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Abstract

The paper envisages the interaction of the laser radiation with the atomic nucleus in heavy
atoms. Within a linearized Thomas-Fermi theory we show that the electron cloud in heavy
atoms exhibits giant dipolar vibrations as eigenmodes with a frequency in the range 15ZeV ,
where Z is the atomic number. These eigenmodes screen to a large extent the electric field of
the optical-laser radiation (within the dipolar approximation). At the same time, there may
appear a resonant coupling of these modes with the nucleus, which increases considerably the
strength of the internal electric field acting upon the electrons and the nucleus. We estimate
the effect of this electric field on the atom ionization and the emission rate of nucleons from
nucleus and find that, although the nucleon emission rate may be enhanced appreciably, the
nucleon emission process is, in fact, stopped by the faster ionization rate, which spoils the
resonance regime.
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Introduction. It was suggested that high-power laser radiation may be used for the treatment
of the radioactive waste, by enhancing the rate of spontaneous or induced nuclear processes like
alpha decay or proton emission. This seems to be one of the main objectives of the european
project Extreme Light Infrastructure-Nuclear Physics at Magurele-Bucharest (ELI-NP).[1] We
show in this paper that, while the radiation of the optical lasers is appreciably screened by the
vibrations of the electron cloud surrounding the atomic nucleus in heavy atoms, there may exist a
resonant coupling between the nucleus and the electron cloud in such atoms for free-electron laser
frequencies of the order 15ZeV , which may enhance to a great extent the rate of atom ionization
and the rate of nucleon emission from nucleus (Z being the atomic number of the heavy atom).
These processes occur under the action of a high internal electric field generated by the resonant
coupling. However, although the rate of nucleon emission may be enhanced appreciably, the fast
process of nucleon emission is, in fact, stopped by the faster ionization process, which spoils the
resonance regime.

Thomas-Fermi theory of heavy atoms. We start with heavy atoms with the atomic numbers
Z ≫ 1. The most convenient approach to these atoms is the Thomas-Fermi theory.[2] The kinetic
energy of a free electron gas is V (~2k5F/10π

2m), where V is the volume, kF is the Fermi wavevector
and m is the mass of the electron (~ denotes the Planck constant); if kF varies in space and if the
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gas is sufficiently dense, we have a local free electron gas with the kinetic energy ∆V (~2k5F/10π
2m);

then, the total kinetic energy may be written as

Ekin =

∫
dr

~
2k5F

10π2m
, (1)

or, using the density n = k3F/3π
2,

Ekin =

∫
dr

3(3π2)2/3

10

~
2

m
n5/3 ; (2)

the total energy of a heavy atom can be written as

E =

∫
drεkin(n)− Ze2

∫
dr
n(r)

r
+

1

2
e2

∫
drdr′

n(r)n(r′)

|r− r′| , (3)

where εkin(n) = [3(3π2)2/3/10]~2n5/3/m is the local kinetic energy; the second term on the right
in equation (3) is the Coulomb electron-nucleus attraction and the third term is the Coulomb
electron-electron repulsion; −e is the charge of the electron.

The first-order variation of this energy is

δE(1) =

∫
dr
∂εkin
∂n

δn− Ze2
∫
dr
δn

r
+ e2

∫
drdr′

n(r′)

|r− r′|δn ; (4)

at equilibriun it should be zero, i.e.

∂εkin
∂n

− Ze2

r
+ e2

∫
dr′

n(r′)

|r− r′| = 0 ; (5)

this equation gives the equilibrium density n0(r). A convenient way of solving equation (5) is to
introduce the self-consistent potential

ϕ(r) =
Ze

r
− e

∫
dr′

n(r′)

|r− r′| (6)

and to notice that it satisfies the Poisson equation

∆ϕ = −4πZeδ(r) + 4πen(r) ; (7)

equation (5) becomes
∂εkin
∂n

− eϕ = 0 , (8)

i.e.

(3π2)2/3
~
2

2m
n2/3 − eϕ = 0 , (9)

or
~
2k2F
2m

− eϕ = 0 ; (10)

this is the basic equation of the Thomas-Fermi theory model; since it gives kF ∼ ϕ1/2 and n ∼ ϕ3/2

we call it the 3/2-Thomas-Fermi model. As it is well known, this model does not bind the electrons
about the nucleus.[3, 4]

The basic assumption of the Thomas-Fermi model is a slightly inhomogeneous electron gas; in

accordance with this assumption, we write k2F = 2kFkF and k3F = 3k
2

FkF , where kF is a parameter;
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also, we introduce the parameter q2 = 4kF/πaH , where aH = ~
2/me2 is the Bohr radius; we get

n = (q2/4πe)ϕ and a linearized Poisson equation

∆ϕ = −4πZeδ(r) + q2ϕ (11)

(equation (7)) with the solution ϕ = (Ze/r)e−qr and n = (Zq2/4πr)e−qr.

Making use of this solution in the total energy given by equation (3) and linearizing its expresion
with respect to kF , we get the total energy (equation (3))

Eq =
π2

32
a3HZe

2q4 − 3

4
Z2e2q , (12)

where the first term on the right in equation (12) is the kinetic energy and the second term is the
potential energy. This energy reaches the minimum value

E = − 27

8(6π)2/3
Z7/3 e

2

aH
= −0.42Z7/3 e

2

aH
= −11.4Z7/3eV (13)

for the optimal value

q = (6/π2)1/3
Z1/3

aH
= 0.85

Z1/3

aH
(14)

of the variational parameter q; (another useful formula is E = −(9/16)Z2e2q, where q is given by
equation (14)). Adding quantum-mechanical corrections, we get the binding energy −16Z7/3eV ,
in agreement with the empirical binding energy.[5, 6] The self-consistent potential ϕ = (Ze/r)e−qr

and the equlibrium density n0 = (Zq2/4πr)e−qr correspond to q given by equation (14). We can
see that the electron density in heavy atoms is concentrated in the region r < R, where R is given
by qR = 1, i.e. R = (π2/6)1/3aH/Z

1/3, which is a much smaller radius of the atom than the
Bohr radius aH (Z ≫ 1). The parameter q given by equation (14) is the Thomas-Fermi screening
wavevector and the radius R is the Thomas-Fermi screening wavelength.

Giant dipole vibrations. The motion of the electrons as a whole implies a small change δR
in the radius R, given by a displacement u = δR, such that the equilibrium condition qR = 1 is
preserved and δq = −q2u. The change in the energy given by equation (13) (which arises solely
from the kinetic energy) is

δE =
27

4π2

Z3e2

a3H
u2 ; (15)

this energy corresponds to a frequency ω0 given by δE = 1
2
Mω2

0u
2, where M = Zm is the total

mass of the electrons; we get the frequency

ω0 =

(
27

2π2

)1/2
Ze√
ma3H

≃ 4.5Z × 1016s−1 ; (16)

it corresponds to an energy ~ω0 ≃ 28Z(eV ), which is in the range of moderate X-rays. This is a
plasma frequency. The wavelength λ0 = 2πc/ω0 ≃ (4.2/Z)× 10−6cm is still much longer than the
dimension of the atom (c = 3 × 1010cm/s is the speed of light). For numerical estimates we use
the values e = 4.8× 10−10esu, m = 10−27g, ~ = 10−27erg · s.
The ω0-vibrations are breathing eigenmodes of the electron cloud; they are subject to a small,
natural, damping caused by their radiating energy. Since they imply the motion of the electron
cloud as a whole with respect to the nucleus, we may call them giant atomic dipolar vibrations.
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Higher-order terms in the expansion of the energy with respect to the parameter q gives non-
linearities which may lead to ionization.[6]

Similar considerations can be made for ions; if the ion charge is −ze the frequency given by
equation (16) is modified by Z → Z + z/3, which does not imply an appreciable change.[6]

Screening and resonance Let us assume that the atom is placed in an external laser field; in
the dipolar approximation only the oscillating electric field E = E0 sinωt is relevant, where E0 is
the amplitude of the electric field and ω is the frequency of the laser radiation. Let us assume
that the electric field is directed along the z-axis; it produces a displacement u of the electron
cloud as a whole, directed along the z-axis; the local radial displacement is u cos θ, where θ is the
angle made by the radius with the z-axis; the integration of u2 cos2 θ over θ in the total energy
(equation (15)) gives a factor 1/3, which means that the eigenfrequency is changed from ω0 given
by equation (16) to ω0/

√
3 (≃ 15Z(eV )). We write the square of this frequency as

ω2
0 =

9

2π2

Z2e2

ma3H
=

4πne2

m
, (17)

where the average density is n = (9/8π3)Z2/a3H . Indeed, the average density is given by n =

k
3

F/3π
2, which, using kF = πaHq

2/4 and q given by equation (14), becomes n = (3π2/16)Z2/a3H ;
it is similar with the average density given by equation (17). We can see that the average density
corresponds to the number of electrons Z confined to a volume with the dimension of the order
aH/Z

1/3 (screening wavelength). Making use of the eigenfrequency given by equation (17), we can
write the equation of motion for the displacement u as

ü+ ω2
0u = −eE0

m
sinωt ; (18)

the solution of this equation (with vanishing initial conditions) is

u = eE0

m(ω2
−ω2

0
)

(
sinωt− ω

ω0
sinω0t

)
. (19)

Let us assume an assembly of electrical charges q at equilibrium, subject to a local displacement
u; such a displacement produces a density change δn = −ndivu, where n is the equilibrium
density; it follows that we have a charge density imbalance δρ = −nqdivu and a current density
δj = nqu̇; the Gauss equation reads divE = −4πnqdivu, where E is the electric field generated
by this charge imbalance; or div(E+ 4πnqu) = 0. Therefore, the polarization of the assembly is
P = nqu. If the time variations of u are slow, i.e. if the frequency ω of the displacemnt u is such
that ω ≪ c/l, where l is the dimension of the assembly, then the Gauss equation has the solution
Ei = −4πP = −4πnqu; Ei is the internal (depolarizing) field. We note that this field appears
even if the displacement is uniform, due to the variation of the displacement at the surface of the
assembly (if any); it is a dipolar field. For atoms, it is due to the displacement of the electron
cloud with respect to the atomic nucleus.[7] We apply these considerations to the displacement
given by equation (19), with q = −e and n = n; we get the polarization

P = − ne2E0

m(ω2−ω2
0
)

(
sinωt− ω

ω0
sinωot

)
(20)

(whence we can derive the dynamic polarizability of the atom), the internal electric field

Ei =
ω2
0
E0

ω2
−ω2

0

(
sinωt− ω

ω0
sinωot

)
(21)
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and the total electric field inside the atom

Et = Ei + E =
ω2

ω2 − ω2
0

E0 sinωt−
ωω0

ω2 − ω2
0

E0 sinω0t ; (22)

for ω ≪ ω0, it can be written as

Et ≃ −ω
2

ω2
0

E0 sinωt+
ω

ω0
E0 sinω0t . (23)

We can see that the electric feld of the optical-laser radiation, with frequency ω ≪ ω0, is appre-
ciably reduced by the screening caused by the motion of the atomic electron cloud; its amplitude
is of the order ≃ (ω2/ω2

0)E0; for ω = 1015s−1 and ω0 = 2.6 × 1016Zs−1(≃ 15 × ZeV ) the am-
plitude of the total field becomes ≃ (10−3/Z2)E0, which, for heavy atoms, is much smaller than
the amplitude E0 of the external field. At the same time, we notice the occurrence inside the
atom of an electric field oscillating with the (higher) eigenfrequency ω0, induced by the external
field; its amplitude is reduced by a factor ≃ (ω/ω0)E0. We note that the use of various averaging
procedures does not affect the result, since the restoring force per unit mass in the equation of
motion (18) is ω2

0u = eEi/m, irrespective of the various values of the average density, a condition
satisfied by equations (19) and (21).

The frequency ω0 = 2.6 × 1016Zs−1 (equation (17)) corresponds to a radiation wavelength ≃
(7.25/Z)× 10−6cm; the dipolar approximation is still valid for such wavelengths. It is easy to see
that the limit ω → ω0 in equation (22) gives

Er =
1

2
(sinω0t + ω0t cosω0t)× E0 ; (24)

we can see that the total field increases indefinitely at resonance in a short time interval, as
expected. It arises from the internal field generated by the electrons, displaced as a whole (also,
the displacement, the polarization and the internal field given by equations (19)-(21) are very large
at resonance). Therefore, we may consider a high electric field acting upon the nucleus, oscillating
with the (high) eigenfrequency ω0 of the electron cloud.

Local dynamics of the electron cloud. For higher values of Z (higher frequencies ω0) local
variations of the electron cloud may appear, which bring corrections to the global dynamics de-
scribed above (which assumed that the electrons move as a whole). This amounts to go beyond
the dipolar approximation in treating the atomic electron cloud. It is worth noting in this case
that the magnetic field must be included in the dynamics of the electron; in fact, the electromag-
netic field behaves in this case as a collection of photons (e.g., X-rays or gamma rays), and their
interaction with the electrons is quantum-mechanical; in addition, we note that the linearized
Thomas-Fermi theory is not valid for distances too close to the atomic nucleus, where quantum-
mechanical corrections should be included. Consequently, we may leave aside such small spatial
variations of the electron density. On the other hand, we notice that the number of electrons
inside the sphere with radius R is Z(1− 2/e) ≃ 0.27Z, while the number of electrons outside this
sphere is 2Z/e ≃ 0.73Z; therefore, we can see that it is meaningful to consider electromagnetic
fields with small spatial variations (long wavelengths), which affect mainly the tail of the electron
density in heavy atoms; in this case, we may neglect the magnetic field, a treatment which may be
termed a quasi-dipolar approximation. The resonance described above corresponds to the dipolar
approximation, or, at most, to the quasi-dipolar approximation. We present below a description
of the local dynamics of the atomic electron cloud in the quasi-dipolar approximation.

The second-order variation of the total energy E given by equaton (3) is

δE(2) =
1

2

∫
dr
∂2εkin
∂n2

(δn)2 +
1

2
e2

∫
drdr′

δn(r)δn(r′)

|r− r′| , (25)
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where the derivatives are taken for n = n0. We represent the density variations as δn = −n0divu,
where u(t, r) is a displacement field; these variations ensure the conservation of the total number
of electrons; the second-order variation of the total energy becomes

δE(2) =
1

2

∫
dr
∂2εkin
∂n2

n2
0(divu)

2 +
1

2
e2

∫
drdr′n0(r)n0(r

′)
div[u(r)] · div[u(r′)]

|r− r′| ; (26)

together with the kinetic energy

T =
m

2

∫
drn0u̇

2 (27)

of the displacement field u, we get the lagrangian of this field

L =
m

2

∫
drn0u̇

2 − 1

2

∫
dr
∂2εkin
∂n2

n2
0(divu)

2 − 1

2
e2

∫
drdr′n0(r)n0(r

′)
div[u(r)] · div[u(r′)]

|r− r′| . (28)

Therefore, the equation of motion for the field u is

mn0ü− grad

[(
∂2εkin
∂n2

)
n2
0divu

]
− e2grad

[
n0

∫
dr′

n0(r
′)div[u(r′)]

|r− r′|

]
= n0Fex , (29)

where Fex is the external force; or

mü− (3π2)2/3~2

3mn0
grad

(
n
5/3
0 divu

)
− e2

n0
grad

[
n0

∫
dr′

n0(r
′)div[u(r′)]

|r− r′|

]
= Fex . (30)

In the quasi-dipolar approximation (long-wavelength limit) we may take for the density n0 the

average density n = k
3

F/3π
2 = 3Z2/16π3a3H (according to equation (17)); equation (30) becomes

mü− (3π2)2/3~2

3m
n
2/3
0 grad · divu− e2n0grad

∫
dr′

div[u(r′)]

|r− r′| = Fex ; (31)

for an external plane wave Fex = −eE0e
−iωt+ikr (c/ω ≫ aH/Z

1/3) the solution is u = u0e
−iωt+ikr;

the amplitude of the displacement field is given by

ω2u0 − ω2
0

(ku0)k

k2
− v2(ku0)k = eE0 , (32)

where

ω2
0 =

3

4π2

Z2e2

ma3H
(33)

and

v2 =
31/3

(16π)2/3
~
2Z4/3

m2a2H
. (34)

We can see that the longitudinal displacement is

u0 =
eE0

ω2 − Ω2
(35)

with the frequency of the eigenmodes given by

Ω2 = ω2
0 + v2k2 ; (36)
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these modes are dispersive plasmons; they are the breathing modes derived above (now dispersive)
with corrections arising from local dynamics. The plasma frequency ω0 given by equation (33)
is comparable with the plasma frequency given by equations (16) and (17); it arises from the
Coulomb repulsion (at equilibrium; the Fourier transform of the Coulomb potential is involved in
its expression). The velocity v (v ≪ c) arises from the variation of the kinetic energy. Equation
(35) shows that the screening is present, as described above; the full solution of equation (31)
includes the excitation of the eigenmodes too. From equation (32) we can see that the transverse
modes are free. Therefore, the screening and the resonance effects of the dipolar approximation to
the global vibrations of the electron cloud are preserved in the quasi-dipolar approximation, slightly
modified by the local dynamics of the electron cloud. Also, we note that a global displacement
u in equation (31) implies grad · divu of the order u/a2, where a ≃ aH/Z

1/3; in this case the
Coulomb repulsion in equation (31) is vanishing and the kinetic term gives a frequency ω ≃ ω0.

Fast rate of nuclear charge emission. According to the discussion above (equation (24)), we
assume an electric field

E =
1

2
Eex (ωt cosωt+ sinωt) , (37)

where Eex is the amplitude of the external field and ω stands for ω0 = 2.6 × 1016Zs−1 given by
equation (17); in order to preserve the dipolar approximation over the dimension a of the nucleus
(a ≃ 10−13cm), we restrict the time t according to the inequality ωt ≪ λ/a ≃ (7.25/Z) × 107,
where λ is the wavelength corresponding to the frequency ω (ω0); this inequality ensures a low
magnetic field, which may be neglected. We can see that the amplitude of the electric field acting
upon the nucleus may reach values as high as (107/Z)Eex. The condition ωt≪ λ/a is the dipolar
condition in the context of the presence of the factor ωt in the electric field. Indeed, the dipolar
condition is ω ≪ c/a, which follows by comparing 1

c
∂E
∂t

with spatial derivatives of the form ∂E
∂r

; for
a typical wave-like behavior we get ω

c
∆E for the term with the time derivative and ∆E/l for the

latter, where l (= a) is the relevant distance. The inequality ω ≪ c/a is, in fact, λ≫ a, where we
recognize the familiar dipolar condition (compare with the non-relativistic condition ωt ≫ a/λ).
In equation (37), the time variation ∆E acquires an additional factor ωt, such that the dipolar
condition reads ω(ωt) ≪ c/a, i.e. ωt ≪ λ/a. In fact, this condition is weak enough to include
many oscillations (ωt≫ 1), since λ≫ a.

Also, we assume a simplified model of atomic nucleus, where the nucleons move in a mean field
given by a potential V (r). In the non-relativistic approximation the dipole hamiltonian of a proton
with charge q and mass m is

Hd = H0 − qrE , H0 =
1

2m
p2 + V (r) , (38)

where r denotes the charge position and p is the charge momentum. We consider the associated
Schrodinger equation i~∂ψ/∂t = Hdψ and introduce the unitary transformation

ψ = eiS1φ , S1 =
1

~

∫ t

0

dt
′

qrE = (qrEex/2~ω)ωt sinωt , (39)

where we recognize the vector potential A = −(cEex/2ω)ωt sinωt (E = −(1/c)∂A/∂t). The
transformation given by equation (39) leads to p → p̃ = p−qA/c and the standard non-relativistic
hamiltonian

H̃d = e−iS1Hde
iS1 =

1

2m

(
p− q

c
A
)2

+ V (r) , (40)

with the associated Schrodinger equation i~∂φ/∂t = H̃dφ. The transformation given by equation
(39) is the well-known known Goeppert-Mayer transformation.[8]
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Let us write

H̃d = H0 −
q

mc
pA+

q2

2mc2
A2 (41)

and continue with the unitary transformations[9]-[12]

φ = eiS2eiS3χ , S2 = − q2

2~mc2

∫ t

0
dt

′

A2 ,

S3 =
q

~mc

∫ t

0
dt

′

pA = q
2~mω2Eexp (ωt cosωt− sinωt) ;

(42)

the generator S2 is irrelevant for our discussion below, so we give not its explicit expression. These
transformations lead to the Schrodinger equation

i~
∂χ

∂t
=

[
1

2m
p2 + Ṽ (r)

]
χ (43)

with the radiation-dressed potential

Ṽ (r) = e−
q

2mω2 (ωt cosωt−sinωt)·EexgradV (r) . (44)

We proceed now to apply these results to the charge emission from the nucleus. Let us assume
that the electric field E is directed along the z-axis. Then, equation (44) gives

Ṽ (x, y, z) = V + ζ(t)V1 +
1
2!
ζ2(t)V2 + ... =

= V (x, y, z − ζ(t)) ,

(45)

where V1 = ∂V/∂z, V2 = ∂2V/∂z2, ... and

ζ(t) =
qEex

2mω2
(ωt cosωt− sinωt) . (46)

We can see that the potential Ṽ at the position of the charge is the original potential V at the
position coordinate z − ζ(t), as if the charge is displaced in the potential V (r) by ζ(t) along the
z-coordinate.[13] The displacement ζ(t) given by equation (46) is, in fact, the displacement

ζ(t) = − q

m

∫ t

0

dt1

∫ t1

0

dt2E(t2) , (47)

where E(t) is the electric field given by equation (37), which shows that the equation of motion
for the displacement ζ is the classical equation of motion mζ̈ = −qE.

It is convenient to write the displacementζ(t) given by equation (46) as

ζ(t) = ζ0f(ωt) , ζ0 =
qEex

2mω2 ,

f(ωt) = ωt cosωt− sinωt .
(48)

The function f(ωt) oscillates between ωt and −ωt, increasing in time; with our numerical data
the amplitude ζ0 can be written as

ζ0 ≃ (1.7× 10−19/Z2)Eex (49)
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(in cm; for proton mass m = 2 × 10−24g). This amplitude is much smaller than the dimension a
of the nucleus; it follows that ζ(t) may become comparable with a after a long time τ0 , given by

| f(ωτ0) |=
a

ζ0
≃ (5.6Z2 × 105)/Eex . (50)

For ωt≫ 1 the maximum value of the function | f(ωt) | is ωt for ωt = nπ, where n is any (large)
positive integer; from equation (50) we get the time

τ0 ≃
a

ωζ0
≃ 2Z × 10−11/Eex (51)

(in s−1; ). Equation (51) is valid for

7.7Z3 × 10−3 ≪ Eex ≪ 5.6Z2 × 105 (52)

(in esu); the first inequality in equation (52) is the non-relativistic condition and the second
inequality is ωτ0 ≫ 1. The upper limit in equation (52) is sufficiently high to cover all the relevant
external fields. The inequalities in equation (52) imply the inequalities

(3.5/Z)× 10−17 ≪ τ0 ≪ (2.6/Z2)× 10−9 (53)

(in s).

The time τ0 in the range given by equation (53) is much longer than the characteristic time t0
of the nucleon states; for instance, t0 ≃ 10−21s for energy 1MeV . For lower external fields than
those indicated in equation (52) the dynamics becomes more complex (due to the presence of the
magnetic field) and more slow. Consequently, since τ0 ≫ t0, the nucleons suffer a re-arrangement
(re-configuration) process, the nuclear mean field changes accordingly, and the dynamics amounts
to the adiabatic introduction of the external field. The stationary nucleon states are slowly
modified in time, the protons do not radiate electromagnetic energy and all the energy given by
the external field is absorbed by the nucleus.

We pass now to estimate the energy loss of the electric field during the displacement of the
charge. The electric field given by equation (37) can be written as E(t) = (Eex/2)g(ωt), where
g(ωt) = ωt cosωt + sinωt. The function g(ωt) oscillates between ωt and −ωt (for ωt = πn, n
being any integer greater than 0), with zeros placed approximately at xn = ωtn = (2n + 1)π/2
for large n. The electric field passes through two neighbouring zeros during a semi-period; during
this time the electric field is felt by the nucleons as a (non-vanishing) perturbation, which lasts
∆(ωt) = π; the rapid re-arrangement processes accommodate this perturbation during this interval
of time. Therefore, we compute the energy transferred to the nucleons in a semi-period and sum
these amounts of energy. The mechanical work done by the electric field in a semi-period from
ωtn = (2n+ 1)π/2 to ωtn+1 = ωtn + π is given by

Wn = q
∫ tn+1

tn
dtE(t)ζ̇(t) = q2

m

∫ tn+1

tn
dtE(t)

∫ t

0
dt′E(t′) =

= q2E2
ex

4mω2

∫ xn+1

xn

dx(x cosx+ sin x)
∫ x

0
dx′(x′ cos x′ + sin x′) =

= q2E2
ex

8mω2 x
2 sin2 x |xn+1

xn
= π2q2E2

ex

4mω2 (n+ 1) ,

(54)

where x = ωt. The summation over n gives the total mechanical work

W ≃ π2q2E2
ex

8mω2
(ωτ)2 (55)
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for ωτ ≫ 1. When this energy is greater than the binding energy Eb (≃ ~/t0) of the nucleon, the
nucleon is ejected from the nucleus. The total energy gained by the protons is ZW ; it is shared
by all the nucleons, so we are left with ZW/A on the average for one nucleon, where A is the mass
number. It follows that the ejection time is

τ ≃ 2

πqEex

[mEb(A/Z)]
1/2 ; (56)

with our numerical data we get

τ ≃ 2× 10−3 [Eb(A/Z)]
1/2

Eex
(57)

(in s); it is useful to give this formula for binding energies in eV ,

τ ≃ (2.5× 10−9)
[Eb(eV )(A/Z)]1/2

Eex(esu)
. (58)

The rate of nucleon ejection from the nucleus is w = 1/τ . We can see that this rate is enhanced to
a large extent, irrespective of whether the nucleus is stable or spontaneously decaying; the result
may be applied to spontaneous alpha decay, where the pre-formation process of the alpha particle
reduces appreciably the parameter Eb in equation (58) and contributes to the enhancement of the
decay rate. This is in contrast with the small effects of low external fields on the spontaneous
alpha decay rate.[14] Also, we note that the ejection process holds both for protons and neutrons,
as a consequence of the energy sharing. Moreover, the nucleon capture is favoured at resonance.

However, the high resonant electric field acts on the electrons too; the above calculations are valid
in this case, the ionization time being given by

τel ≃ (5.6× 10−11)
[Ebe(eV )]

1/2

Eex(esu)
, (59)

where Ebe is the electron binding energy. We can see that the ionization time τel is much shorter
than the time of nucleon emission τ . During the ionization process the resonance frequency changes
(according to Z → Z = z/3, where z is the ion charge; see discussion above), and the ionization
and the nucleon emission are stopped; by tuning the external frequency such as to maintain the
resonant regime, the ionization process may continue, up to a maximum ion charge of the order
z ≃ Z2/3, when the Thomas-Fermi theory is not valid anymore; at this point, the screening and
the resonant regime disappear.[13] Since the nucleon emission time τ is much longer than the
ionization time, we can see that, practically, the fast nucleon emision cannot be achieved.

Conclusion. In conclusion, it is shown in this paper that heavy atoms (or ions) may exhibit
giant dipolar vibrations of their electron cloud with a frequency of the order ω0 = 15ZeV (in
the moderate X-ray range); the description of these eigenmodes is made here by means of a
linearized Thomas-Fermi theory, which provides accurate binding energies. The dynamics of these
vibrations implies the displacement of the electron cloud as a whole, with respect to the atomic
nucleus (dipolar approximation). For shorter wavelengths (quasi-dipolar approximation) the local
dynamics of the electron cloud reveals dispersive (propagating) plasmons with the same basic
frequency ω0. A a consequence of the high frequency ω0 of its dipolar eigenmodes, the electron
cloud screens to a great extent the electric field of an external optical-laser radiation, such that
the electric field seen by the atomic nucleus is greatly reduced. At the same time, the presence
of these eigenmodes indicates a resonant regime for an external field with frequencies close to
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the frequency ω0, which enhances appreciably the internal electric field acting upon the electrons
and the nucleus; this is the internal electric field of the electrons coupled to the nucleus. The
(high) rates of atom ionization and nucleon ejection from the nucleus under the action of such an
enhanced electric field are estimated in this paper. It is shown that the much faster ionization
process spoils the resonant regime very quickly and precludes, in fact, the fast nucleon emission.
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