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Abstract

It is shown that the electrons in metals, in spite of being a quantum, "cold" plasma,
exhibit a much higher plasmon damping than classical plasmas. The overwhelming factor
in this circumstance is the high electron density in metals. On the other hand, it is shown
that the penetration depth of an oscillating uniform electric field in metals is of the order
λe ≃ vF /ω, where vF is the Fermi velocity and ω is the frequency of the external field. This
result should be compared with the penetration depth λe ≃ vth/ω in classical plasmas (Ref.
[1]), where vth is the thermal velocity of the electrons in plasma. Since the Fermi energy in
metals is comparable with the temperature of the electrons in classical ("hot") plasmas, the
two velocities vF and vth are comparable, and so are the two penetration depths.

The penetration depth of an oscillating, uniform, longitudinal electric field in a semi-infinite
classical plasma is computed in Ref. [1]. This is a classical problem, identifed by Landau in
the context of what was called later the Landau damping. According to the original Landau’s
result and the subsequent calculations (see the References in Ref. [1]), the attenuation law of

the field would have the form ∼ e−(x/λe)2/3 , where x is the distance from the wall of the plasma,
λe ≃ vth/ω is the penetration depth (attenuation length), vth is the thermal velocity of the electrons
in plasma and ω is the frequency of the external field. This result is corrected in Ref. [1], where
the attenuation law is shown to be ∼ e−x/λe .

A classical plasma is a dilute, weakly ionized gas, consisting of electrons, ions and neutral atoms; it
is electrically neutral. In general, the electron-electron, the ion-ion and the electron-ion "collisions"
are made through the long-range Coulomb interaction, such that they are, practically, ineffective;
the state of motion of the electrons and the ions is not affected, practically, by these processes.
The collisions with the atoms (electron-atom, ion-atom and atom-atom collisions), apart from
being, mainly, elastic, are very rare, since the plasma is dilute. Therefore, we may conclude that
a classical plasma is collisionless. The collision frequency is much smaller than the frequency of
the external field. In these conditions we may use the Boltzmann equation without the collision
term. Moreover, since the external field is weak, it will determine small changes in the motion of
the particles, such that we may limit ourselves to zeroth order contributions to the perturbation;
this is called the "linearized" Boltzmann equation, and, in the presence of the electric field, the
resulting equation (linearized and collisionless) is termed the Boltzmann-Vlasov equation.

In the present Note we tackle the penetration problem in metals, where the electrons are governed
by the Fermi-Dirac distribution, in contrast with the classical plasma, where the electrons are
governed by the Maxwell distribution. This circumstance brings interesting features.
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First, we note that, in general, under the action of an external electric field there exist two
types of electronic motion. In one motion the electrons move as a whole; this is the plasmonic
motion. Second, the changes in the statistical distribution are brought by the elementary electron
excitations. In classical plasmas these excitations are the electrons themselves, in metals these
excitations are the electron quasiparticles. The plasma frequency and the plasmon damping are
governed by the electron density, which is very low in classical plasmas and very high in metals;
while the attenuation length is governed by the thermal velocity of the electrons in classical plasmas
and the Fermi velocity in metals. Since these velocities are comparable for the "hot" electrons in
classsical plasmas and the electrons in the "cold" plasma in metals, the attenuation lengths are
comparable.

As regards the linearized version of the Boltzmann equation, it holds in metals, since the effects of
the external perturbation (electric field) are weak. The frequency of the electron-ion collisions in
metals is relatively high, especially in static conditions (≃ 1013s−1−1014s−1 at room temperature;
a comparable contribution is brought by the electron-phonon interaction, besides the contribution
of the impurities, etc); it is comparable with the inverse of the lifetime of the electron elementary
excitations (≃ 1012s−1 at room temperature). These collisions are important in transport phe-
nomena. On the other hand, they secure the thermal equilibrium. The oscillations of the external
field are much slower (the opposite limit in comparison with classical plasmas), such that the
changes brought by such external perturbations are not affected by collisions. The slow motion
determined by the external field superposes over the rapid thermal motion. It follows that we may
use the Boltzmann-Vlasov equation for electrons in metals without the collision term.[2]

As it is well known the statistical properties of the electrons in metals is governed by the Fermi-
Dirac distribution

dN =
2

(2π~)3
1

eβ(p
2
x/2m+p2y/2m+p2z/2m−µ) + 1

dV dpxdpydpz , (1)

where dN is the number of electrons in the volume dV placed at any position r and in the mo-
mentum volume dpxdpydpz placed at any momentum p = (px, py, pz); µ is the chemical potential,
m is the electron mass and β = 1/T is the inverse of the temperature T . The chemical potential
µ is fixed by the total number of electrons N in the volume V . Since the uniform applied field
E0 is directed along the x-direction, it is convenient to integrate over the momenta py,z. Equation
(1) leads to

dN =
m

2π2~3β
ln
[

1 + eβ(µ−p2x/2m)
]

dV dpx , (2)

or, making use of px = mvx and denoting the velocity vx by v,

dN =
m2

2π2~3β
ln
[

1 + eβ(µ−mv2/2)
]

dV dv . (3)

It follows that the unperturbed distribution is

F (v) =
m2

2π2~3β
ln
[

1 + eβ(µ−mv2/2)
]

; (4)

we note that
∫ +∞

−∞

dvF (v) = n , (5)

where n is the electron density.
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All the equations from (1) to (12) in Ref. [1] remain valid. In particular the denominator A in
equation (11) is given by

A ≃ k(1− ω2
0/ω

2)− i
4π2q2

mk

∂F

∂v
|v=ω/k , (6)

where ω0 = (4πnq2/m)1.2 is the plasma frequency and Γ ≃ −2π2q2ω0/mk2)(∂F/∂v) |v=ω0/k is the
plasmon lifetime (Landau damping); in these equations q is the electron charge, k is the wavevector
along the x-direction and ω is the frequency of the external field (and all the oscillating quantities).
The only difference with respect to Ref. [1] is the distribution function given by equation (4) in
place of the Maxwell distribution.

It is convenient to introduce the variable ξ =
√

βm/2ω/k; the damping coefficient, as a function
of ξ (ω/k), can be written as

Γ =
3π√
2

ω2
0

ω
(vth/vF )

3 ξ2 | ξ |
Ceξ2 + 1

, (7)

where vF = ~kF/m = ~

m
(3π2n)1/3 is the Fermi velocity, vth = 1/

√
βm is the thermal velocity and

C = e−βµ; at room temperature C ≪ 1. Since vth/vF = 1/
√
2βµ, the damping coefficient can also

be written as

Γ =
3π

4

ω2
0

ω

1

(βµ)3/2
ξ2 | ξ |
Ceξ2 + 1

. (8)

The function ξ2 | ξ | /
(

Ceξ
2

+ 1
)

has a maximum ≃ (βµ)3/2 for

ξ2 ≃ βµ− ln

(

2

3
βµ− 1

)

; (9)

it follows that the maximum value of the damping coefficient is of the order Γ ≃ ω2
0/ω. The

damping coefficient for a classical plasma (with Maxwell distribution F = n(βm/2π)1/2e−
1

2
βmv2 ,

Ref. [1]) is

Γp =
√
π
ω2
0

ω
ξ2 | ξ | e−ξ2 ; (10)

it has a maximum of the same formal order Γp ≃ ω2
0/ω. Since the plasma frequency in metals

is much higher than the plasma frequency in classical plasmas, the damping of the plasmons is
much greater in metals than in classical plasmas. The plasmon damping in metals occurs for
k0 ≃ ω0/vF , while in classical plasmas it appears at k0 ≃ ω0/vth. Since vF and vth are comparable,
the damping appears at much longer wavelengths in classical plasmas, as expected.

The zeros of the denominator in equation (11), Ref. [1], are the roots of the equation A = 0,
which leads to

ξ2 | ξ |
Ceξ2 + 1

= −i
| ε |

3
√
2π(1− ε)

(

vF
vth

)3

(11)

(compare with equation ξ2 | ξ | e−ξ2 = −iα in Ref. [1], where α =| ε | /2√π(1 − ε)). We note
that ω ≪ ω0, so that ε −→ −∞ and equation (11) becomes

ξ2 | ξ |
Ceξ2 + 1

≃ − i

3
√
2π

(

vF
vth

)3

. (12)

Also, we note that βµ in C = e−βµ is βµ = v2F/2v
2
th, such that the solution of equation (12) is

ξ =

√

βm

2

ω

k1,2
≃ ± vF

(12π)1/3vth
(−1 + i) , (13)
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where

k1 ≃
(12π)1/3ω

2
√
2vF

(1 + i) . (14)

All equations (13) to (15) in Ref. [1] remain valid, providing 2α1/3 is replaced by (12π)1/3/2
√
2

(≃ 1) and vth is replaced by vF . In particular, the penetration depth of the electric field is
λe ≃ vF/ω. For typical metals vF ≃ 108cm/s, so that λe ≃ 10cm for ω = 107s−1. The penetration
depth in classical plasmas is of the order λe ≃ vth/ω, where vth is the thermal velocity of the
electrons in plasma. We note that the penetration depths in metals are comparable with those in
classical plasmas, since the temperature of the electrons in classical ("hot") plasmas (e.g., 104K)
is comparable with the Fermi energy in metals (a few eV ).
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