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Abstract

The surface plasmon-polaritons are identified on a circular, straight, long wire (either
metallic or dielectric). They are radial magnetic-type dispersive modes, excited by the uni-
polar currents, except for the symmetric mode, which is non-dispersive. This latter mode
may guide an electromagnetic wave along the surface, dispersionless and with the speed of
light in vacuum. A similar situation occurs for a half-space.

Internal field. Polarization. Let us assume the presence of a free electromagnetic field E0

(electric field) and H0 (magnetic field). It obeys the Maxwell equations

divE0 = 0 , divH0 = 0 ,

curlE0 = −1

c
∂H0

∂t
, curlH0 =

1

c
∂E0

∂t
,

(1)

where c is the speed of light in vacuum.

In matter, the mobile charges q, with concentration n, are displaced by the external field, by a
displacement field u. It generates a charge density imbalance −nqdivu and a current density
nq ∂u

∂t
. In addition, in magnetic matter a magnetic current may appear, given by c · curlM ,

where M is called magnetization. These charge and curent densities should be added to the
right side of the first and fourth Maxwell equations (Gauss and Maxwell-Ampere equations), and
additional internal field also should be added.[1] By historical tradition, E0 is denoted by D

(electric displacement) and the total magnetic field H is denoted by B (magnetic induction). Let
us assume a non-magnetic matter (M = 0) and preserve the notation H for the total magnetic
field (magnetic induction). In addition, we denote by E = E0 + Ei the total electric field, Ei

being the internal electric field, and use E0 or D for the external electric field. The Maxwell
equations become

divE == −4πnqdivu , divH = 0 ,

curlE = −1

c
∂H
∂t

, curlH = 1

c
∂E
∂t

+ 4π
c
nq ∂u

∂t
,

(2)

where
divEi = −4πnqdivu . (3)

From equation (3) we get Ei = −4πnqu. This solution is valid for infnite matter. P = nqu is
called polarization; the first equation (2) becomes div(E+4πP ) = 0, whence E+4πP = D = E0,
divD = 0; the fourth equation (2) becomes curlH = 1

c
∂D
∂t

.
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The equation of motion of an elementary mobile charge with mass m is

mü+mγu̇ = qE0 + qEi , (4)

where γ is the attenuation coefficient. In equation (4) we neglect internal forces and view the
charge velocity as being sufficiently small, such that we may neglect also the Lorentz force. In
finite bodies Coulomb interaction is an internal force.[1, 2] Equation (4) can be written as

ü+ ω2

0u+ γu̇ =
q

m
E0 , (5)

where ω0 given by ω2
0 = 4πnq2/m is the plasma frequency. Equation (5) is suitable for metals; for

dielectrics an additional important internal (elastic) force appears.[1] The solution of equation (5)
for a monochromatic wave with frequency ω is

u = −qE0

m

1

ω2 − ω2
0 + iωγ

; (6)

we get

Ei =
ω2

0

ω2
−ω2

0
+iωγ

E0 , P = − 1

4π

ω2

0

ω2
−ω2

0
+iωγ

E0 ,

E = E0 +Ei =
ω2+iωγ

ω2
−ω2

0
+iωγ

E0

(7)

and, from D = E0 = εE, P = χE, ε = 1 + 4πχ,

ε = 1− ω2
0

ω2 + iωγ
, χ = − 1

4π

ω2
0

ω2 + iωγ
, (8)

where ε is the dielectric function and χ is the electric susceptibility. In addition, since the current
density nq ∂u

∂t
is j = −iωnqu = σE, we get the conductivity

σ =
1

4π

iω2
0

ω + iγ
, ε = 1 +

4πiσ

ω
. (9)

We can see that the internal field has a resonance at the plasma frequency ω0 (the plasmon).

By equation (4) the first Mawell equation (2) (Gauss law) is solved. In the fourth Maxwell equation
(2)

curlH = 1

c
∂E
∂t

+ 4π
c
nq ∂u

∂t
=

= − iω
c
(E0 +Ei + 4πnqu)

(10)

(Maxwell-Ampere equation) Ei + 4πnqu = 0, such that this equation reduces to

curlH = −iω

c
E0

′ (11)

therefore, H = H0, as expected for non-magnetic matter. The second Maxwell equation (mag-
netic Gauss law) is satisfied. The third Maxwell equation (Faraday law) can be written as

curlE = curlE0 + curlEi =
iω
c
H0 , (12)

which shows that the internal field Ei = −4πnqu is given by a gradient, as expected when charges
are present. It is worth noting that the internal field and the total electric field are complex, due
to the presence of the attenuation coefficient γ. It is worth noting that these fields propagate
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in matter with the velocity c/
√
ε, where

√
ε is the (complex) refractive index; usually, its large

positive imaginary part givesva high dissipation in metals.

Surface plasmon-polaritons. We consider a straight wire with a circular cross-section with
radius a in cylindrical cordinates (r, ϕ, x). We introduce the notation u = vθ(a − r). We recall
that the function θ(a− r) is not defined for r = a. In the charge density −nqdivu we have

divu = divv · θ(a− r)− vsrδ(a− r) , (13)

where vsr = vr(a, ϕ, x) is the r-th component of the displacement v. This equation is valid for
r ≤ a, according to the definition of the charge density. Therefore, the δ-function in equation
(13) should be viewed as 1

2
δ. Due to this circumstance vsr should be viewed as a distinct (surface)

displacement denoted by w(r, ϕ). The Gauss law for the internal electric field reads

divEi = −4πnqdivv · θ(a− r) + 2πnqwδ(a− r) . (14)

the solution of this equation is Ev
i = −4πnqv for r < a and

Es
ir = −2πnqw . (15)

The term Ev
i is the bulk contribution. The Maxwell equations are solved as in the preceding

section for the bulk contribution. The term Es
ir is the surface contribution, arising from the

surface charge density −1

2
nqw. This contribution is decoupled from the bulk term. We write the

Maxwell equations for the surface fields, denoted by e and h; for instance, Es
ir = eir. Wherever

we encounter the derivative ∂/∂r we integrate it out over the thickness of the surface; in curl′s
it appears only tangential fields associated with this derivative, which are continuous, while hr in
the magnetic Gauss law is also continuous. We get the two-dimensional Maxwell equations

(curle)ϕ = ∂er
∂x

= iω
c
hϕ , (curle)x = − 1

a
∂er
∂ϕ

= iω
c
hx ,

(curlh)r =
1

a
∂hx

∂ϕ
− ∂hϕ

∂x
= − iω

c
e0r +

iω
c
· 2πnqw

(16)

and

(curlh)ϕ,x = −iω

c
e0ϕ,x , (divh)ϕ,x = 0 . (17)

We note the occurence of the so-called uni-polar current density 1

2
nqẇ on the right of the radial

Maxwell-Ampere equation (16).

The equation of motion the radial surface displacement w is

mẅ +mγẇ = qe0r + qeir , (18)

or

ẅ +
1

2
ω2

0w + γẇ =
q

m
e0r ; (19)

the other components of the displacement are those of the bulk displacement. From equation (19)
we get

w = −qe0r
m

1

ω2 − 1

2
ω2
0 + iωγ

. (20)

We can see that the surface electric field has a resonance at ω0/
√
2 (surface plasmon). If the

Coulomb interaction is included the plasmon (bulk and surface) branches become dispersive and
the plasmons pass over gradually into polaritons.[3] A similar result (ω0/

√
2) is well known for a

half-space.
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Making use of equation (20), the system of equations (16) and (17) can be solved. We assume a
dependence ∼ eikxeilϕ for the external field e0, h0, where l is an integer, and get

er = e0r + eir = e0r − 2πnqw =

ω2+iωγ

ω2
−

1

2
ω2

0
+iωγ

e0r =
1

εs
e0r ,

(21)

where

εs = 1−
1

2
ω2
0

ω2 − 1

2
ω2
0 + iωγ

(22)

is the surface (radial) dielectric function, and

hϕ = ck
ωεs

e0r , hx = − lc
aωεs

e0r ,

hr = h0r .
(23)

From the second equation (16) we get the dispersion relation

ω2 = c2
(

l2

a2
+ k2

)

; (24)

it defines the surface polaritons, associated with the magnetic field hϕ,x; since this field is resonant
for the surface plasmon frequency ω = ω0/

√
2, they are called surface plasmon-polaritons. We

can see that there are many branches of plasmon-polaritons, and all are dispersive for l 6= 0
(asymmetric modes). There exists only one non-dispersive branch l = 0 (symmetric mode), with
hx = 0 and hϕ 6= 0. The symmetric surface plasmon-polariton mode may guide the electromagnetic
field along the wire, non-dispersively and with the speed of light in vacuum.[5]-[8] Noteworthy, it is
a magnetic-type mode, excited by a transverse external field (e0r). It is different from Sommerfeld
"surface wave", which is a bulk, electric-type mode, excited by a longitudinal electric field.[9] A
completely analogous situation occurs for a half-space.
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