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Abstract

We give here a reformulation of the Quantum Electrodynamics (QED). It is inspired by
the original Bethe treatment of the Lamb shift (Phys. Rev. 72 339 (1947)), of using the
Compton-wavelength cutoff. Unfortunately, this reformulation lacks the accurate technical
means of disentangling the physical effects of the charge self-energy and photon fluctua-
tions. Therefore, a comparison with the experimental data of specific, relevant instances like
the anomalous magnetic moment of the electron or the Lamb shift, is limited to order-of-
magnitude estimates. Specifically, many points of the formulation of the QED are critically
discussed. First, it is shown that the insistence of keeping the longitudinal degrees of freedom
of the electromagnetic interaction in the manifestly covariant formulation of the QED is not
warranted. This technical point leads to infrared divergences (infrared catastrophe), which,
as it is well known, are discarded in the QED, on physical grounds. So, their preservation
in the technical treatment of the QED is not, actually, harmful. Then, the insistence on
the relativistically covariant fields and their interaction is shown to be impossible and not
necessary, nor warranted by experiment. The quantum-mechanical evolution equation is not
relativistically invariant. The quantum fields are global, so their relativistic invariance is
meaningless. From the perspective of the comparison with the experimental data this point
is also not harmful, as the experiments are not, indeed, amenable to a relativistically invari-
ant formulation. Thereafter, it is shown that the Dirac equation describes an undetermined
Zitterbewegung, which leads to ultraviolet divergences, as a consequence of including self-
interaction for (delocalized) point charges. We show that the physical motion belongs to
a boson field of charged particles with spin 1/2 (electrons). The equation of motion, the
lagrangian and the hamiltonian of this field are derived, and the quantum-mechanical series
of perturbation of this field is analyzed. The boson motion is averaged over the local Zit-
terbewegung, the latter being limited by the Compton wavelength. Unfortunately, the exact
separation of this physical motion from the undetermined Zitterbewegung of the Dirac equa-
tion can be done only by using approximately the Compton-wavelength cutoff, which does
not lead to accurate numerical results, comparable with experimental data. The accurate
technical disentangling of the undetermined Zitterbewegung from the averaged motion of the
boson field is done by the renormalization and regularization technique, which imply exact
rules. Although the unicity of the latter can be discussed, a standard version of regularization
has emerged, such that the numerical results of the QED can be compared with experiment.
Being a proper and exact technique (though unsafe and risky), it is no surprise that the
agreement with experiment is excellent. We hope to help clarify herein the strange and ex-
cellent technical success of this lame duck which is the standard QED. It is obvious that a
wavelength cutoff avoids divergences; the problem is to render convincing such a cutoff.
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Introduction. The renormalization and regularization techniques of the Quantum Electrody-
namics have been seriously criticized, by the very founders of this discipline. Dirac said that
they have an "illogical character",1 and Feynman said that they are a "dippy shell game"2. In
the light of such a criticism it may come as a surprise the excellent agreement of the numerical
results of the Quantum Electrodynamics with experiment. Nobody has explained this agreement
in these circumstances. Dirac said that, very likely, it is a "fluke" (same Reference). We give here
arguments to help understand this agreement.

The renormalization procedure3 is reasonable and may be acceptable, if it could be applied. Un-
fortunately, it depends on the regularization techniques, which are not unique.4 The identification
of the infinities with the same formal structure, as done originally by Schwinger, for instance,
though a very unsafe and risky procedure, may be accepted as a working one, at least. However,
it works in finite orders of the perturbation theory, and fails for the entire perturbation series,
where the theory becomes inconsistent.5

We show herein that the formulation of the Quantum Electrodynamics exhibits many other incon-
sistencies, like the use of a manifestly covariant formalism in spite of the non-relativist character
of the quantum-mechanical evolution equation, inclusion of the longitudinal degrees of freedom of
the electromagnetic field (which do not participate in dynamics), or the use of the Dirac equation
for the undetermined Zitterbewegung.6 However, these inconsistencies turn out to be ineffective,
mainly because they are applied to the undetermined Zitterbewegung which is removed by renor-
malization and regularization (except for the infrared divergences, associated with the longitudinal
electromagnetic field, which are simply discarded, on sound physical grounds7).

We show herein that the undetermined Zitterbewegung is the origin of the ultraviolet divergences.
Indeed, it implies the charge and fields infinite self-interaction, extended over small distances,
of the order of the Compton wavelength. Also, we show that an additional, physical motion is
superposed over the Zitterbewegung, governed by a boson field derived from the Dirac equation.
The disentanglement of the boson motion from the Zitterbewegung is made by a cutoff of the
order of the Compton wavelength. Thus, the boson theory provides a quantum electrodynamics
free of divergences, though only with order-of-magnitude estimates of the numerical results. A
similar disentanglement is performed by the renormalization and regularization technique of the
Quantum Electrodynamics, which, however, being proper and exact, leads to accurate numerical
results.

1P. A. M. Dirac, "The evolution of the physicist’s picture of Nature", Am. Sci. 208 45 (1963).
2R. P. Feynman, QED. The Strange Theory of Light and Matter, Princeton University Press, NJ (1986).
3W. Pauli and M. Fierz, "Zur Theorie der Emission langwelliger Lichtquanten", Nuovo Cim. 15 167 (1938);

H. Kramers, "Quantentheorie des Elektrons und der Strahlung", in Hand. und Jahrbuch der Chemische Physik,
I, part 2, Leipzig (1938); "Die Wechselwirkung zwischen geladenen Teilchen und Strahlungsfeld", Nuovo Cim. 15

108 (1938); "Non-relativistic quantum electrodynamics and correspondence principle", in Rapports et Discussions

du 8e Congres Solvay, 1948, Brussels, R. Stoop (1950); Collected Scientific Papers, North Holland, Amsterdam
(1956).

4W. Pauli and F. Villars, "On the invariant regularization in relativistic quantum theory", Revs. Mod. Phys.
21 434 (1949).

5L. Landau, "On the Quantum Theory of Fields", in Niels Bohr and the Development of Physics, ed. W.
Pauli, Pergamon Press (1955) and references therein; L. Landau and E. Lifshitz, Course of Theoretical Physics,
vol. 4, Quantum Electrodynamics (V. Berestetskii, E. Lifshitz, l. Pitaevski), Butterworth-Heinemann (1971); M.
Gell-Mann and F. E. Low, "Quantum Electrodynamics at small distances", Phys. Rev. 95 1300 (1954).

6E. Schroedinger, "Ueber die kraeftefreie Bewegung in der relativistischen Quantenmechanik", Sitzungsberichte
der Preussischen Akademie der Wissenschaften, Berlin, 418 (1930); "Zur Quantendynamik des Elektrons", Sitzungs-
berichte der Preussischen Akademie der Wissenschaften, Berlin, 63 (1931)

7F. Bloch and A. Nordsieck, "Note on the radiation field of the electron", Phys. Rev. 52 54 (1937).
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Interaction. The classical electromagnetic field in vacuum is governed by the Maxwell equations

∂µ∂
µAν =

1

c2
∂2Aν

∂t2
−∆Aν =

4π

c
jνed (1)

(with usual notations), where Aµ = (Φ,A) are the electromagnetic potentials, Fµν = ∂µAν−∂νAµ
are the components of the electromagnetic field, jµ = (cρ, ρv) is the current density, ρ is the
charge density and c is the speed of light in vacuum; Φ is the scalar potential, A is the vector
potential, E = −1

c
∂A
∂t
− gradΦ is the electric field, H = curlA is the magnetic field and v = dr/dt

is the charge velocity. The coordinates are xµ = (ct, r), where t is the time and r is the position
(∂µ = ∂/∂xµ); the metric tensor is gµν = gµν = (+,−,−,−) . The potentials satisfy the Lorenz-
gauge condition ∂µA

µ = 0 (1
c
∂Φ
∂t

+divA = 0), such that the Maxwell equations can also be written

as ∂µF
µν = 4π

c
jν ; this condition reflects the charge conservation ∂ρ

∂t
+ divj = 0. The classical

equations of motion of a mass density µ with a charge density ρ in an electromagnetic field are

µc
duµ

ds
=
ρ

c
F µνuν , (2)

where uµ = dxµ/ds are the four-velocities, or, since jµ = ρuµ
ds
dt

,

µc
duµ

dt
=

1

c
F µνjν , (3)

where s2 = xµxµ = c2t2 − r2 is the squared relativistic distance.

The problem of the classical Electrodynamics is to solve the coupled equations (1) and (2). Obvi-
ously, this problem leads to self-interaction, which is unphysical. The standard approach to this
problem is a perturbation-theory series, where higher-order terms (starting even with the second
order) should be discarded as unphysical. As it is well known,8 a point charge has an infinite
self-energy, and the reaction force (i.e. the force generated upon a charge by its own radiated
field) leads to ambiguities and divergences; it was recognized that the reaction force is only a small
uncertainty (a damping) in the motion of the charge.9 The divergences occur for small distances,
of the order of the classical electromagnetic radius of the charge; for an electron this radius is
r0 = e2/mc2 ≃ 2.8 × 10−13cm, where e is the electron charge and m is the electron mass. It fol-
lows that the changes in wavelengths λ should be larger than r0 (∆λ≫ r0) and the fields should
be limited by | e | (E,H)r0 . mc2. Therefore, the problem of the interaction of the electrical
charges with the electromagnetic field exhibits a basic limitation. However, it is worth noting
that this limitation is associated with a classical point charge with a structureless motion. The
Dirac equation endows the motion with a special structure, which may give a sense to a part of
the self-interaction. This problem, which is termed below the boson theory of the Dirac equation,
is discussed herein.

It is worth noting in this context that the proper formulation of the interaction problem requires
a first-order contribution only (in a perturbation-theory approach), which treats the particles and
the field (the interaction) as separate entities. However, in many-particle ensembles the effect
of the rest of the particles may look, formally, as a self-interacting field (interaction), mediating
the interaction between any pair of particles, as, for instance, in the well-known random-phase
approximation. Similary, the same effect of the rest of particles leads to a quasiparticle self-energy
(effective mass), as if the quasiparticle would interact with itself.

8See, for instance, F. Rohrlich, Classical Charged Particles, World Scientific (2007).
9L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 2, The Classical Theory of Fields, Elsevier

(1975); M. Apostol, "Damping (reaction) force for a charge in high-intensity radiation field", J. Theor. Phys. 262

(2017).
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Quantization. The photon. The Maxwell equations (1) can be derived from a classical la-
grangian and a hamiltonian formalism can be set up for the electromagnetic field (the same is true
for charges). The electromagnetic field has an energy

Wem =
1

8π

∫

dr
(

E2 +H2
)

, (4)

a momentum

G =
1

4πc

∫

dr (E×H) (5)

and an interaction with charges given by

V =
1

c

∫

drjµA
µ =

∫

dr

(

ρΦ− 1

c
jA

)

. (6)

For charges and currents with their own field the total energy is conserved (it does not depend on
time); external fields may be included. The effects of the interaction are viewed in a perturbation-
theory scheme. Let us introduce the Fourier decompositions

At =
∑

k c
√

2π~
ωk

(

ekak + e−ka
∗

−k

)

eikr ,

Al =
∑

k
ik
ωkk

(

ḟk + ḟ ∗

−k

)

eikr ,

Φ =
∑

k

(

fk + f ∗

−k

)

eikr ,

(7)

where A = At+Al, ωk = ck and ek are real vectors, each perpendicular to its own k; ~ is Planck’s
constant. We can see that the vector potential is decomposed into a transverse part (At) and a
longitudinal part (Al), and the gauge condition 1

c
∂Φ
∂t

+ divA = 0 is satisfied. Polarization labels
can be included in the coefficients. According to Maxwell equations A is a polar vector, and
changes sign under the temporal inversion. These symmetries are not incorporated in equations
(7). Since we use these equations for quantization, these symmetries are transferred upon the
wavefunctions. (In the original Dirac theory of radiation10 these symmetries are preserved).

It is convenient to introduce the notations

Ak = ekak + e−ka
∗

−k , Φk = fk + f ∗

−k (8)

(A∗

−k = Ak, Φ
∗

−k = Φk); according to the Maxwell equation for the scalar potential, we have

1

c2
Φ̈k + k2Φk = 4πρk , (9)

where ρk is the Fourier transform of the charge density (ρ∗
−k = ρk). The longitudinal electric field

is

El = −
∑

k

4πik

k2
ρke

ikr (10)

(from El = −1
c
∂Al

∂t
− gradΦ) and the longitudinal part of the electromagnetic energy is

W l
em =

1

8π

∫

drE2
l =

∑

k

2π

k2
ρkρ−k (11)

10P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation", Proc. Roy. Soc. A114

243 (1927); "The quantum theory of dispersion", Proc. Roy. Soc. A114 710 (1927). See also E. Fermi, "Quantum
theory of radiation", Revs. Mod. Phys. 4 87 (1932); W. Heitler, The Quantum Theory of Radiation, Dover (1984).
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(we assume the integration volume equal to unity); this is the Coulomb interaction Vc. The
longitudinal part of the interaction V given by equation (6) can be written as

Vl =
∫

dtdrjEl =
∑

k

∫

dt4πikjk
k2

ρ−k = −
∑

k

∫

dt4π
k2
ρ̇kρ−k =

= −
∑

k
2π
k2
ρkρ−k = −Vc ,

(12)

where jk is the Fourier transform of the current density (j∗
−k = jk); we can see that the longitudinal

degrees of freedom are eliminated from the problem.

Let us assume for the moment that the interaction is left aside, i.e. we put ρ = 0 and j = 0.
Then, ak and fk have a time factor e−iωkt. In addition, the longitudinal field El is zero, and so is
the longitudinal part of the electromagnetic energy W l

em = 0. We get immediately

W t
em =

∑

k

1

2
~ωk (a

∗

kak + aka
∗

k) , (13)

where the coefficients ak do not depend on time. This is the total energy of the electromagnetic
field. If we introduce the conbinations

qk =

√

~

2ωk
(a∗k + ak) , pk = i

√

~ωk
2

(a∗k − ak) , (14)

equation (13) becomes the energy of a set of harmonic oscillators with frequencies ωk,

W t
em =

∑

k

1

2

(

p2k + ω2
kq

2
k

)

. (15)

The quantization of these oscillators proceeds in the usual way. W t
em is viewed as the hamiltonian

Hem of the electromagnetic field, there exist harmonic-oscillator wavefunctions of the coordinates
qk and [pk, qk′] = −i~δkk′ . It is convenient to view ak and a∗k as operators, with boson commutation
relations [ak, a

∗

k′ ] = δkk′ , [ak, ak′] = 0; the energy becomes

Hem = W t
em =

∑

k

~ωk (a
∗

kak + 1/2) (16)

and the momentum (equation (5)) is

G =
∑

k

~k (a∗kak + 1/2) ; (17)

this is the second quantization (or quantization of the field);11 it provides the photon (quanta of
light) picture.12 The creation and destruction operators a∗k and ak act upon states of occupation
numbers nk = 0, 1, 2..., denoted | nk >, with well-known matrix elements

ak | nk >=
√
nk | nk − 1 > ,

a∗k | nk >=
√
nk + 1 | nkα + 1 >

(18)

11P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation", Proc. Roy. Soc. A114

243 (1927).
12A. Einstein, "Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesicht-

spunkt", Ann. Physik 17 132 (1905).
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and
nk | nk >= a∗kak | nk >= nkα | nkα > . (19)

The time dependence is given by

i~ d
dt
ak = [ak, Hem] , a(t) = e−

i
~
Hemtake

i
~
Hemt ,

ak(t) = ake
−iωkt ,

(20)

in agreement with the (free) field equations (1) (Heisenberg representation). The states obey the
Schroedinger equation

i~
d

dt
| nk >= Hem | nk > . (21)

If the interaction

V =

∫

dr

(

ρΦ− 1

c
jA

)

t

= −1
c

∫

drjAt (22)

is present, the states are superpositions of photon states, including the degrees of freedom of the
charges; such a state, | s >, obeys the Schroedinger equation

i~
d

dt
| s >= (Hem +Hp + V ) | s > , (23)

where Hp is the (free) hamiltonian of the charges; with H0 = Hem +Hp and | s >= e−
i
~
H0t | v >,

equation (23) becomes

i~
d

dt
| v >= e

i
~
H0tV e−

i
~
H0t | v > (24)

(interaction representation). The solution of this equation is

| v >=| v0 > −
i

~

∫ t

0

dt1V (t1) | v > , (25)

or, the perturbation-theory series

| v >=| v0 > − i
~

∫ t

0
dt1V (t1) | v0 > +

+
(

− i
~

)2 ∫ t

0
dt1V (t1)

∫ t1
0
dt2V (t2) | v0 > +... ,

(26)

where | v0 >=| v >t=0 (initial state, also denoted | vi >) and V (t) = e
i
~
H0tV e−

i
~
H0t. Equation

(26) gives a formal solution to the problem of interaction. The second-order term in this equation
includes already self-interaction. The first-order term provides the Dirac theory of radiation
interacting with (non-relativistic) matter (an additional interaction ∼ A2 occurs in this case from
the hamiltonian of the charges).13

Relativistic quantum fields. Quantum Electrodynamics and the theory of relativistic quantum
fields insist upon the relativistic invariance. This point occurred already from the early attempts
of quantizing the fields.14 Such an insistence is inappropriate, since the relativistic invariance is

13P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation", Proc. Roy. Soc. A114

243 (1927); "The quantum theory of dispersion", Proc. Roy. Soc. A114 710 (1927). See also E. Fermi, "Quantum
theory of radiation", Revs. Mod. Phys. 4 87 (1932); W. Heitler, The Quantum Theory of Radiation, Dover (1984).

14P. Jordan and W. Pauli, "Zur Quantenelektrodynamik ladungsfreier Felder", Z. Phys. 47 151 (1928); W.
Heisenberg and W. Pauli, "Zur Quantendynamik der Wellenfelder", Z. Phys. 56 1 (1929); "Zur Quantentheorie
der Wellenfelder. II", 59 168 (1930); W. Pauli, "Relativistic field theories of elementary particles", Revs. Mod.
Phys. 13 203 (1941).
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both impossible and unnecessary in the quantum-mechanical context. This circumstance occurs
already for the electromagnetic field.

First we note that the problem of the quantum-mechanical interaction of the electromagnetic
field and electrical charges is tackled in terms of photons. The existence of the photon requires
the spatial Fourier decomposition of the electromagnetic potentials (equations (7)). The Fourier
coefficients ekak are not relativistically invariant. Second, the elimination of the longitudinal
degrees of freedom makes the remaining transverse field relativistically non-invariant. Third, the
quantum-mechanical evolution equations (Schroedinger, Heisenberg equations (20), (21), (23),
(24)) are not relativistically invariant (due to the distinct position of time; the usual space-
like parameter technique15 does not solve this problem). The energy (hamiltonians) are global
quantities, which do not depend on position (they depend on the Fourier coefficients qk, ak),
while the evolution implies each moment of time. The quantum-mechanical interaction of the
electromagnetic field with charges is delocalized, in a space region, due to the wave-like extension of
the photon (and of charges); like in any other quantum-mechanical problem the spatial coordinates
(as well as the time) are parameters which can be measured only with uncertainty; consequently,
the space-time local coordinates cannot be subject to Lorentz transformations. The relativistic
invariance implies a change of reference frame, but in quantum-mechanical interaction there is no
local reference frame; the measured quantities are not local, they are global.

The Quantum Electrodynamics is built in a few versions, all equivalent with the interaction
picture described above. All assume, inappropriately, local fields (wavefunctions) governed by local
densities of hamiltonians (lagrangians). This is explicitly shown in Tomonaga’s16 and Schwinger’s17

papers, while Feynman attributes trajectories to photons and charges and assumes local scattering
processes.18 (This was Bohr’s objection to Feynman in Pocono Conference in 1948). The same
procedure is present in the precursory formulation by Stueckelberg.19 It is difficult to assess to
what extent the subsequent space-time integration corrects such inappropriate procedures. It is
worth stressing that the photon wavefunctions are functions of the coordinates qk (equation (14)),
which are Fourier coefficients of the fields, or, more generally, functions of the ak (occupation
numbers; including the degrees of fredom of the charges); therefore, it is the field At which moves
(for photons, similar for charges), and its motion affects all the r, t-points, not only a specified
local point r, t. It is worth noting that Feynman’s propagators for space-time fields disappear if
the space integration is performed, because this integration leaves behind momentum operators
which carry only an exponential time factor. By the same procedure most of Schwinger’s technical
manipulations become void.

15S. Tomonaga, "On a relativistically invariant formulation of the quantum theory of wave fields", Progr. Theor.
Phys. 1 27 (1946); J. Schwinger, "Quantum Electrodynamics. I. A covariant formulation", Phys. Rev. 74 1439
(1948).

16S. Tomonaga, "On a relativistically invariant formulation of the quantum theory of wave fields", Progr. Theor.
Phys. 1 27 (1946); "On infinite field reactions in quantum field theory", Phys. Rev. 74 224 (1948).

17J. Schwinger, "On Quantum-Electrodynamics and the magnetic moment of the electron", Phys. Rev. 73

416 (1948); "Quantum Electrodynamics. I. A covariant formulation", Phys. Rev. 74 1439 (1948); "Quantum
electrodynamics. II. Vacuum polarization and self-energy", Phys. Rev. 75 651 (1949); "On radiative corrections
to electron scattering", Phys. Rev. 75 898 (1949); "Quantum Electrodynamics, III: The electromagnetic properties
of the electron-radiative corrections to scattering", Phys. Rev. 76 790 (1949); "On gauge invariance and vacuum
polarization", Phys. Rev. 82 664 (1951).

18R. P. Feynman, "Relativistic cut-off for Quantum Electrodynamics", Phys. Rev. 74 1430 (1948); "The theory
of positrons", Phys. Rev. 76 749 (1949); "Space-time approach to Quantum Electrodynamics", Phys. Rev. 76

769 (1949); "Mathematical formulation of the quantum theory of electromagnetic interaction", Phys. Rev. 80 440
(1950). See also

19E. C. G. Stueckelberg, "Relativistisch invariante Stoerungstheorie des Diracschen Elektrons. I. Teil:
Streustrahlung und Bremsstrahlung", Ann. Phys. 5. Folge, 21 367 (1934) (Berichtigung, p. 744).
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The insistence to formulate a relativistically invariant (covariant) theory leads to maintaining all
the components Aµ of the electromagnetic potential in the hamiltonian, scalar and longitudinal
components included, although the latter do not participate in dynamics. The connection pro-
vided by the gauge condition between the latter is ensured as an average, likewise the Maxwell
equations; the Maxwell equations are not satisfied anymore, such that we have virtual photons.
Moreover, the scalar and longitudinal components of the field cannot be quantized, because there
does not exist a free hamiltonian for the scalar components (the coefficients fk); the electromag-
netic energy for the longitudinal field is given entirely in terms of the charge density (equation
(11)). Keeping the quantized longitudinal (scalar) field leads to infrared divergences in standard
Quantum Electrodynamics, which are subsequently removed, on sound physical grounds.20

The potential Aµ is formally relativistically invariant, and so are the field commutators, at different
times (through Jordan-Pauli function). This shows that quantization is the same in any inertial
reference frame, but the quantum-mechanical motion is different from the space-time relativistic
motion. These two motions cannot be unified, it is not necessary to be unified, nor desirable, and,
in fact, they have not been in Quantum Electrodynamics, in spite of the claims and the efforts of
the people who built this discipline.21

All these inconsistencies occurring in formulating the Quantum Electrodynamics are ineffective,
in fact, because they are associated with an undetermined motion which is removed by renormal-
ization.

Classically, a (point) particle placed at x (x = (xµ)) is a well-defined concept. Quantum-
mechanically it is acceptabe to say that the position x has an uncertainty. This concept is
formulated mathematically by the existence of a wavefunction ϕ(x), whose square | ϕ(x) |2 is
the probability of localization of the particle, i.e. it is related to the density of particles obtained
by repeated measurements. This means that we count the particles localized in a volume ∆v
which encloses the position of the particle at a moment of time; their number is ∆n. Then,
| ϕ(x) |2= ∆n/∆v in the limit ∆n,∆v −→ 0 for any time; it is assumed that this limit exists. The
so-called field-theoretical methods of second quantization in ensembles of many identical particles
in condensed matter assign the same wavefunction meaning to the "fields". However, if we view
the particles as quanta of a field ψ(x), or if we view the quantum-mechanical motion of these
particles (like the change in density, for instance), then we encounter a contradiction: on one
hand, ψ(x) is a well-defined generalized coordinate of motion and, on the other hand, it is not
well-defined since the position x has uncertainties. The way out of this contradiction is to view
the motion of ψ globally, irrespective of x. This is done formally by using the coefficients of the
spatial Fourier transform of ψ(x). The quantum-mechanical evolution equation implies the time t
and a hamiltonian (energy) which depends on these Fourier coefficients. In this context the rela-
tivistic invariance is meaningless. A quantum-mechanical field is a global quantity. In condensed
matter an interesting example is provided by phonons, which in the harmonic approximation are
quanta of a global field (atom displacement), while, with anharmonic interactions, they become
local quantum-mechanical displacements of the atoms, described by a wavefunction.

Dirac equation. A quantum-mechanical equation (Schroedinger equation) for the motion of a
particle is achieved formally by using i~ ∂

∂t
for energy and −i~ ∂

∂r
for momentum in the energy-

momentum relationship. The equation should describe the motion both in the quantum-mechanical
limit, i.e. for amounts of mechanical action comparable with ~, and in the (quasi-) classical limit,
where the mechanical action changes by amounts much larger than ~ (i.e., for the formal limit

20F. Bloch and A. Nordsieck, "Note on the radiation field of the electron", Phys. Rev. 52 54 (1937).
21J. Schwinger, Selected Papers in Quantum Electrodynamics, Dover, NY (1958); S. Schweber, QED and the Men

who Made it, Princeton University Press, NJ (1994).
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~ −→ 0). Obviously, there is no (consistent) Schroedinger equation for the classical limit of a rela-
tivistic particle with mass m (e.g., an electron), since the classical energy-momentum relationship
in this case is E2 = p2c2 +m2c4, and a consistent Schroedinger equation requires a term linear in
E (for the conservation of the probability). However, the above equation can be quantized as

1

c2
∂2ψ

∂t2
−∆ψ +

m2c2

~2
ψ = 0 , (27)

an equation which, obviously, describes the motion of a relativistic quantum field ψ, which may
be associated to a classical electron. Its motion is meaningful in the quantum-mechanical limit.
Noteworthy, equation (27) exhibits a characteristic wavelength λc = ~

mc
(Compton wavelength)

and a characteristic energy Ec = mc2 (rest energy). In addition, an electromagnetic field with
potentials (Φ,A) can be introduced for the electron with charge e, by

(E − eΦ)2 =
(

p− e

c
A
)2

+m2c4 (28)

(Hamilton-Jacobi equation). A covariant form of equation E2 = p2c2+m2c4 is pµp
µ = m2c2, which

is quantized by pµ = i~∂µ (and the electromagnetic field is introduced by pµ −→ pµ − e
c
Aµ). This

is the well-known Klein-Gordon equation.22

A consistent Schroedinger equation for the relativistic electron is the Dirac equation23

γµpµϕ = mcϕ , (29)

where γµ are the Dirac matrices and ϕ is a bispinor with the components labelled by two spin
indices and two indices corresponding to ±E . The Dirac equation shows that the electron has
spin 1/2 and it may have negative energies. An electron field can be constructed by a Fourier
superposition of bispinors, with coefficients ckσ, b

∗

kσ (p = ~k, σ = ±) which obey anticommutation
relations; the electrons are fermions. The field equation is the Dirac equation. The electromagnetic
field is introduced through pµ −→ pµ − e

c
Aµ, leading to an electron-photon interaction V =

e
c
jµAµ, where the current density is jµ = ψγµψ (ψ is the Dirac conjugate field). The creation

and destruction operators imply that the negative energies (associated with the coefficients bkσ)
indicate a distinct type of electrons (ckσ are associated with positive energies), with opposite charge
−e, called positrons (the antiparticle of the electron), since the charge is conserved. The Quantum
Electrodynamics is constructed by using the Dirac electron field. Logarithmic divergences occur,
since the Dirac equation is linear in momentum-energy (these divergences are associated with
vacuum polarization (electron-positron pairs) and photon fluctuations). Consequently, mass and
charge renormaliztion can be done, and regularization procedures can be applied. This way, finite
results are obtained.

Obviously, the Dirac equation (29) has not a classical limit: in the (quasi-) classical limit ~ −→ 0
the Dirac equation becomes γµpµ = mc, where pµ = (E/c,−p); this is not a valid equation. It
follows that the Dirac equation cannot be used to describe motion which implies large amounts of
mechanical action. For instance, it cannot be used for a typical scattering experiment. Applying
twice the Dirac equation we get the Klein-Gordon equation

γµγνpµpνϕ = m2c2ϕ ,
1

c2
∂2ϕ

∂t2
−∆ϕ +

m2c2

~2
ϕ = 0 (30)

22O. Klein, "Quantentheorie und fuenfdimensionale Relativitaetstheorie", Z. Phys. 37 895 (1926); W. Gordon,
"Der Comptoneffekt nach der Schroedingerschen Theorie", Z. Phys. 40 117 (1926).

23P. A. M. Dirac, "The quantum theory of the electron", Proc. Roy. Soc. A117 610 (1928); "A theory of
electrons and protons", Proc. Roy. Soc. A126 360 (1930).
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(since {γµ, γν} = 2gµν), or, in the presence of the electromagnetic field,
(

pµ −
e

c
Aµ

)(

pµ − e

c
Aµ

)

ϕ− ie~

2c
σµνFµνϕ = m2c2ϕ , (31)

where σµν = 1
2
[γµ, γν ] and Fµν = ∂µAν − ∂νAµ is the electromagnetic field; an equation which can

also be written as
(

pµ −
e

c
Aµ

)(

pµ − e

c
Aµ

)

ϕ+
e~

c

∑

H− ie~

c
αE = m2c2ϕ , (32)

where

α =

(

0 σ

σ 0

)

, Σ =

(

σ 0
0 σ

)

, (33)

σ are the Pauli matrices, E is the electric field and H is the magnetic field (σµν = (α, iΣ)). In the
classical limit (~ −→ 0) the spin terms in equation (32) disappear, and we recover the classical
Klein-Gordon equation with electromagnetic field. However, it is worth noting that equations (30)
and (31) are different from the Dirac equation.

Let us take a closer look at the Dirac equation (29), either for wavefunctions or fermion fields.
First, we note that this equation describes quantum-mechanically delocalized particles over the
Compton wavelength λc. Consequently, in the presence of the electromagnetic field (i.e. for
charges), we expect an infinite self-interaction (ultraviolet divergences), though the singularity
is softened to a logarithmic one (due to the delocalization). Next, we note that the presence
of the matrices γµ makes the motion undetermined (the Zitterbewegung24). This means that
the Dirac equation cannot describe physical motion (produced by interaction), it only describes
the existence of particles. On the other hand, it is precisely the undetermined motion over the
Compton wavelength which makes possible a physical motion. This physical motion is the motion
of the undetermined motion; parts of the Zitterbewegung may move (and interact), and distinct
Zitterbewegungs may move and interact with respect to one another. This latter motion implies
a finite self-interaction; it is not a motion of a particle, it is a motion of a motion of a particle.

A quantum-mechanical particle with mass m has an intrinsic maximal momentum uncertainty
mc; consequently, it has a minimal position uncertainty λc = ~/mc ≃ 3.8 × 10−11cm (Compton
wavelength). It cannot be localized more accurately than the wavelength λc; over this distance its
motion is undetermined. Similarly, it cannot be measured in times shorter than τc = ~/mc2.25 The
Dirac equation includes this basic limitation, i.e. it describes an undetermined motion over short
distances and short durations of time. This undetermined motion is known as the Zitterbewegung.
The presence of the matrices γµ in the Dirac equation (29) implies an undetermined velocity vµ =
cγµ, which indicates an undetermined motion. The relativistic limitation of the Dirac equation is
seen in an external electromagnetic field. For instance, a Bohr radius in a heavy atom with atomic
number Z should be larger than the Compton wavelength, i.e. ~2

mZe2
> ~

mc
, or Z < ~c

e2
≃ 137

(the inverse of the fine-structure constant α = e2/~c). Similarly, in tunneling experiments the
potential barrier should be sufficiently low (Klein paradox26); in an external magnetic field the
Dirac equation may give corrections to the magnetic moment (the anomalous magnetic moment
of the electron, after discarding some infinities).27 However, in the problem of the interaction of

24E. Schroedinger, "Ueber die kraeftefreie Bewegung in der relativistischen Quantenmechanik", Sitzungsberichte
der Preussischen Akademie der Wissenschaften, Berlin, 418 (1930); "Zur Quantendynamik des Elektrons", Sitzungs-
berichte der Preussischen Akademie der Wissenschaften, Berlin, 63 (1931)

25L. Landau and R. Peierls, "Erweiterung des Unbestimmtheitsprinzips fur die relativistische Quantentheorie",
Z. Phys. 69 56 (1931); L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 4, Quantum Electrodynamics
(V. Berestetskii, E. Lifshitz, l. Pitaevski), Butterworth-Heinemann (1971).

26O.Klein, "Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von
Dirac", Z. Phys. 53 157 (1929).

27J. M. Luttinger, "A note on the magnetic moment of the electron", Phys. Rev. 74 893 (1848).
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the charges with their own electromagnetic field, where the self-interaction may appear, i.e. the
motion over short distances and durations is effective, the relativistically undetermined motion
reflects itself in divergences; noteworthy, these divergences are of a special kind: they are generated
by undetermined functions, since they are produced by an undetermined motion. Consequently,
techniques of rendering these functions meaningful should be looked for elsewhere.28 This is
the basic problem (of regularizing divergences) of the Quantum Electrodynamics, which, in this
respect, is, at least, incomplete.29 It is worth noting that the limitation discussed here for the Dirac
equation occurs in the non-relativistic Schroedinger equation for charges too.30 However, there,
the Compton cutoff is effective naturally, by the requirement of preserving the non-relativistic
character of the motion of the charges.

The relativistic invariance is capable of generating its own motion, by the modifications it brings
in the equation of motion. In the Dirac equation this special motion is associated with the
matrices γµ. Apart from the space-time motion associated with the momentum pµ, the relativistic
motion described by the matrices γµ is localized over distances of the order of the characteristic
length λc and durations of the order τc; these parameters are characteristic to the Dirac equation.
By the matriceal nature of the relativistic entities γµ, this motion is undetermined; it is the
Zitterbewegung. It implies not only a mixture of the components of the bispinor, but also an
undetermined mixture of the coordinates xµ. A change of these coordinates over the regions
where the Zitterbewegung is localized will correspond to a superposed motion, averaged over λc
and τc. Obviously, this emergent motion is limited by regions of size λc and τc.

Charged 1/2-spin bosons. Let us give a variation δxµ = uµ to the coordinates xµ, according
to the scheme xµ −→ xµ + δxµ, δxµ = uµ, xµ −→ xµ + uµ. We will take the first-order variations
with respect to uµ of the Dirac equation

γµ∂µψ =
mc

i~
ψ . (34)

According to the Dirac equation, the Zitterbewegung implies that the coordinates may be viewed
as matrices (like γµ). We write xµ = sµ · 1, where s0 = ct, s = r and 1 denotes the unit matrix; we
have xµx

µ = sµs
µ · 1 = s2 · 1, where s2 = c2t2 − r2. For δxµ we need δxµδx

µ = uµu
µ = u2 = ds2;

the (non-trivial) solution of this equation is

δxµ = uµ =
1

2
uγµ (35)

(since γµγ
µ = 4); we can see the connection with the velocities vµ = cγµ. The first-order expansion

of the Dirac equation is

γµ (∂µψ + uν∂ν∂µψ) =
mc

i~
(ψ + uν∂νψ) , (36)

or

∂µ∂µ (uψ) = −
m2c2

~2
(uψ) , (37)

28W. Pauli and F. Villars, "On the invariant regularization in relativistic quantum theory", Revs. Mod. Phys.
21 434 (1949).

29L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 4, Quantum Electrodynamics (V. Berestetskii,
E. Lifshitz, l. Pitaevski), Butterworth-Heinemann (1971).

30W. Pauli and M. Fierz, "Zur Theorie der Emission langwelliger Lichtquanten", Nuovo Cim. 15 167 (1938);
H. Kramers, "Quantentheorie des Elektrons und der Strahlung", in Hand. und Jahrbuch der Chemische Physik,
I, part 2, Leipzig (1938); "Die Wechselwirkung zwischen geladenen Teilchen und Strahlungsfeld", Nuovo Cim. 15

108 (1938); "Non-relativistic quantum electrodynamics and correspondence principle", in Rapports et Discussions

du 8e Congres Solvay, 1948, Brussels, R. Stoop (1950); Collected Scientific Papers, North Holland, Amsterdam
(1956).
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which is the Klein-Gordon equation pµp
µ (uψ) = m2c2 (uψ). This equation describes the motion

averaged over the Zitterbewegung. We note that we transferred the motion of ψ to u. It is the
motion of this u which is described by the Klein-Gordon equation. We can see that the derivation
of the Klein-Gordon equation given here amounts to applying twice the Dirac equation for the
new field uψ. The Dirac spinors are superfluous, and the new field uψ retains only the bispinor
labels; we denote this new field by ψ. The second quantization of the Klein-Gordon equation is
made by bosons. These bosons represent the changes in motion of each fermion state labelled by
spin and negative energy. Therefore, we may represent the new field ψ as

ψ =
∑

k

c

√

~

2εk
(ψkα) e

ikr , (38)

where εk = εk = c
√

k2 +m2c2/~2,

(ψkα) =









ck,+
ck,−
b∗
−k,−

b∗
−k,+









, (39)

and c, b’s satisfy usual boson commutation relations for four distinct types of bosons, correspond-
ing to ckσ and bkσ; σ = ± is the spin label and the c’s and the b’s correspond to positive and
negative energies (frequencies), respectively.

The linear approximation used in the expansion above spoils the effects of the electromagnetic
field, such that, in the presence of the electromagnetic field, we need to use the covariant derivative
Dµ = ∂µ − e

ic~
Aµ, according to ψ −→ ψ + uµDµψ; we get the Klein-Gordon equations (31) or

(32) with electromagnetic field and spin. We note that the average of the motion of the electron
over small distances implies a lower bound upon the electron wavelength, as well as upon the
interaction (photons) wavelength, of the order of the Compton wavelength λc.

Free bosons. The free equation of motion (32) reads

1

c2
∂2ψ

∂t2
−∆ψ +

m2c2

~2
ψ = 0 . (40)

If we multiply this equation by ψ̇, the equation for ψ by ψ̇, where ψ is the adjoint of ψ (transposed
conjugate), and add the two equations we get

∂

∂t

(

1

c2
ψ̇ψ̇ + ∂iψ∂iψ +

m2c2

~2
ψψ

)

− ∂i
(

ψ̇∂iψ + ∂iψψ̇
)

= 0 , (41)

where i = 1, 2, 3; hence, we can see that

we =
1

c2
ψ̇ψ̇ + ∂iψ∂iψ +

m2c2

~2
ψψ (42)

is the energy density and

ge = −
1

c2

(

ψ̇gradψ + gradψψ̇
)

(43)

is the momentum density. Making use of equations (38) and (39), the total energy is

We =
∫

drwe =
∑

kσ ~εk (c
∗

kσckσ + bkσb
∗

kσ) =

=
∑

kσ ~εk (c
∗

kσckσ + b∗kσbkσ + 1) ;
(44)
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similarly, the total momentum is

Ge =
∫

drge =
∑

kσ ~k (c∗kσckσ + bkσb
∗

kσ) =

=
∑

kσ ~k (c∗kσckσ + b∗kσbkσ + 1) .
(45)

If we multiply the equations for ψ and ψ by ψ and ψ, respectively, and subtract the two equations
from one another, we get another law of conservation, which reads

1

c2
∂

∂t

(

ψψ̇ − ψ̇ψ
)

− ∂i
(

ψ∂iψ − ∂iψψ
)

= 0 ; (46)

hence,

Q = ie
~c2

∫

dr
(

ψψ̇ − ψ̇ψ
)

= e
∑

kσ (c
∗

kσckσ − bkσb∗kσ) =

= e
∑

kσ (c
∗

kσckσ − b∗kσbkσ − 1)

(47)

is the electric charge (where e is the electron charge) and

J = − ie
~

∫

dr
(

ψgradψ − gradψψ
)

=

= e
∑

kσ
c2k
εk

(c∗kσckσ − bkσb∗kσ) =

== e
∑

kσ
c2k
εk

(c∗kσckσ − b∗kσbkσ − 1)

(48)

is the electric current. With the notation

ρ = ie
~c2

(

ψψ̇ − ψ̇ψ
)

, ji = − ie
~

(

ψ∂iψ − ∂iψψ
)

, (49)

jµ = (cρ, j) =
ie

~

(

ψ∂µψ − (∂µψ)ψ
)

, (50)

equation (46) is the continuity equation ∂µj
µ = 0.

Interaction. We adopt the energy We given by equation (44) as the free electron hamiltonian

He =
∑

kσ

~εk (c
∗

kσckσ + b∗kσbkσ) (51)

(leaving aside the zero-point energy), where εk = c
√

k2 + k20, k0 = mc/~ being the inverse of the
Compton wavelength. Similarly, we adopt

Hph = Hem =
∑

k

~ωka
∗

kak (52)

(equation (16)) as the free hamiltonian of the photons, where ωk = ck; noteworthy, this hamilto-
nian implies only the transverse electromagnetic field. The electromagnetic energy includes the
Coulomb contribution Vc arising from the longitudinal field El,

El = −
∑

k

ik

ω2
k

(

Φ̈k + ω2
kΦk

)

eikr , Vc =
1

8π

∫

drE2
l , (53)
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where Φ =
∑

kΦke
ikr (equations (10) and (11)). The contribution of the longitudinal field to the

electromagnetic energy is vanishing for free fields. If we include the interaction for the longitudinal
field, we get Elk = −(4πik/k2)ρk and Vc =

∑

k
2π
k2
ρkρ−k, where ρk is the Fourier component of

the charge density.

The interaction of the electrons with the photons can be derived from equation (32); leaving aside
for the moment the spin part of the interaction, this equation can be written as

(pµp
µ − e

c
pµA

µ − e
c
Aµp

µ + e2

c2
AµA

µ = 0 , (54)

i.e.
1
c2
∂2ψ
∂t2
−∆ψ + m2c2

~2
ψ + e

c~2
pµA

µψ + e
c~2
Aµp

µψ−

− e2

c2~2
AµA

µψ = 0 .

(55)

The interaction can be obtained from the equation of motion by means of the work done by the field
upon charges. It is worth noting that, in contrast with equation (6), the full interaction includes
now a field self-interaction energy (the term ∼ AµA

µ) (this is a consequence of the hamiltonian
formalism for the boson field).

For the motion of the boson field ψ a direct way of identifying the interaction is provided by the
lagrangian. The free lagrangian densities are

Le =
1
c2
ψ̇ψ̇ −

(

∂iψ
)

(∂iψ)− m2c2

~2
ψψ ,

Lem = − 1
16π
FµνF

µν ,

(56)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field. The interaction energy densities are

vp =
1

c
jµA

µ =
ie

c~

[

ψ (∂µψ)−
(

∂µψ
)

ψ
]

Aµ (57)

(where the gauge condition ∂µA
µ = 0 is used) and

vd = −
e2

c2~2

(

ψψ
)

AµA
µ (58)

(the labels p and d are chosen by analogy with the non-relativistic "paramagnetic" and "diamag-
netic" contributions). Now we can derive the spin interaction too. Equation (32) is derived by
using the Dirac conjugate. We should retain from this equation that part which is valid with the
bosonic adjoint. It is easy to see that this is done by the spin interactions

vH = − e
2c~
ψ (

∑

+
∑

∗)ψH ,

vE = ie
2c~
ψ (α−α

∗)ψE .

(59)

The symmetrization and antisymmetrization in equations (59) ensure the consistency of the equa-
tions of motion for ψ and ψ (boson fields) and real energy. It means that in the first equation
(59) only the matrices σx,z remain, while in the second equation (59) only the matrix σy remains.
It is worth noting that vH,E give spin and pair currents, while vd gives mass to the photon.

The interaction is given by integrating these densities over the whole space,

Vp,d,H,E =

∫

drvp,d,H,E (60)
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It is worth noting that the interaction vp (equation (57)) is the same as the interaction derived in
equation (6).

The electromagnetic field in the above equations includes both the scalar potential Φ and the
longitudinal component Al (corresponding to the coefficients Φk). Since the longitudinal field
has a vanishing free hamiltonian (Vc =

1
8π

∫

drE2
l = 0 for Φ̈k + ω2

kΦk = 0 in equation (53)), this
field cannot be quantized as an independent kind of photons (there is no scalar or longitudinal
"photon"). The longitudinal field (scalar potential) moves according to the equation

1

c2
Φ̈−∆Φ = 4πρ =

4πie

~c2

(

ψψ̇ − ψ̇ψ
)

; (61)

(this is the equation divEl = 4πρ, where El is given by equation (53)); we can see that the
coefficients Φk consist of bilinear forms of operators ckσ, bkσ; they correspond to the longitudinal
degrees of freedom. The energy Vc becomes the Coulomb interaction energy

Vc =
∑

k

2π

k2
ρkρ−k . (62)

The scalar potential Φ is obtained from equation (61) and introduced in the interaction hamilto-
nian. We get

ρk = e
~c2

∑

k′σ βk′+kβk′ (εk′+k + εk′) ·

·
(

c∗k′+kσck′σ − b−k′
−k−σb

∗

−k′
−σ

)

,

Φk = −4πe
~

∑

k′σ

βk′+kβk′(εk′+k+εk′)
(εk′+k−εk′)

2
−ω2

k

·

·
(

c∗k′+kσck′σ − b−k′
−k−σb

∗

−k′−σ

)

,

(63)

where βk = βk = c
√

~

2εk
. We write A = At +Al, where

Atk = αk
(

ekak + e−ka
∗

−k

)

, αk = c
√

2π~
ωk

,

Alk = 4πe
~

∑

k′σ
ik
kωk

βk′+kβk′(ε2k′+k
−ε2

k′)

(εk′+k−εk′)
2
−ω2

k

·

·
(

c∗k′+kσck′σ − b−k′
−k−σb

∗

−k′
−σ

)

(64)

and

Elk = −4πik
k2

ρk . (65)

In addition, from the continuity equation we get the Fourier component of the longitudinal current

jlk = e
~c2

∑

k′σ
k
k2
βk′+kβk′

(

ε2k′+k − ε2k′

)

·

·
(

c∗k′+kσck′σ − b−k′
−k−σb

∗

−k′
−σ

)

.
(66)

The longitudinal part ρΦ − 1
c
jlAl of the interaction vp can be estimated as in equation (12),

or by using its contribution to the mechanical action. The result is −Vc (as in equation (12)).
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Therefore, the Coulomb interaction disappears from the problem and the interaction vp is reduced
to its transverse part

vp = −
1

c
jAt . (67)

However, in contrast with the interaction derived in equation (6), for the field ψ there is an
additional interaction vd (equation (58)). The longitudinal contribution Φ2 − 1

c2
(A2

l + 2AlAt) to
this interaction brings a term of the order e3, at least; if we limit ourselves to e2-orders at most,
we may use

vd ≃
e2

c2~2

(

ψψ
)

AtAt . (68)

Similarly, only the transverse field contributes to vH . It is worth noting that the longitudinal
degrees of freedom of the electromagnetic field are removed from the problem, by means of equa-
tions (63)-(66); they are replaced by the degrees of freedom of the charges. Similar interaction
contributions arise from an external (transverse, purely radiation field).

By a similar procedure we may eliminate also the transverse field from the interaction problem,
being left only with an interaction between charges and currents (particle-particle interaction).
However, this is not a convenient procedure, because we measure photons (transverse field) in the
experimental situations; noteworthy, such measurements are peformed far away from the charged
particles, where the field is indeed a radiation field.

Perturbation Theory. We give below a few examples of perturbation-theoretical calculations
by means of the boson theory of the Dirac equation. Since the parameter α = e2/~c = 1/137 (fine-
structure constant) of the perturbation series is much smaller than unity, we limit ourselves to the
first order and some processes in the second order of the perturbation theory. These processes are
chosen for their specific relevance for the Quantum Electrodynamics. Scattering amplitudes are
not included, because their calculation is long and does not raise any interesting problem.

1. Spontaneous emission. Let us assume an initial state | vi >= c∗kσ | 0 >, corresponding to an
electron. The first-order perturbation state produced by the interaction Vp (equations (25), (60)
and (67)) is

| v >(1)
p =

2e

c~2

∑

k′

αk′βkβk′+kke−k′S∆εa
∗

−k′c∗k′+kσ | 0 > , (69)

where

S∆ε =
ei(εk′+k+ωk′−εk)t − 1

εk′+k + ωk′ − εk
, ∆ε = εk′+k + ωk′ − εk (70)

and αk = c
√

2π~/ωk, βk = c
√

~/2εk. Equation (69) gives the amplitude of spontaneous emission
of a photon,

f = ec

√

2πEph
EiEf

sin θ · S∆ε , (71)

where Eph = ~ω is the energy of the photon, Ei,f are the initial and final energies of the electron
and θ is the angle between the direction of propagation of the electron and the direction of
propagation of the photon. For the probability of emission (polarized photon, per unit volume),

|S∆ε|2 = 2πtδ(∆ε) . (72)

If there is a width of the energy levels, the factor S∆ε becomes

S∆ε =
ei∆εte−γt − 1

∆ε+ iγ
(73)
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and |S∆ε|2 −→ 1/ (∆ε2 + γ2/4) for t −→∞ (a natural line breadth is caused by the field emitted
by the charge).31 On the other hand, πδ(∆ε) ←− (γ/2)/ (∆ε2 + γ2/4) for γ ≪ ∆ε; it follows
that the relevant time is of the order t ≃ 1/γ, as expected. This is the typical result for photon
emission or absorption, dipole (multipole) radiation (from bound states), Zeeman and Stark and
photoelectric effects. The results are similar with those of the radiation theory.32

2. Diamagnetic self-energy: a mass renormalization. The first non-vanishing contribution
of the interaction vd is of the order e2:

| v >(2)
d = − ie2

c2~3
tβ2
k

∑

k′ α2
k′c∗kσ | 0 > −

− ie2

c2~3

∑

k′q αk′αk′
−qβkβk′+q·

· (e−k′ek′
−q)S∆εa

∗

−k′a∗k′
−qc

∗

k+qσ | 0 > ,

(74)

where
∆ε = ωk′ + ωk′

−q − εk . (75)

The first term in equation (74) gives an interacting state

| v >=| vi > −
ie2

c2~3
tβ2
k

∑

k′

α2
k′ | vi > , (76)

which indicates a change

∆Ed =
e2

c2~2
β2
k

∑

k′

α2
k′ (77)

in the energy of the electron; or

∆Ed =
e2c~

2πE

∫

dk′ · k′ , (78)

where E =
√

p2c2 +m2c4 is the original energy of the electron. This self-energy is infinite. It is
associated with photon fluctuations of the vacuum: the electron generates and absorbs a photon,
according to the diamagnetic interaction ∼ (ψψ)A2 (a factor 2 should be included for the two
photon polarizations).

Such divergences are typical for higher-order terms in the perturbation series, including the sec-
ond order. Their origin is twofold. On one hand, they arise from the point-like nature of the
electron, which generates divergent quantities even in the classical Electrodynamics. On the other
hand, they arise as a consequence of the deficient formulation of the interaction problem, which
includes unphysical self-interaction. Both these points are associated with the Zitterbewegung.
The renormalization technique of extracting finite results in the boson theory means the use of
the Compton wavelength cutoff k0 = mc/~. By using this procedure in equation (78), we get

∆Ed =
e2m2c3

4π~E
, (79)

31V. Weisskopf and E. Wigner, "Berechnung der natuerlichen Linienbreite auf Grund der Diracschen Lichttheo-
rie", Z. Phys. 63 54 (1930); "Uber die naturliche Linienbreite in der Strahlung des harmonischen Oszillators", Z.
Phys. 65 18 (1930). See also W. Heitler, The Quantum Theory of Radiation, Dover (1984).

32P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation", Proc. Roy. Soc. A114

243 (1927); "The quantum theory of dispersion", Proc. Roy. Soc. A114 710 (1927). See also E. Fermi, "Quantum
theory of radiation", Revs. Mod. Phys. 4 87 (1932); W. Heitler, The Quantum Theory of Radiation, Dover (1984).
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which, in the non-relativistic limit, becomes

∆Ed ≃ e2/4πλc =
e2

4π~c
mc2 . (80)

This is a mass renormalization, due to photon fluctuations; α = e2/~c is the fine-structure con-
stant. Similar contributions arise from second-order contributions.

3. Lamb shift. Let us consider a set of electron bound states denoted by n, with orthonormalized
wavefunctions ϕn (instead of plane waves eikr). The first-order interacting state generated by the
interaction Vp is

| v >(1)
p = − ie

c~2

∑

n1k

αkβnβn1
[Gn1n(k)e−k]S∆εa

∗

−kc
∗

nσ | 0 > , (81)

where ∆ε = ωk − εn and

Gnn′(k) =

∫

dr (ϕ∗

ngradϕn′ − gradϕ∗

n · ϕn′) eikr (82)

(without the b-electrons). The second-order interacting state includes, apart from two photons, a
contribution arising from the photon fluctuations, given by

| v >(2)
p = e2

c2~4

∑

n1n2k
α2
kβnβn1

β2
n2
·

· [Gn1n2
(k)ek] [Gn2n(−k)ek] ·

·
∫ t

0
dt1e

−i(ωk+εn2
)t1

∫ t1
0
dt2e

i(ωk−εn+εn2
)t2c∗n1σ

| 0 > .

(83)

We can see that the electron emits and absorbs a photon and changes its state. Noteworthy, for
free electrons this contribution is zero. A self-interacting contribution corresponds to n1 = n.
In addition, the main contribution arises from a degenerate state n2 = n′, if it exists. In these
circumstances, equation (83) becomes

| v >(2)
p = e2

c2~4

∑

k α
2
kβ

4
n [Gnn′(k)ek] [Gn′n(−k)ek] ·

·
∫ t

0
dt1e

−i(ωk+εn)t1
∫ t1
0
dt2e

iωkt2c∗nσ | 0 > ,

(84)

or
| v >(2)

p = e2

c2~4

∑

k α
2
kβ

4
n·

· [Gnn′(k)ek] [Gn′n(−k)ek]Sc∗nσ | 0 > ,

(85)

where

S =
1

ωk

[

e−iεnt − 1

εn
− e−i(εn+ωk)t − 1

εn + ωk

]

. (86)

For atomic bound states Gnn′(k)ek and the range of k are of the order 1/a, where a is the
dimension of the atomic state. In the limit k −→ 0 equation (86) becomes

S = − ∂

∂εn

e−iεnt − 1

εn
; (87)

in the limit of large t we get S ≃ it/εn, such that equation (85) becomes

| v >(2)
p = it

e2λ3c
8π~a4

| vi > , (88)
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where εn ≃ c/λc. Therefore, we get an energy shift

∆Ep ≃ −En
(

e2

8πaEn

)(

λc
a

)3

; (89)

since En is of the order e2/a, this shift is ∆Ep/En ≃ 1
8π
(λc/a)

3. It is the splitting of the two
degenerate states. The result is one-two orders of magnitude smaller than the standard result.33

4. Anomalous magnetic moment. Let us assume an external, uniform and constant, magnetic
field H0. The first contribution of VH (equation (59)) corresponding to H0 to the interacting state
(apart from the zeroth-order contribution) arises in the third-order of the perturbation theory (H0

included). The structure of this contribution is

−
( e

c~

)3
[

ψ (Σψ)H
]

1

[

ψ (Σψ)H
]

2

[

ψ (Σψ)
]

3
H0c

∗

kσ | 0 > , (90)

where the magnetic field is

H =
∑

q

iαq (q× eq)
(

aq − a∗−q

)

eiqr (91)

and the suffixes 1, 2, 3 denote the times; in equation (90) the space integration is included. Spin
wavefunctions should be included, which amounts to products of spin operators. The full contri-
bution to the interacting state is obtained by inserting the time integrations

(

− i
~

)3 ∫ t

0

dt1 ·
∫ t1

0

dt2 ·
∫ t2

0

dt3 ; (92)

a factor 3 is included for the three positions of H0 in equation (90). Obviously, only the c-operators
contribute.

We use a parametrization

q = q(sin θ cosϕ, sin θ sinϕ, cos θ) ,

eq = eθ = (cos θ cosϕ, cos θ sinϕ,− sin θ)
(93)

and
q× eq = eϕ = (− sinϕ, cosϕ, 0) (94)

for the photon vectors.

We can see that, in fact, the time t3 does not appear in equation (90), as expected. The external
field plays the role of a probe, which lasts a short time ∆t; consequently, we replace the t3-
integration by

− i
~

∫ ∆t

0

dt3 = −
i∆t

~
=
δt

~
=

1

mc2
. (95)

33W. E. Lamb and R. C. Retherford, "Fine structure of the hydrogen atom by a microwave method", Phys.
Rev. 72 241 (1947); H. Bethe, "The electromagnetic shift of the energy levels", Phys. Rev. 72 339 (1947); J.
B. French and V. F. Weisskopf, "The electromagnetic shift of the energy levels", Phys. Rev. 75 1240 (1949);
R. Feynman, "Relativistic cut-off for Quantum Electrodynamics", Phys. Rev. 74 1430 (1948) (correction in
"Space-time approach to Quantum Electrodynamics", Phys. Rev. 76 769 (1949)); J. Schwinger, "Quantum
Electrodynamics. III. The electromagnetic properties of the electron-Radiative corrections to scattering", Phys.
Rev. 76 790 (1949).
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The remaining time integrations are

S =

∫ t

0

dt1e
−iεk+qt1 ·

∫ t1

0

dt2e
i(εk+q−εk)t2 . (96)

In this equation the wavevector q of the (emitted and absorbed) photon brings a comparatively
small contribution, such that

S = − ∂

∂εk

e−iεkt − 1

εk
≃ it

εk
. (97)

Taking into account the spin contribution

[σy(q× eq)y]
2 = q2 cos2 ϕ (98)

(we recall the relationship σiσj = δij + iεijkσk for the Pauli matrices), we get the energy change

∆EH = −3

~

( e

c~

)3∑

q

cos2 ϕ(q)

εkmc2
q2α2

qβ
4
kβ

2
k+q (H0σ) . (99)

In this expression we may approximate εk by ck0 (k0 = mc/~) and βk+q ≃ βk (and average over
directions); we get the relative change in the magnetic moment (the Bohr magneton µ =| e |
~/2mc)

∆µ/µ ≃ 3

32π
· e

2

c~
(100)

(a factor 2 should be included for the two polarizations). The result is close to Schwinger’s
standard result.34

5. Pair creation. The interaction vE = ie
2c~
ψ (α−α

∗)ψE (equation (59)) is responsible for pair
creation (destruction). The electric field is

E =
∑

q

iqαq
(

eqaq − e−qa
∗

−q

)

eiqr , (101)

after the spatial integration the interaction becomes

VE = − e
c~

∑

kq qαqβkβk−q

(

c∗kσyb
∗

−k+q + b−kσyck−q

)

·

·
(

eqaq − e−qa
∗

−q

)

,
(102)

where the spin suffixes are included. We can see that an external photon is absorbed and generates
an electron pair, with opposite spins. The interacting state is given by

− e

c~

∑

k

qαqβkβk−qc
∗

kσyeqyb
∗

−k+qe
−iωqt | 0 > , (103)

where the time integration should be included. We get the amplitude

f = − ie

c~2
qαqβkβk−q cosϕ sinϕS∆ε (104)

34J. Schwinger, "On Quantum-Electrodynamics and the magnetic moment of the electron", Phys. Rev. 73 416
(1948); "Quantum Electrodynamics. III. The electromagnetic properties of the electron-Radiative corrections to
scattering", Phys. Rev. 76 790 (1949).
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for the pair c∗k+b
∗

−k+q,−, where ∆ε = εk+ εk−q−ωq (|S∆ε|2 = 2πtδ(∆ε)) and ϕ = ϕ(q) is given by
equation (94). We can see that the momentum is conserved, but the energy cannot be conserved,
since the equation

√

k2 + k20 +
√

(k− q)2 + k20 = q (105)

has not solutions (as it is well known).

The coupling of VE with Vp or VH leads to pair creation; VH can be generated by an external
magnetic field. Similarly, we can consider an interaction VE generated by an external (static)
electric field, like the field grad(Ze/r) of a nucleus with charge Ze. This electric field is

E = −
∑

k

4πiZek

k2
e−ikr ; (106)

it generates an interaction

V0 =
4πe2Z
c~

∑

kk1

1
k2
βk1βk1+k·

·
(

c∗k1
σykyb

∗

−k1−k + b−k1
σykyck1+k

)

(107)

(of the VE-type). We couple this interaction with

Vp = − e
c~

∑

kq αqβkβk−q(2k− q)·

·
(

c∗kck−q + b∗
−k+qb−k

) (

eqaq − e−qa
∗

−q

)

.
(108)

The interaction V0 does not depend on time; we use for it the integral given by equation (95). We
apply

−2i
~mc2

∫ t

0

dt1Vp(t1)V0 (109)

to the state a∗q | 0 > (the factor 2 in equation (109) arises from the product (Vp + V0)(Vp + V0)).
The temporal factor S∆ε implies

εk+q − εq = ωq , (110)

an equation which is only approximately satisfied for small k and q of the order k0. The momentum
is not conserved, since the (large) nucleus is static. There are two amplitudes for creation of pairs
(k,−k + q − k′) and (−k + q,k − k′), with opposite spins and undetermined k′. The order of
magnitude of these amplitudes is

f ≃ ± 4πie3Z

~mc2k20

√

2πc~

k0

k

k′
sin θ sin θ′ cosϕ′S∆ε , (111)

where θ is the angle between k and q and θ′, ϕ′ are the angles of k′. This amplitude has the
dimension

√
α · vol3/2, where α = e2/c~ is the fine-structure constant. The factor vol3/2 is reduced

by the density of states. Also, the amplitude given by equation (111) can be written as f ≃√
αZreλ

7/2
c , where re = e2/mc2 is the classical radius of the electron. Electron-positron pairs can

also be created by polarizing the vacuum by an external electromagnetic field.35

The uncertainty implied by the second-order perturbation theory requires a density of states
∼ 1/λ3c for each electron; and a factor ∼ 1/λc for the photon; it follows a cross-section σ ≃ αZr2e ,

35M. Apostol, "Dynamics of electron-positron pairs in a vacuum polarized by an external electromagnetic field",
J. Mod. Opt. 58 611 (2011).
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which has the order of magnitude of the standard result.36 The coupling of VE with V0 leads to
Bremsstrahlung of an electron (c∗kσ | 0 >) in an external field (and synchroton radiation).

The coupling of VE (equation (102)) with Vp (equation (108)) leads to pair creation by the an-
nihilation of two photons. We apply the second-order perturbation operator (VpVE) to the intial
state a∗qa

∗

−q | 0 >. The time integration leads to S∆ε, where ∆ε = 2εk − 2ωq, for the pair (k,−k)
with opposite spins, and to S∆ε, ∆ε = εk − εk−q − ωq, an approximate energy conservation. The
energy conservation 2εk − 2ωq is satisfied for k −→ 0 and q ≃ k0. The amplitude of formation of
the pair (k,−k) is

f ≃ ∓ 4i

~2

( e

c~

)2

q2α2
qβ

2
0

β2
q

εq
sin Θ cos θ sinϕ · S∆ε , (112)

where Θ is the angle between k and q and θ, ϕ are the angles of the wavevector q (with respect
to the electron spin). For q ≃ k0 the order of magnitude of the amplitude f is f ≃ αλ3c (where
S ≃ τ ≃ λc/c), in agreement with the standard result (we note that re = αλc).

37 The process of
pair formation by annihilation of two photons is related to the process of pair annihilation with
the formation of two photons.38

6. Charge renormalization. Let us consider the interaction of a charge e with a static charge Q.
The latter generates an interaction V0 given by equation (107). The first non-vanishing correction
to the initial state c∗kσ | 0 > appears in the second order of the perturbation theory; it is due to
vacuum polarization. Before the time integration this contribution reads

(

4πeQ
c~

)2∑

q,q′
1

q2q′2
βkβ

2
k−q′βk−q−q′(σyqy)(σyq

′

y)·

·ei(εk−q′−εk)t1eiεk−q′ t2c∗k−q−q′ | 0 > .

(113)

The main contribution to the state kσ , with small k, comes from small q = −q′. This is a quasi-
static interaction; instead of two V0 generated by Q, we may use only one generated by Q and
another generated by e; then (eQ)2 is replaced by e3Q. The integration over q′ gives q2∆q ≃ 1/λ3c .
The main contribution of the time integration is

S∆ε =
ei(εk+q−εk)t − 1

εk+q − εk
≃ it . (114)

After averaging over angles we get a change

∆E ≃ 1

3~

(

4πeQ

c~

)2
β4
0

ε0
λ3c

∑

k

1

k2
(115)

in energy, which should be compared with the Coulomb interaction 4πeQ
∑

k
1
k2

. It follows a
charge renormalization of the order δe/e ≃ π

6
α, a result comparable with the standard results.39

7. Photon mass. The vacuum polarization accompanied by photon fluctuations in the pertur-
bation series does not change the energy of the photon. However, the interaction with a "real"

36H. Bethe and W. Heitler, "On the stopping of fast particles and on the creation of positive electrons", Proc.
Roy. Soc. A146 83 (1934).

37G. Breit and J. A. Wheeler, "Collision of two light quanta", Phys. Rev. 46 1087 (1934).
38P. A. M. Dirac, "On the annihilation of electrons and protons", Proc. Cambr. Phil. Soc. 26 361 (1930).
39J. Schwinger, "Quantum Electrodynamics. II. Vacuum polarization and self-energy", Phys. Rev. 75 651

(1949); R. P. Feynman, "Space-time approach to Quantum Elctrodynamics", Phys. Rev. 76 769 (1949); R. Serber,
"Linear modifications in the Maxwell field equations", Phys. Rev. 48 49 (!935); E. A. Uehling, "Polarization effects
in the positron theory", Phys. Rev. 48 55 (1935).
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electron gives mass to the photon. Indeed, the interaction leads to

1

c2
∂2Aµ

∂t2
−∆Aµ +

8πe2

c2~2

(

ψψ
)

Aµ =
4π

c
jµ − 4πie~

c
∂νψ (σµν − σµν∗)ψ , (116)

which is a wave equation with sources and mass. For an electron (both spin orientations) we get
a photon mass given by

m2
ph =

e2~2

Ec2
· 1
λ3c

= α
(

mc2/E
)

m2 , (117)

where E is the energy of the electron. The photons interacting with the electrons are similar with
radiation propagating in matter (polaritons). A photon mass gives a screened Coulomb inteaction
1
r
e−
√
αmc2/E r

λc .

Renormalization and Quantum Electrodynamics. The difficulties associated with the self-
interaction are specific to a classical point charge with a structureless motion. The Dirac equa-
tion provides a structure to the motion of the charge, which makes meaningful part of the self-
interaction. Indeed, the undetermined Zitterbewegung has a spatial extension, of the order of the
Compton wavelength λc. This motion is undetermined and leads to infinities, because it implies
a self-interaction for a (delocalized) point charge (and similarly for the electromagnetic field),
but it may have physical, determined modifications. These modifications indicate an additional,
superposed motion of the Zitterbewegung, either as a whole, or as its parts affecting other parts.
The latter is a self-interaction which is meaningful and has finite contributions. The superposed
motion is the boson motion. It is limited to wavevectors smaller than the Compton-wavelength
cutoff. This cutoff effects, in fact, the renormalization and the regularization. The use of this
procedure avoids the occurrence of the infinities. The self-interaction, which results finite from
calculations, is the interaction of some parts of the Zitterbewegung with other parts of this motion.
It assumes a spatial extension of the Zitterbewegung. In this respect, the self-interaction problem,
as described herein within the boson theory of the Dirac equation, resembles the old conception of
a spatially extended charge, without its difficulties (see Lorentz, Poincare, Abraham in Ref. 40),
or Heisenberg’s "universelle Laenge theory".41 In fact, the idea that a cutoff avoids divergences is
obvious. The probem is to make convincing the existence of such a cutoff.

The boson theory of the Dirac field (equation) assigns the Compton wavelength λc to the spatial
extension of the Zitterbewegung. This assignment is an order-of-magnitude procedure. Conse-
quently, the results of this theory are only order-of-magnitude estimates.

Quantum Electrodynamics works with Dirac equation. Consequently, the infinities associated with
the Zitterbewegung are unavoidable. However, the infinities of the interaction have the same struc-
ture as the infinities associated with a change in mass and charge, up to some finite contributions.
Consequently, these infinities may simply be discarded, as arising from a renormalization of the
mass and the charge, the finite contributions being thus the only relevant quantities. The renor-
malization can be viewed as a precise technique of eliminating the Zitterbewegung. Consequently,
it is no surprise that the results of the Quantum Elctrodynamics are in excellent agreement with
the experimental results; for instance, the Lamb shift42 and the anomalous magnetic moment of
the electron.43

40See, for instance, F. Rohrlich, Classical Charged Particles, World Scientific (2007).
41W. Heisenberg, "Ueber die in der Theorie der Elementarteilchen auftretende universelle Laenge", Ann. Physik

32 20 (1938).
42W. E. Lamb and R. C. Retherford, "Fine structure of the hydrogen atom by a microwave method", Phys. Rev.

72 241 (1947).
43J. E. Nafe, E. B. Nelson and I. I. Rabi, "The hyperfine structure of atomic hydrogen and deuterium", Phys.
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However, the renormalization and regularization techniques hold in finite orders of the perturba-
tion theory. For the infinite series of the perturbation theory these techiques fail, and the results
become inconsistent.44 This shows the artificial and unsafe (risky) character of these techniques.
The boson theory of the Dirac field is free from such inconsistencies, though with less accurate
numerical results.
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