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Abstract

According to the standard theory, a spatially-extended (diffuse) double layer is assumed to
occur in charged colloids (suspensions), leading to repulsive forces that might compensate, at
relevant distances, the attractive molecular forces. It is shown in this paper that, in contrast
with this standard double-layer theory, the electric interaction of the ions and the charged
colloidal particles requires the application of the cohesion theory of electrically-interacting
particles, which may lead to stabilization, or even aggregation of the colloid, independently
of attractive molecular forces. The screened two-particle interaction which occurs in this
case (in the dilute limit) is attractive at long distances and repulsive at short distances,
with a negative minimum. Many-particle forces occur over short distances, which complicate
considerably the situation. Solid and liquid phases are identified here in charged colloids (and
even a non-ideal gaseous phase with attractive interaction), the equilibrium mean separation
distance between the particles is estimated and the transition between various phases is
discussed.
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Introduction. It is well known that lyophobic colloids (and suspensions) are subject to attractive
molecular forces (van der Waals-London-Casimir forces).[1, 2] Other forces which may appear in
these colloids are either particular or too small, such that they may be left aside in the present
discussion. For instance, since we are not interested in the kinetics of these colloids (but only
in their equilibrium phases), we may left aside the brownian and viscous (Stokes) forces. The
current DLVO (Deryagin-Landau-Verwey-Overbeek) theory of charged lyophobic colloids assumes
that spatially-extended double layers, which appear at the surface of the colloid particles, generate
repulsive forces, which, combined with the attractive molecular forces, may ensure equilibrium at
relevant distances, at least for long periods of time.[3, 4] The DLVO theory is the current standard
theory of lyophobic colloids (see, for instance, Refs. [5]-[8]); it is viewed as accounting satisfac-
torily for the stabilization, aggregation and, generally, dynamics of the colloidal suspensions, by
means of the spatially-extended (diffuse) double layer, assumed to appear in charged colloids, as
a consequence of the particle-medium interface. However, a number of issues are raised by this
theory, which are discussed in this paper. A critical survey of the DLVO theory, partly from
different perspectives, is given in Refs. [9, 10]

Our work in the cohesion theory of the condensed matter[11]-[15] shows that a double layer of
atomic dimensions appears at the surface of the neutral condensed bodies (in vacuum or in a
material medium), as a consequence of the cohesion forces. We call it a surface double layer, in
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order to distinguish it from the spatially-extended (diffuse, Gouy-Chapman) double layer, assumed
to appear in charged colloids. It may easily be shown (and, partly, it was shown in Refs. [13])
that the forces generated by the surface double layer are exponentially small, with a (negative)
exponent of the order of the ratio of the distance to the atomic-scale distances. Consequently,
these forces are much smaller than the attractive molecular forces for any distance much larger
than atomic distances. In particular, these forces are attractive for half-spaces and repulsive for
spheres. While they are small for all distances of interest, they acquire high values over distances
of the order of the atomic distances. The electric field of the surface double layer is practically
limited to the atomic vicinity of the surface. In the bulk of the medium the forces generated by
the surface double layer are vanishingly small. It follows that the surface double layer may be
viewed as being irrelevant for the dynamics of the lyophobic colloids (though it may contribute to
charging the surface of the particles).

The surface of the colloidal particles may acquire electric charges. The charged colloid particles
and the in-between ions interact by electric forces. In order to assess the effect of these forces,
it is necessary to resort to the cohesion theory mentioned above. Besides other difficulties (to
be discussed below), the double-layer theory is usually restricted to computing the interaction
energy (forces) between a pair of particles, but, in order to estimate the equilibrium, we need
the total energy of the ensemble, because the interaction implies long-range forces. For many,
small particles, as in a colloidal ensemble, the total surface is comparable with the total volume,
such that it brings an important contribution to the total energy ("surface energy"[16]). This
contribution is taken into account by the cohesion theory. Within this theory we show here that
the charged colloids may be stabilized (aggregated), or even flocculated at small distances, without
resorting to attractive molecular forces. Solid and liquid phases are identified in charged colloids,
and even a non-ideal gaseous phase, and the transition betwen these phases is discussed. The
equilibrium mean separation distance between the particles is estimated. We assume in this paper
that the cohesion modifications of the particle-medium interface occur over distances of the order
of the atomic distances (as for a perfect contact), and the interface remains well-defined over
distances of this order (a discussion of this point is given in Ref. [17]).

A few basic difficulties of the DVLO theory can be traced back to the application of the Debye-
Huckel theory to colloids. A density of positive and negative ions n± = ne∓qϕ/T is usually assumed,
where n is the concentration of ions, ±q are the ion charges, ϕ is the electric potential generated
by these ions and T is the temperature. The Poisson equation is usually written as

∆ϕ = 4πnq
(

eqϕ/T − e−qϕ/T
)

≃ κ2ϕ , (1)

where κ2 = 8πnq2/T ; here, for simplicity, qϕ/T is assumed to be much smaller than unity (the
dielectric constant of the medium may be included in the charge q). First, we can see that there
is an imbalance of charge in equation (1), which indicates that we need boundary conditions, as
it is well known. The boundary conditions ensure the global charge neutrality. If we take as a
boundary condition a point-like ion, then the solution has the well-known form ϕ ∼ e−κr/r, where
r is the distance from that ion. In that case the corresponding density of ions in equation (1)
should be absent, since their contribution is included in the boundary conditions (source terms),
and they should not be counted twice. The solution is given in that case by the change caused
by the potential ϕ in the density of the other type of ions (counter-ions), and the parameter κ2

becomes κ2 = 4πnq2/T .[14] For external charges, placed, for instance, on a plane surface of the
domain, the solution has the form ϕ ∼ e−κx, x being the distance from the surface; in that case
both species of ions are present in equation (1). If many external charges are present, all of them
should act as boundary conditions. This makes the solution to depart appreciably from the usual
solution, where only pairs of external charges are considered. This is shown explicitly below.
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Noteworthy, in all cases, it is the charge imbalance generated by the relative position of the ions
with respect to one another which generate screening.

Second, there is a problem with the approximation of the type n± = ne∓qϕ/T ≃ n ∓ nqϕ/T + ...
in the Debye-Huckel equation. It was shown[14] that the contribution of the constant term n may
be absorbed in the potential and has no effect in the interaction energy. This reflects the average
local neutrality for an infinite ensemble of charges. The higher-order terms in the expansion of n−

bring negligible contributions in the dilute (weak-coupling) limit. However, close to equilibrium,
the interaction energy computed with this approximation may be overestimated by ≃ 30%.[14]

Third, it is usually assumed that the temperature in the expression of κ is the colloid temperature,
while, in fact, it is the dissociation temperature. The ionic dissociation occurs under the action
of the electric forces of the surrounding medium, and the dissociation process is a statistical
process with its own temperature T of the order q2/a, where a is a distance of the order of the
atomic distance in the dissociating molecule. Indeed, the dissociation occurs when the Debye

length a
√

aT/q2 (≃ 1/κ) is of the order a, such that T ≃ q2/a.[11, 14] This is why there is no

need, in fact, to compute the free energy (the temperature T which enters the parameter κ and
the mechanical energy is distinct from the colloid (medium) temperature). We note that the
statistical dissociation process is distinct from the thermal motion of the molecules (ions) in the
medium.

Finally, we note that the proper Debye-Huckel equation with proper boundary conditions may
lead to a two-particle interaction energy which is attractive at long distances and has a negative
minimum (without including molecular forces), in contrast with the standard results of the double-
layer theory; this is shown in this paper for charged spherical colloidal particles. Equation (1)
is the standard starting point for electrolytes or homogeneous weakly-interacting plasmas, but
its application to colloids (which originates with the work of Gouy[18] and Chapman[19]) can be
misleading sometimes.

Charged colloids. The colloid particles may acquire electric charges on their surface by various
means. We consider a set of spherical colloidal particles labelled by i, each placed at Ri, with a
radius r0i and a surface charge Qi. The particle charge density is

ρp =
∑

i

Qi

4πr20i
δ (|r−Ri| − r0i) ; (2)

this charge density generates a potential ϕp =
∑

i Qi/ |r−Ri| in the region comprised between
the particles (outside region); inside the particles ϕp = 0. The interaction energy between the
particles (Coulomb repulsion) is Ep =

1

2

∑

i 6=j QiQj/Rij, as expected, where Rij = Ri −Rj.

We assume that in-between the particles (outside region) there is a concentration n of ions with
charges ±q (dissociated ions). The total potential ϕ satisfies the Poisson equation

∆ϕ = −
∑

i

Qi

r20i
δ (|r−Ri| − r0i) + 4πnq

(

eqϕ/T − e−qϕ/T
)

(3)

(we assume the same temperature for both species of ions). This equation is to be compared with
equation (1). Not too close to the bare particles, we may replace the exponentials in equation (3)
by their first-order expansion. The Poisson equation (3) becomes

∆ϕ = −
∑

i

Qi

r20i
δ (|r−Ri| − r0i) + κ2ϕ , (4)

where κ2 = 8πnq2/T . We can see that the potential of the bare particles is screened by the change
δn = 2nqϕ/T in the ion density. According to equation (4), the equilibrium may be achieved for
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particle density of the order δn, which is itself of the order n (as it is shown explicitly below). The
particle charges are screened for all relevant distances and the exponent |qϕ/T | is at most of the
order unity, such that the approximations used in deriving equation (4) are valid, except for very
small inter-particle distances; the value of the potential at equilibrium may be affected by ≃ 30%
an error.[14]

Equation (4) is valid in the region comprised between the particles (outside region), where the
first term on the right plays the role of a boundary condition (in a multiply-connected domain).
Inside the particles the potential is zero. The solution vanishing at infinity can be written as

ϕ =
∑

i

Q∗
i

e−κ|r−Ri|

|r−Ri|
, (5)

where the constants Q∗
i (effective charges) are determined from the charge conservation. Indeed,

by integrating equation (4) over the whole space, we get

4πQi = κ2Q∗
i

∫

dr
e−κ|r−Ri|

|r−Ri|
, (6)

where the integration in equation (6) is performed over the whole outside region (i.e., avoiding all
the particles). It is convenient to integrate over the whole space in equation (6) and subtract the
integration over all the particles. The integrals are elementary, and we get

Q∗
i =



(1 + κr0i) e
−κr0i −

′
∑

j

(κr0j cosh κr0j − sinh κr0j)
e−κRij

κRij





−1

Qi , (7)

where the prime on the summation over j means j 6= i. The first term on the right in equation (7)
comes from the i-th particle, while the summation over j 6= i comes from all the other particles.
We note that the finite size of the particles renormalizes the charge Qi into an effective charge Q∗

i .
This renormalization arises from the boundary condition in equation (4), imposed at the surface
of the particles. The renormalization factor for each particle depends on all the particles, such
that these factors give rise to many-particle forces in the ensemble. It is worth noting that the
ion concentration n, entering the screening parameter κ, affects the renormalized charge Q∗

i (not
the bare charge Qi, of course). Also, we note that the assumption of spherical particles simplifies
greatly the calculations (for particles with a general shape, the terms in the superposition of
the potential ϕ are not spherically-symmetric anymore).[20, 21] Although the potential given by
equation (5) looks like a superposition of double-layer potentials, it can be viewed in fact as a
multiple-layer potential, due to the summation over i and the effective charges Q∗

i , which depend
on all the particles.

Equation (4) and the solution given by equation (6) are specific to the Debye-Huckel theory. The
potential ϕ accounts for the Coulomb attraction between particles and the ions and (partly) the
Coulomb repulsion between the ions, such that, in computing the total interaction energy we
should add the particle-particle Coulomb repulsion Ep given above. The density of the ion charge
imbalance is

ρ = −qδn = −2nq2

T
ϕ = −κ2

4π
ϕ (8)

in the outside region and zero inside the particles. The total potential (interaction) energy of the
ensemble is given by

Epot =
∫

drρ
(

ϕ− 1

2
ϕi

)

+ Ep =
1

2

∫

drρϕ+
1

2

∫

drρϕp + Ep , (9)
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where ϕi = ϕ − ϕp is the potential generated only by ions; the term 1

2
ϕi should be subtracted

in equation (9) because the interacting term ρϕ counts twice the ion repulsion. The integration
in equation (9) is extended to the whole outside region. It is convenient to integrate in equation
(9) over the whole space and subtract the contribution of the regions occupied by particles. We
introduce the notation Epot = Ew

pot + Ep
pot, where

Ew
pot =

1

2

∫

drρϕ+ 1

2

∫

drρϕp + Ep = −κ2

8π

∫

dr (ϕ2 + ϕϕp) + Ep =

= −κ2

8π

∑

ij Q
∗
iQ

∗
j

∫

dr e−κ|r−Ri|

|r−Ri|
e
−κ|r−Rj|
|r−Rj |

− κ2

8π

∑

ij Q
∗
iQj

∫

dr e−κ|r−Ri|

|r−Ri|
1

|r−Rj |
+ 1

2

∑

i 6=j
QiQj

Rij

(10)

is that part of the energy corresponding to the integration over the whole space, and

Ep
pot =

κ2

8π

∑

i

∫

|r−Ri|,<r0i
dr
(

ϕ2 + ϕϕp

)

(11)

is the part corresponding to the integration over the region occupied by the particles. The integrals
in equation (10) are double-centre integrals which can be effected by using elliptic coordinates.[11,
14] They are given by

∫

dr
e−κ|r−Ri|

|r−Ri|
e−κ|r−Rj |

|r−Rj|
=

2π

κ
e−κRij (12)

and
∫

dr
e−κ|r−Ri|

|r−Ri|
1

|r−Rj|
=







4π
κ

1−e−κRij

κRij
, i 6= j ,

4π
κ

, i = j .
(13)

We get
Ew

pot = −κ
4

∑

i (Q
∗2
i + 2Q∗

iQi)−

−κ
4

∑

i 6=j

(

Q∗
iQ

∗
j −

Q∗
i
Qj+Q∗

j
Qi

κRij

)

e−κRij−

−κ
4

∑

i 6=j

(

Q∗
iQj +Q∗

jQi − 2QiQj

)

1

κRij
.

(14)

In the limit of identical point-like charges (r0i = 0) the energy given by equation (14) acquires the
expression

Ew
pot = −3

4
κq2 − 1

4
κq2

∑

i 6=j

(

1− 2

κRij

)

e−κRij (15)

given in Refs. [11]-[15]. That result is generalized here to charged spherical-shells.

The calculation of the integrals in equation (11) (i.e. the integrals in equations (12) and (13) where
the integration is restricted to a finite domain) is more difficult. It is easy to see that the energy
Ep

pot in equation (11) implies, besides particle self-energy and pair-wise interaction potentials,
many-particle interactions. Fortunately, a great simplification comes from the observation that
the mean inter-particle distance Rij is larger than the mean radius r0i (and for a dilute ensemble
it is much larger). Therefore, we may restrict ourselves to the approximation κr0i ≪ 1. Within
this approximation in the renormalization factor in equation (7) we may neglect the contribution
of the summation over j, which leads to an effective charge

Q∗
i ≃

[

1 + (κr0i)
2
]

Qi (16)

(this is a self-particle renormalization). In the most unfavourable case κr0i ≃ 1 the contribution of
the j-summation in equation (7) is of the same order of magnitude as the self-particle contribution
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(κr0i)
2 in equation (16). Making use of this approximation we may calculate Ep

pot up to corrections

of the order (κr0i)
2. We note that the many-particle forces begin to appear with a third-order

term ∼ (κr0i)
3. Using (κr0i)

2Qi = Q∗
i −Qi, we get

Ep
pot =

κ
2

∑

i(κr0i)Q
2
i+

+3κ
4

∑

i 6=j

(

Q∗
iQj +Q∗

jQi − 2QiQj

)

e−κRij

κRij
−

+κ
4

∑

i 6=j

(

Q∗
iQj +Q∗

jQi − 2QiQj

)

1

κRij
,

(17)

such that the total potential energy is

Epot = Ew
pot + Ep

pot = −κ
4

∑

i (Q
∗2
i + 2Q∗

iQi) +
κ
2

∑

i(κr0i)Q
2
i−

−κ
4

∑

i 6=j

[

Q∗
iQ

∗
j − 2

2(Q∗
iQj+Q∗

jQi)−3QiQj

κRij

]

e−κRij ;
(18)

we note that the bare Coulomb term does not appear in the total energy, as expected for a screened
interaction. Apart from the particle self-energy in equation (18) (the first two terms on the right),
we get the pair-wise interaction potentials

Φij = −κ

2



Q∗
iQ

∗
j − 2

2
(

Q∗
iQj +Q∗

jQi

)

− 3QiQj

κRij



 e−κRij (19)

(in the interaction energy 1

2

∑

i 6=j Φij). In contrast with the double-layer theory, the two-particle
interaction potentials given by the cohesion theory in equation (19) are attractive at infinity,

where they go like -
(

κQ∗
iQ

∗
j/2

)

e−κRij , in agreement with Langmuir’s original observation[22] and

subsequent discussions.[10, 23]-[30] The total potential energy given by equation (18) and the
pair-wise potentials given by equation (19) are valid up to the second-order terms (κr0i)

2 ≪ 1
(first non-vanishing correction to the interaction potentials). This is a satisfactory approximation
as long as Rij ≫ r0i. Even in the unfavourable situation of a close contact Rij = r0i + r0j we
still have Rij > r0i, r0j, especiallly for large particles. For small particles close to each other, the
above approximation is not valid anymore; in particular many-particle forces appear in this case.

The treatment presented here differs from the standard double-layer theory by including the
boundary conditions arising from all the particles and by computing the interaction energy for
the whole ensemble (not only for pairs of particles).

Dynamics of colloids. The two-particle interaction potentials Φij exhibit negative minima,
where the particles may accommodate, if the temperature of the medium is not too high; the
position of these minima is of the order Rij ≃ 1/κ. This would lead to the stabilization of the
colloid. The attractive molecular forces contribute to a small extent, since the equilibrium en-
ergy is an electrostatic energy of the order Q∗

iQ
∗
j/Rij, which, usually, is higher than the energy

of the molecular forces (in absolute value). The equilibrium configurations (which can be found
numerically from equation (18)) indicate a solid phase, in general disordered; for a large number
of identical particles the phase can even be ordered. However, in general, there are many sets of
equilibrium configurations, differing from one another by small amounts of energy (like an amor-
phous solid), such that there are large fluctuations between various equilibrium configurations. For
higher temperature of the medium the solid melts, such that we have a liquid colloidal phase.[31]

In order to get an insight into the nature of the potentials Φij we use mean values r20 = r20i, Q = Qi,
R = Rij and introduce the notation α = 1 + (κr0)

2 (Q∗ ≃ αQ); the potentials Φij can be written
as

Φ ≃ −1

2
κQ2

(

α2 − 2
4α− 3

κR

)

e−κR ; (20)
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this potential has a zero for κR = 2(4α − 3)/α2 (≃ 2 for α ≃ 1) and a minimum for κR ≃ 2.73
(α ≃ 1), where the potential (energy) is Φ0 ≃ −10−2κQ2 ≃ −3 × 10−2Q2/R. For a qualitative
discussion we may take a mean equilibrium distance between the particles of the order κR ≃ 1
and a minimum energy of the order Φ0 ≃ −Q2/R. If Q2/R > Tc, where Tc is the temperature of
the medium, we have a transition to the solid phase; this condition reads also R3 = 1/γ < Q6/T 3

c ,
where γ is the particle density; this is the familiar form of the Hardy-Schulze-Ostwald law.[32]-
[34] We note that κR ≃ 1 implies R ∼ 1/

√
n, a relation which has been known since long, both

experimentally and theoretically.[35, 36]

In contrast with the cohesion theory for solids or plasmas,[11]-[15] where the charge Q is equal
to q (and there exists only one species of "ions" - the electrons), in colloid theory Q is a free
parameter. Within the present approximations we may write the ion density as n ≃ Q/qR3 and
κ2 ≃ (aQ/qR3) (q2/aT ) ≃ 1/R2 (leaving aside numerical factors like 4π/3 or 8π); since q2/aT ≃ 1,
we get an estimation of the equilibrium mean separation distance of the order R ≃ a(Q/q), where
a is a distance of the order of the atomic distance between the ions in the dissociating molecule
(leaving aside the molecular forces). We can see that for large values of Q the distance R is large,
while for small values of the particle charge Q the distance R is small and the colloid may be
flocculated (coagulated). It is plausible to assume that the charge Q attached to a particle of
radius r0 is proportional to the surface of the particle (r0 ≫ ap, where ap is the mean separation
distance between the atomic constituents of the particle). The maximum value of this charge is of
the order Q = q(r20/a

2
p), such that we get R ≃ a(r20/a

2
p). We can see that small particles acquire a

small charge and are more prone to aggregate at small distances (coagulate), while larger particles
may be stabilized at larger distances, as expected.

The condition n ≃ Q/qR3 reflects the local charge neutrality. At equilibrium we may take ϕ ≃
−10−2 ×Q/R (computed above), such that | qϕ/T |≃ 10−2 × aQ/qR ≪ 1. This inequality holds
for any other distance (not very close to particles). We can see that the first-order expansion
of eqϕ/T is justified. On the other hand, δn = 2nqϕ/T ≪ n; the mean charge density nq of
the q-ions (concentration) is cancelled out by the mean charge density −nq of the counter-ions,
while the local change −qδn in the ion charge density screens the particle charges Q and leads to
equilibrium.

It is worth noting that the colloidal stabilization (and coagulation) are discussed here at thermo-
dynamic equilibrium, where solid and liquid phases are identified (and even a gaseous phase at
large separation distance). Let us suppose that initially we have a dispersed colloid, with a (mean)
particle charge Q and a large (mean) separation distance R0. The initial counter-ion density is low
and the initial value κ0 of the parameter κ is small. From equation (18) we have a configurational
equilibrium for κ0R0 ≃ 1, with an energy minimum of the order −Q2κ0; the temperature of the
medium may be sufficiently high to overpass this minimum, such that we have a gaseous phase,
with an attractive interaction between particles (a non-ideal gas, which obeys a van der Waals
equation[14]; it seems that this equation was highligted for the first time in Refs. [37, 38]). The
ensemble may begin to shrink down to smaller values R of the separation distance, where the
parameter κ has an enhanced value, which corresponds to a lower energy. If the temperature
of the medium is still higher than this energy minimum, we have a (thermodynamically-stable)
liquid phase; if, on the contrary, the energy minimum is sufficiently deep, we have a stable solid
phase and we may say that the colloid is stabilized. In the solid phase the mean separation dis-
tance is given by R ≃ a(Q/q); if Q is small, the colloid may even be flocculated (coagulated). At
this stage, however, for very small separation distances, the cohesion theory as described above
breaks down, because there appear many-particle forces, corrections to the energy minima and, in
addition, attractive molecular forces may bring their important contribution. If the coagulation
process is not very much developed, peptization cannot be excluded, if the charges are removed,
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or mechanical means are applied. This holds also for the stabilized phase, though it is difficult to
assess the precise conditions of reversibility/irreversibility of these phase transitions. (This is so
because this is a statistical problem with interacting particles and the interaction effects, which
should be solved first, are treated only approximately).

Another example is provided by a dense set of particles which get dispersed in the medium. At
the initial moment the particles release counter-ions and acquire ionic charges. The counter-
ions are placed initially mainly outside the region occupied by the particle set, and the particles
are dispersed under the action of the Coulomb repulsive forces. Thereafter, the counter-ionic
atmosphere buils up around particles, which may acquire equilibrium positions (get stabilized),
at a distance governed by the particle charge Q, as described above (with only one species of
counter-ions), or may acquire a liquid phase around these equilibrium positions, depending on the
temperature of the medium.

Concluding remarks. The cohesion theory is employed here to estimate the stability and
aggregation conditions of charged colloids. In contrast with the double-layer theory, the cohesion
theory predicts an attractive force between colloid particles placed at long distances. The inter-
particle equilibrium distance is estimated by means of the cohesion theory and solid and liquid
phases are identified (even a non-ideal gaseous phase). The transitions between these phases, or
to a flocculated (coagulated) phase, are discussed. The theory presented here differs from the
standard double-layer theory by including all the particles (not only particle pairs) in solving the
Debye-Huckel (Poisson) equation and computing the interaction energy.
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