the sound extends up to a frequency of the order ∆ω ≃ v/l. The movement of
the body in this case dissipates energy by exciting sound waves. It is worth noting that equations
(14) and (15) are hydrodyamic equations, where there is no external force: the force exerted by the
body on the gas is taken by the molecular movement, which determines (through τ) the amplitude
of the free sound waves.

The above treatment can also be used for a plasma. Let us assume an ionized gas, and con-
sider only its ionized component. The density of the gas and the density of the plasma are
very low. The electrons (e) have a temperature Te, while the ions (i) have a temperature
Ti, such that Te ≫ Ti. Both temperatures are much higher than the Coulomb energy q2/a,
where q is the electron (ion) charge and a is the mean separation distance between the parti-
cles. The electrons are correlated to the ions, through the Debye length, which in this case is
very large. The corresponding cross-sections are σe−e = (q2/Te)

2
, σi−i = (q2/Ti)

2
and σe−i =

q4/(T 2
e + T 2

i ); the free meanpaths are Λe−e = (a2/σe−e)a = a3T 2
e /q

4, Λi−i = a3T 2
i /q

4 and Λe−i =
a3T 2

e T
2
i /q

4 (T 2
e + T 2

i ); the mean lifetimes are τe−e = Λe−e/ve = a3Te

√
mTe/q

4, τi−i = a3Ti

√
MTi/q

4

and τe−i = a3TeTi

√
mMTeTi/q

4
(

Te

√
mTe + Ti

√
MTi

)

, where m is the electron mass and m is the
ion mass. If Te

√
mTe ≫ Ti

√
MTi (which is the most realistic case), then τe−i ≃ τi−i ≪ τe−e,

which shows that the electrons follow rapidly the ion motion, which ensures the equilibrium
(electron-electron processes are immaterial for equilibrium); this is in accordance with the adia-
batic hypothesis. In the unrealistic case Te

√
mTe ≪ Ti

√
MTi the electrons lag behind the ions.

In this case there exist an ionic displacement ui and an electron displacement ue, as well as a
restoring polarization force which is responsible for a plasma frequency given by ω2

0 = 4πnq2/µ,
where µ is the reduced ion-electron mass. The ion-electron center of mass moves freely, with an
ionic displacement coordinate which may be estimated as in equation (13); the electron compo-
nent remains to be determined from boundary conditions. The ion-electron relative coordinate
is subject to the polarization force and is a superposition of waves with frequencies given by
ω2 = ω2

0 + v2k2. We note that this is a hydrodynamic regime, where the pressure force≃ −2ρv2,
although hydrodynamic, is equilibrated by the molecular movement.
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