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Abstract

An idealized model of propagation of electric pulses along metallic wires is presented.
Within this model, a short electric pulse produced at a point on a long metallic wire may
propagate along the wire with the speed of light in vacuum over long distances, practically
dispersionless and without energy loss. The pulse excites in wire a tail of plasmon-polaritons,
which propagate along the wire with the speed of light in vacuum c, plasma frequency ωp

(wavelength λ = c/ωp) and wavefronts at | x |= ct, where x the coordinate along the wire and
t denotes the time. This is a non-thermal (adiabatic) process, with a very low rate of energy
dissipation and, practically, radiationless. The reason for such a lossless propagation resides
in the high values of the plasma frequency and the restoring force of the charges, which lead
to a charge displacement much smaller than the mean freepath.
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It is well known that electromagnetic waves may be guided along metallic wires and focused in
metallic structures with a restricted geometry, beyond the diffraction limit.[1]-[12] These phenom-
ena have been associated with Sommerfeld surface waves[1] and surface plasmon-polaritons.[5]-[8]
Recently, there is an increasing interest in propagating electric pulses along metallic wires, es-
pecially in the terahertz frequency range.[13]-[21] Their propagation is almost dispersionless and
their velocity is close to the speed of light in vacuum.

We present in this paper an idealized model of plasmon-polaritons excited in a long metallic wire
by electric pulses, which may propagate over a long distance, practically without energy loss. The
effects of an electric pulse propagating in a metallic wire are different from those associated with
the propagation of a surface wave. The propagation of the pulse and its associated effects are not
restricted to the surface; they occur inside the wire.

We consider a metallic wire, with a shape close to a straight line (i.e., without many tight bends).
The wire has a circular cross-section with radius r0, much smaller than its length. We denote by
x the coordinate along the wire. An electric pulse is applied at x = 0, uniformly distributed over
the cross-section. The charge density of the pulse may be represented as

ρ0 = Qτδ(t)δ(x)θ(r0 − r) , (1)

where Q is the surface charge density, τ is the short duration of the pulse, t denotes the time and
r is the radius in the plane of the cross-section. Similarly, the current density of the pulse may be
represented as

j0x = Qaδ(t)δ(x)θ(r0 − r) , (2)
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where a is the small spatial extension of the pulse along the x-direction. The δ-functions in equa-
tions above should be viewed as equal to 1/τ , 1/a over a duration τ or a distance a, respectively.
Outside the pulse the charge and the current are zero, while inside the pulse the charge density
is ρ0 = Q/a and the current density is j0x = Q/τ = vρ0, where v = a/τ is the velocity of charge
injection (pulse building). We can see that the charge conservation is verified. The charge and the
current densities given above determine the scalar potential Φ0 and the x-component A0x = a

cτ
Φ0

of the vector potential, where c is the speed of light in vacuum. The scalar potential satisfies the
wave equation

1

c2
Φ̈0 −∆Φ0 = 4πρ0 = 4πQτδ(t)δ(x)θ(r0 − r) ; (3)

by means of the Fourier transformations we get the solution

Φ0 = 2πQcτr0

∫

dκdk
J1(kr0)J0(kr)

K
sin cKt · eiκx , (4)

where κ is the x-component of the wavevector K = (κ,k), k is the transverse wavevector and J0,1

are the Bessel functions of zeroth and first order, respectively. It is easy to see that the potential
Φ0 has a slow variation with r, except for r ≃ r0 where the surface effects appear. Inside the
wire (r < r0), and leaving aside the surface effects, we may approximate the potential given by
equation (4) by

Φ0 ≃ 2πQcτ
∫

dκdzJ1(z)
sin cκt

κ
eiκx =

= 2πQcτθ(t− | x | /c) .
(5)

Indeed, in the conditions given above equation (3) becomes the one-dimensional wave equation

1

c2
Φ̈0 −

∂2Φ0

∂x2
= 4πQτδ(t)δ(x) , (6)

whose solution is the one-dimensional Green function 4πQτ × c
2
θ(t− | x | /c)).

It is easy to check that the potentials Φ0 (given by equation (5)) and A0x = a
cτ
Φ0 satisfy the

Lorenz gauge; for instance, outside the pulse the derivatives are zero, while inside the pulse
∂Φ0/c∂t and ∂A0x/∂x may be replaced by 2πQcτ/a and −2πQcτ/a, respectively. The solution
given by equation (5) is valid inside the wire, close to the axis of the wire. Near the surface the
function θ in equation (5) spreads out over a distance of the order r0 (in all directions), such
that, for thin wires, we may still view the solution as close to a θ-pulse. According to equation
(4), the potentials are continuous with continuous derivatives at the surface of the wire. In the
outside region, far away from the (thin) wire, we may view the pulse as being localized at a point
in space (x = 0, r = 0), in a very short time τ , such that, at large distances, it generates the
well-known spherical waves. We can estimate the energy radiated in space by such a pulse, and
find out that the total energy radiated in time τ is extremely small. The assumptions implied by
equations (1) and (2) and the approximation given by equation (5) define the idealized model of
pulse propagation presented herein.

Making use of equation (5), the electric field along the wire (E0x = −∂A0x/c∂t−∂Φ0/∂x) is given
by

E0x = 2πQτ [sgn(x)− v/c] δ(t− | x | /c) ≃ 2πQτ · sgn(x)δ(t− | x | /c) (7)

(we assume v ≪ c); the other two components of the electric field and the magnetic field are zero.
This is a pulse of electric field which propagates (dispersionless) along the wire with the speed
of light in vacuum. It may viewed as an external electric field. We can see that the pulse of the
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electric field is much narrow in time (a/c) than the source pulse (τ); indeed, two charges separated
by distance a emit radiation with a time delay a/c, and v = a/τ ≪ c.

We note that the above results are obtained by using the charge and the current densities given
by equations (1) and (2), which may be viewed as corresponding to charges injected into the
wire from the outside. If a pulse-like charge and current imbalance is created (uniformly) by an
external field (without charge transfer), the densities may be taken as ρ0 = Qaτδ(t)δ′(x) and
j0x = −Qaτδ′(t)δ(x) (for r < r0). The results obtained for such pulses are similar with those
given by a δ-representation for ρ0 and j0x.

The electric field E0x generates an external force acting on the mobile charges in the wire (elec-
trons). In general, a displacement u of the charges generates an imbalance of charge den-
sity −nqdivu, where n is the charge concentration in the wire and q is the electron charge
(≃ 4.8×10−10statC). At the same time, an internal electric field Ei appears in the wire, given by
divEi = −4πnqdivu (polarization P = nqu); the internal field generates a force −4πnq2u. The
equation of motion for the displacement of a charge along the wire is

mü+mω2
pu+mγu̇ = qE0τ · sgn(x)δ(t− | x | /c) , (8)

where ωp = (4πnq2/m)1/2 is the plasma frequency, γ is a damping coefficient (γ ≪ ωp) and
E0 = 2πQ is a notation introduced from equation (7). By a temporal Fourier transformation of
equation (8) we get

u(ω, x) = −
qE0τ

m
·

sgn(x)

ω2 − ω2
p + iγω

ei
ω

c
|x| (9)

and the displacement along the wire

u(t, x) =
1

2π

∫

dωu(ω)e−iωt =
qE0τ

mωp

sgn(x) sinωp(t− | x | /c)e−
γ

2
(t−|x|/c) , t >| x | /c (10)

and u(t, x) = 0 for t <| x | /c (both poles in equation (9) are placed in the lower half-plane).

The displacement in equation (10) represents a wave of charge densiy (and internal electric field,
polarization), which propagates inside the wire with the speed of light in vacuum; it may be called
a polariton. The frequency of this polariton is the plasma frequency, such that we may call this
wave a plasmon-polariton. Its wavelength is λ = c/ωp. Typical plasma frequency ωp in metals
is a few eV , e.g. ωp ≃ 5 × 1015s−1 for n = 1022cm−3 (electron mass ≃ 10−27g), such that λ
is of the order 10−5cm (0.1µm); it is comparable with the mean freepath of electrons in typical
metals at room temperature, Λ ≃ 0.1−1µm. We note that this wave affects all the charges in the
cross-section of the wire. We can see that the electric pulse propagating along the wire excites a
tail of plasmon-polaritons, which are propagating along the wire with the speed of light in vacuum
and wavefronts placed at t =| x | /c. The fact that the wavelength λ is much smaller than the
diameter of the wire is in accordance with our assumption that the propagation does not depend
appreciably on the transverse dimensions of the wire (and surface effects may be neglected).

Let us introduce the notation u(t, x) = u0sgn(x) sinωp(t− | x | /c)e−
γ

2
(t−|x|/c), where u0 =

qE0τ/mωp is the amplitude of the displacement (equation (10)). In usual conditions this is a
very small displacement; for instance, for a field E0 = 10−2statV/cm (300V/m) and τ = 1ns
(10−9s) we get u0 ≃ 0.1Å. The maximal velocity of the displacement u0ωp is of the order 106cm/s
(much smaller than the Fermi velocity in metals).

The plasmon-polariton solution given above is valid outside the pulse (t− | x | /c > 0). Let us
now estimate the motion of a charge inside the pulse. The period of oscillation of a charge ω−1

p

(≃ 2× 10−16s) is much shorter than the time a/c spent by the pulse upon a charge; for instance,
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for a pulse width a = 3 × 10−2cm (300µm) we get a/c = 10−12s ≫ ω−1
p . Consequently, we may

estimate the displacement of a charge inside the pulse by w = qE0τc/maω2
p (from equation (8);

we note that the effective field inside the pulse is increased by the factor τc/a). Making use of the
numerical data given here, we get w ≃ 2× 10−13cm. We may see that the restoring force (mω2

pw)
is very strong and the energy spent by the field to set the charge in motion is extremely small;
practically, the field does not lose energy in this process.

However, we must include the damping force in the energy balance. The energy conservation
derived from equation (8) reads

∂

∂t

(

1

2
mu̇2 +

1

2
mω2

pu
2

)

+mγu̇2 = qE0τ · sgn(x)δ(t− | x | /c)u̇ . (11)

If we integrate equation (11) over a small interval about the point t− | x/c (across the pulse), we
can see that the first term on the left side (time derivative of the energy) may be neglected and
the velocity of the displacement inside the pulse is of the form u̇ = ṡτ · sgn(x)δ(t− | x | /c); it
follows that the energy loss of the pulse (per charge and per unit time) is mγṡ2(τc/a)2, equal with
the work done by the field upon a charge qE0ṡ(τc/a)

2 per unit time; hence, we get ṡ = qE0/mγ
and the energy loss (q2E2

0/mγ)(τc/a)2 (per charge and unit time). Since the duration of the pulse
on a charge is a/c, we may estimate this displacement as s = qE0a/mcγ. In order to compute this
displacement we need the damping coefficient γ. In cuasi-static conditions, the damping coefficient
is given by γ = ω2

p/4πσ, where σ is the static conductivity; in typical metals γ ≃ 1013−1014s−1 (at
room temperature). Using γ = 1013s−1 and the numerical data given here, we get s ≃ 5×10−10cm.
We can see that s ≪ Λ (Λ ≃ 0.1− 1µm), such that the damping is ineffective. Therefore, we may
say that the pulse is propagated practically without loss, over large distances.

Outside the pulse, equation (11) is the energy conservation for a damped oscillator, with the rate
of energy loss γ. In general, the damping coefficient is diminished in oscillations, in comparison
with the static conditions. We may view the damping coefficient as being given by γ = 1/tlf ,
where tlf is the lifetime of the electron excitations; it defines the mean freepath by Λ = vF tlf ,
where vF is the Fermi velocity. The electron-phonon interaction brings, usually, a comparable
contribution (besides the effects of impurities, etc). The electron lifetime can be estimated by
γ = 1/tlf ≃ T 2/~µ, where T is the temperature and µ is the Fermi level. For typical metals
at room temperature we get γ ≃ 1012s−1 (µ = 1eV ) and Λ ≃ 10−4cm (vF = 108cm/s). Since
the displacement amplitude u0 is much smaller than the mean freepath Λ, the plasmon-polariton
is a non-thermal (adiabatic) process, where the damping coefficient is, practically, not effective.
The energy transferred by the electric pulse to the plasmon-polaritons may be transported by the
latter over large distances.

It is worth analyzing the energy radiated by plasmon-polaritons. The electromagnetic potentials
are given by the Kirchhoff formula for the charge density ρ = −nqdivu and the current density
j = nqu̇. The potentials of the field generated by the plasmon-polaritons are given by

Φ = Ax = nqu0
ωp

c
S

∫ ct

0

dx′
cosωp

(

t−
√

r2 + (x− x′)2/c− x′/c
)

√

r2 + (x− x′)2
, (12)

where r is the distance from the wire, (x, r) is the position of the observation point and S denotes
the area of the cross-section of the wire (for a semi-infinite wire). We introduce the new variables
z = ωp(x − x′)/c, y = ωpr/c and note that the limit ωpx/c may be taken to infinity, since the
wavelength λ = c/ωp is much smaller than any relevant distance. Then, the integral in equation
(12) becomes a function of t − x/c, which leads to vanishing fields (and a vanishing radiated
energy).
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In conclusion, an electric pulse localized both in space and time on a thin metallic wire may
propagate along the wire with the speed of light in vacuum, practically without energy loss and
without dispersion; the pulse excites behind a tail of plasmon-polaritons which, also, propagate
along the wire with the speed of light in vacuum and plasma frequency without energy loss.
The reason for such a lossless propagation is the high plasma frequency, which leads to charge
displacements much smaller than the mean freepath. The results presented here can be extended
to dielectric wires.

The model discussed here is an idealized model. The idealization resides in assuming δ-functions
for the pulse, which depend only on the coordinate x along the wire (and time t). Also, the
building of the pulse is assumed to be achieved by a uniform injection of charges, or a uniform
imbalance of charges over the cross-section of the wire, and the surface effects are neglected. These
are important elements of idealization. In experiments, the pulse has a finite extension in all three
directions and in time; usually, in terahertz experiments the pulses are radially polarized. In
these conditions, the propagation should be considered in all three space dimensions and surface
effects should be included, as in cylindrical wires. Then, we may have dispersion, energy loss and
contributions from surface waves and surface plasmon-polaritons. The main effect of such more
realistic conditions is an attenuation of the pulse with distance.
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