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Abstract

The Gutenberg-Richter statistical distributions are discussed and the entropy of earth-
quakes is derived. Both canonical and microcanonical earthquake distributions are given,
and Einstein’s fluctuation formula is deduced for earthquakes. These results are applied to
the seismic activity of Vrancea in the period 1980 − 2019, for 8498 earthquakes with mag-
nitude M ≥ 2. It is shown that the parameter β of the magnitude distribution exhibits a
tendency of increasing with time, due to the accumulation of small-magnitude earthquakes,
interrupted from time to time by ruptures towards smaller values of β, caused by earthquakes
with greater magnitudes. These variations of the parameter β do not obey the normal distri-
bution of the fluctuations. Therefore, the seismic activity analyzed here cannot be identified
with a statistical ensemble at (quasi-) equilibrium.

Introduction. The entropy of earthquakes has been introduced in Seismology from Statistical
Physics, as a measure of the disorder produced by the seismic activity in a given region and a
given, relatively long, time interval.[1]-[8] In contrast to the equilibrium Statistical Physics, and
closer to the Physical Kinetics, the time dependence of the entropy of earthquakes is of primary
interest. In this connection, it is more related to the information entropy.[9, 10]

As hazardous as it may be, the prediction of the seismic activity in a given region is still very
attractive. We analyze in this paper the possibility offered by the changes in the entropy of earth-
quakes to assess changes in the seismic activity. Such an analysis should be based on a few certain
general hypotheses. First, we should view the seismic activity as a sequence of random, indepen-
dent earthquakes with various magnitudes. We should assume that the earthquake occurrence
may be described by a statistical distribution in magnitude. We should leave aside any possible
correlations between earthquakes, like triggerring or blocking effects, as well as possible corre-
lations between foreshocks, aftershocks and main shocks. As in any statistical description, the
earthquake distribution should exhibit fluctuations over a short-time scale. It is claimed that such
fluctuations have been identified in yearly variations of global earthquake populations,[7] though
they may look rather as quasi-periodic variations. The existence of a statistical distribution im-
plies a statistical equilibrium. A statistical equilibrium is characterized by quasi-stationarity, i.e.

the statistical distribution may exhibit only slow variations, at most, in long periods of time.
The parameter of the fluctuation distribution changes correspondingly in such a long-time seismic
activity. The slow variations of the equilibrium may give the possibility to identify the variation
tendency by relatively short-time sampling of the data. This short-time seismic activity is affected
by fluctuations, so we are led to analyze the fluctuation distribution. Unfortunately, the analysis
of a large number of earthquakes with magnitude M ≥ 2 (8498 earthquakes), which occurred in
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Vrancea during the time interval (years) 1980 − 2019 does not gives support to the assumptions
formulated above. In particular, the variations of the statistical distribution do not obey the fluc-
tuations normal distribution. The reason for this behaviour originates in the fact that the seismic
activity is feeded continuously by the tectonic energy, such that the statistical ensemble is not at
equilibrium.

The technical means of analyzing the statistical equilibrium and its fluctuations is the entropy. We
derive in this paper the Gutenberg-Richter statistical distribution in magnitude for a canonical
ensemble by using the standard method of maximizing the entropy under the constraint of a
fixed mean magnitude. This constraint corresponds to a quasi-stationary tectonic loading and a
quasi-stationary energy release by seismic activity. Similarly, by using the standard method of
a microcanonical statistical ensemble, we derive the fluctuations normal distribution (known as
Einstein’s fluctuation formula). The parameter of this formula is precisely the parameter of the
equilibrium distribution. It follows that, by fitting the fluctuation formula to a data sampling
collected over a relatively short time, we would have access to the equilibrium distribution and
to its tendency in such relatively short times. The prediction would be based on the expected
variation of the mean magnitude; consequently, we might only say that in the next period higher-
magnitude earthquakes may, or may not, be expected. If the fluctuations do not obey Einstein’s
normal distribution, then we are in a non-equilibrium state. As said above, the above (quasi-)
stationarity scenario is not supported by empirical studies, at least for Vrancea region. We give a
few examples to this end, by analyzing a large set of Vrancea earthquakes.

Gutenberg-Richter statistical distributions. The Gutenberg-Richter magnitude probability

P (M) = βe−βM (1)

is well-known in Seismology; in equation (1) M denotes the earthquake magnitude and β is
a parameter. Originally, this law was derived from empirical observations. Indeed, it is well
documented by statistical analysis[11]-[14] that the number of earthquakes N(M) with magnitude
greater than M is given by

lnN(M) = lnN(0)− βM (2)

(cumulative, or excedence, distribution); hence, dN/N(M) = −βdM , and the density of magni-
tude probability[15] is

∆N

N(0)∆M
= βe−βM . (3)

If the total, large, number of earthquakes N(0) occurs in the long time T , we can define the
seismicity rate 1/t0, where N(0) = T/t0, and equation (3) becomes

t0∆N

T∆M
= βe−βM ,

∆N

T
=

β∆M

t0
e−βM , (4)

or

ln
(

∆N

T

)

= ln

(

β∆M

t0

)

− βM ; (5)

hence, we may define a mean recurrence time

tr =
Tβ∆M

∆N
= t0e

βM . (6)

for the earthquakes with magnitude M .

Equations (1), (3) and (5) define statistical distributions. They may be called Gutenberg-Richter
statistical distributions. According to the theory of fluctuations of the statistical distributions, a
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measure of the fluctuations, i.e. of the deviation from the mean value of the statistical variable
(magnitude M) is the standard deviation

δM =
(

M2 −M
2
)1/2

=

(

−∂M

∂β

)1/2

=
1

β
= M ; (7)

it follows that the error in determining the mean recurence time by equation (6) is 100%, or, at
least,
[

(

M2
)1/2

−M
]

/M =
√
2− 1; it is a large error.

At the same time, the magnitude was introduced in Seismology as a logarithmic measure of the
energy released by an earthquake. More precisely, it is assumed that the energy E of an earthquake
with magnitude M is given by E/E0 = ebM , or

lnE = lnE0 + bM , (8)

where E0 is an energy cutoff and b = 3
2
ln 10 = 3.45, by convention (ln 10 ≃ 2.3).[16, 17] Later,

the energy was related to the magnitude of the seismic moment, and the earthquake magnitude
entering equation (8) was called moment magnitude.[18, 19] Equations of the type (8) may be called
Hanks-Kanamori (or Gutenberg-Richter) law. As we can see, they have a definition character.

The statistical Gutenberg-Richter distributions in time, energy and magnitude have been derived
from a geometrical-growth model of accumulation of energy in the focal region[20, 21] (the exact
relationship between energy and the magnitude of the seismic moment was established in Ref.
[22]). The relation between the parameters β and b is β = br, where the parameter r is related
to the number of effective dimensions of the focal region and the rate of energy accumulation.
For a uniform pointlike focal region r = 1/3, for a two-dimensional focal region r = 1/2, while
for a one-dimensional region r tends to unity. Very likely, the parameter r varies in the range
1/3 < r < 1, which entails a variation 1

2
ln 10 < β < 3

2
ln 10 (i.e., 1.15 < β < 3.45). According to

the theory of energy accumulation in the focal region, the relationship between the accumulation
time t and the accumulated energy E is

1 + t/t0 = (1 + E/E0)
r . (9)

This relationship leads to a frequency of events 1/(1 + t/t0), a time probability

P (t)dt =
1

(1 + t/t0)
2

dt

t0
, 0 < t < ∞ (10)

and energy and magnitude probabilities

P (E)dE = r
(1+E/E0)

1+r
dE
E0

, 0 < E < ∞

P (M)dM = 2r βebM

(1+ebM)
1+r dM , 0 < M < ∞.

(11)

For high energies (E ≫ E0, M ≫ 1, t ≫ t0) we may use the approximation

t/t0 ≃ (E/E0)
r = eβM , (12)

which leads to the Gutenberg-Richter statistical distributions (equation (1)).

Fitting the data. The Gutenberg-Richter magnitude distribution given by equations (1), (2)
and (5) are widely used to fit data. By such a fitting we derive the parameters β (and, therefore,
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Figure 1: Short-time (weeks) continuous (panel a, year 2010) and discontinuous (ruptures, panel b,
year 2011) variations of the parameter β for Vrancea (Romanian Earthquake Catalog ROMPLUS,
2018 (updated)).

r) and t0 (seismicity rate). An important problem in such fitting procedures is the choice of the
data. The data and the fitting parameters depend on the seismic region, the time period and the
cutoff parameters.

In the region of small magnitudes, the data has a smaller slope, i.e. a smaller parameter β.
This roll-off effect in the Gutenberg-Richter distribution is usually assigned to the insufficiency
in the determination of the small-magnitude data. The problem of the small-magnitude cutoff
(completeness of earthquake catalogs) enjoys many discussions, especially in connection with the
aftershocks and foreshocks sequences.[23]-[33] It was shown recently that the roll-off effect arises,
at least partially, from earthquake dynamical correlations.[34]

On the other hand, for large magnitudes, the data distribution is uncertain. It is difficult to
include high-magnitude earthquakes in a statistical analysis, because they are rare events and
may not belong to a statistical ensemble. However, their minor weight in the statistical ensemble
does not affect the results too much.

An analysis of a large set of global earthquakes with 5.8 < M < 7.3 (∆M = 0.1) indicates β = 1.38
(and 1/t0 = 105.5 per year), corresponding to r = 0.4, a value which suggests an intermediate
two/three-dimensional focal mechanism.[14] Equations (1), (2) and (5) have been fitted to a set
of 1999 earthquakes with magnitude M ≥ 3 (∆M = 0.1), which occurred in Vrancea between
1974 − 2004 (31 years).[20, 21] The mean values of the fitting parameters are − ln t0 = 9.68 and
β = 1.89 (r = 0.54). The same fit have been done for a set of 3640 earthquakes with magnitude
M ≥ 3 which occurred in Vrancea during 1981− 2018 (38 years). The fitting parameters for this
set are − ln t0 = 11.32 and β = 2.26 (r = 0.65).[35] The fitting values given above have an error
of approximately 17%. The data for Vrancea have been taken from Ref. [36].

In decimal logarithms the parameter β reads β = br = 3
2
r. Since 1/3 < r < 1, this parameter

varies in the range 1/2 < β < 3/2. Usually, the average value β = 3
2
r = 1 (β = 2.3 in natural

logarithms) is currently used as a reference value, corresponding to r = 2/3.[37]-[40]

Entropy of earthquakes. Let us assume that a region is loaded with seismic energy. This
energy is released in time, by a sequence of earthquakes with various magnitudes M . We may
associate a statistical distribution ρ(M) to this seismic activity. The probability density ρ(M)
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should be normalized,
∫

dMρ(M) = 1 , (13)

and the mean magnitude should be a constant,
∫

dM ·Mρ(M) = M ; (14)

this condition corresponds to the original load of energy, which is well determined. We may
view a continuous loading, and a continuous energy release. Also, we may expect this continuous
regime to be stationary (or quasi-stationary), such that the condition (14) is fulfilled. If the
region is "free", or "isolated", i.e. it is not subject to external influences, and the earthquakes
are independent events, it is reasonable to assume that the release of the seismic energy will be
completed in a sufficiently long period of time, i.e., in the conditions given above, the amount of
released energy is maximal (and equal with the load). We seek a functional of ρ which attains its
maximum value for a certain function ρ; this ρ corresponds to the seismic activity in that region.
Let us introduce the functional

S = −
∫

dM · ρ ln ρ , (15)

and look for its maximum value under the conditions (13) and (14); to this end we need a vanishing
first-order variation of the (Lagrange) functional

−
∫

dM · ρ ln ρ− α
∫

dMρ(M)− β
∫

dM ·Mρ(M) , (16)

where α and β are parameters which will be determined from equations (13) and (14). From
equation (16) we get immediately the first-order variation

∫

dM (− ln ρ− 1− α− βM) δρ(M) = 0 ; (17)

hence,
ρ(M) = βe−βM (18)

and, by equation (14),

M =
1

β
(19)

(and −1−α = lnβ). We can see (equation (18)) that we recover the Gutenberg-Richter magnitude
distribution given by equation (1). The quantity S is called the entropy of the earthquakes. It
characterizes the seismic activity of a seismic region in a long interval of time. This seismic
activity proceeds in such a manner as to maximize the entropy; indeed, the second-order variation
of equation (16) is

∫

dM · (−1/ρ) [δρ(M)]2 < 0 , (20)

which shows that S is maximal with respect to ρ, for ρ given by equation (18). We may say,
according to Statistical Physics, that this maximal S corresponds to the statistical equilibrium of
the seismic activity in that region and in that (long) period of time. In Statistical Physics the
distribution given by equation (18) is called canonical distribution, or Gibbs distribution.[41]

From equation (15) the entropy is given by

S = 1− ln β , (21)

or (equation (16)),
S = βM − ln β . (22)
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we can see that
(

∂S

∂β

)

M

= 0 . (23)

In equation (22) we can view β and M as independent variables, such that
(

∂S/∂M
)

β
= β

and dS = βdM . This latter relation (which defines an equilibrium transformation) indicates
the physical meaning of the entropy: its changes are proportional to the changes in the mean
magnitude.

The definition (15) may lead to another viewpoint as regards the entropy. We may view the
seismic activity as consisting of a sequence Mi, i = 1, 2, ...N , of magnitudes, each realized by Ni

random, independent processes (in Statistical Physics this is Boltzmann’s hypothesis of the so-
called "molecular chaos"); the probability ρi of each of these processes is ρi = 1/Ni. We may define
the entropy si = − ln ρi = lnNi and the average entropy si = −Niρi ln ρi = lnNi = si. It follows
that the probability ρi is given by ρi = e−si = e−si. In Statistical Physics this distribution is called
the microcanonical distribution, and si = si is called microcanonical entropy.[42] Obviously, this
entropy is maximal under the condition of normalized probabilities ρi: ρi is a constant for each
Mi. We may use ρi = βe−βMi, and get the microcanonical entropy

si = si = βMi − ln β . (24)

Since the processes are independent and random, irrespective of their magnitude, their probability
ρm is given by

ρNm =
∏

i

ρi = e−
∑

i
si , (25)

whence the entropy

S = − ln ρm =
1

N

∑

i

si = βM − ln β (26)

(where N is the number of the i-processes). We can see that S, given by equation (26) is the
canonical entropy given by equation (22). The microcanonical probability

ρm = e−S = βe−βM (27)

is the value of the canonical probability for the mean magnitude.

At equilibrium the entropy is maximal ((∂S/∂β)M = 0, equation (23)); therefore, we may have
small variations δS = 1

2
(∂2S/∂β2)M(δβ)2 = (δβ)2/2β2. This variation is positive. It indicates the

tendency of departing from equilibrium. The probability ρm gives the fluctuation probability

ρf =
1√
2πβ

e
−

(δβ)2

2β2 (28)

(properly normalized). We can see that the equlibrium may have fluctuations, whose measure is
the standard deviation

∆β =
[

(δβ)2
]1/2

= β (29)

given by the normal distribution in equation (28). This is Einstein’s fluctuation formula.[43] If

in a distribution Me−βM we may view the parameter β as a statistical variable, then we get the
standard deviation ∆β = 1/M , which coincides with equation (29) for βM = 1. A similar analysis
can be made for the canonical distribution βe−βM , leading to fluctuations ∆M = 1/β = M .
Various realizations of the statistical equilibrium (in the same conditions) exhibit fluctuations,
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i.e. for another sampling of equilibrium, i.e. for another region, or another (long) period of
time, with the same mean magnitude, i.e. for another realization of the statistical ensemble at
equilibrium, the entropy may fluctuate.

Standard deviations as large as the mean value indicate a serious limitation of the information we
may get from statistical analysis of earthquake distributions. In addition, the "same conditions"
requirement of the fluctuation formula (known as the "null hypothesis") may not be fulfilled; for
instance, over a similarly (long) period of time, the geological conditions of the seismic region may
change, or the accuracy of the measured magnitudes may differ. While the information about
the evolution of the entropy over long times are not very useful, the changes in the entropy over
shorter times are expected to be more relevant in short-term prediction of earthquakes.

Short-term prediction scenario. Let us assume that we fitted the Gutenberg-Richter distribu-
tion (e.g., the cumulative distribution, equation (2)) to data gathered over a long period of time
t0 for a given region. At the moment of time t0 we have the fitting parameter β0. For a sufficiently
long period of time t0 we may assume that this seismic activity is statistically well-defined. Let
us take (at random) the next moments of time ti, i = 0, 1, 2, ...N and update the fitting to get
the parameters βi. If the quasi-equilibrium is preserved, for time intervals ti+1 − ti sufficiently
small (but still as large as to have a measurable seismic activity in each) we may assume the the
variations δβi = βi+1 − βi are fluctuations. For a sufficiently large N we may fit their distribution
with the normal law given by equation (28). Thus, we get the fitting parameter β. If β = β0

(within the fitting errors), the seismic equilibrium has not changed. If β 6= β0 the equilibrium
has changed over the period tN − t0. Consequently, we may expect a tendency to recover the
equilibrium over the next period of time t2N+1 − tN+1. Such an information may be regarded as a
short-time prediction. For instance, if β < β0, we may expect in the next time interval a decrease
in the mean magnitude, i.e. the number of earthquakes with low magnitudes will increase, and
high-magnitude earthquakes are not likely. On the contrary, if β > β0, then we may expect an
increase in the number of earthquakes with higher magnitude. We note that an increase (decrease)
in β amounts to a decrease (increase) in equilibrium entropy (equation (21)).

It may happen that the distribution of the parameter changes δβi is not a normal distribution.
Then, the ensemble is not at equilibrium in the time period tN − t0. Under the equilibrium
hypothesis, we may expect an evolution towards equilibrium in the next period. For instance, if
the distribution of the variations δβi is shifted towards higher values, i.e., if the parameters βi

show a tendency to increase, we may expect a decrease of these parameters in the next period,
i.e. an increase in the mean magnitude.

It is worth noting that the prediction scenario described above is valid under the main asumption
of independent, random seismic events. If correlations exist, the entropy formulae derived above
do not apply. A special case in this connection is the short-term foreshock (and aftershock)
activity, which can be viewed as fluctuations in magnitude. We may say that a certain sequence
of seismic events is a foreshock sequence only aposteriori, when these events are followed by a
main shock. On the other hand, the accompanying seismic activity still obeys (approximately)
the Gutenberg-Richter magnitude distribution,[44] and a decrease in the parameter β observed
for the foreshock activity was interpreted as an increase in equilibrium entropy.[8] However, such
an observation cannot be used as a (very) short-time prediction, without an apriori knowledge. In
general, we may say that the particular character of the high-magnitude seismic events and their
accompanying (associated) seismic activiy of foreshocks and aftershocks is not very relevant for
the prediction method described herein.

Also, we note that the practical application of the prediction procedure described above depends
on the choice of the (long) time period t0, the (short) time intervals ti+1 − ti and the (large)
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number N of these intervals. This choice can only be made in close connection with the particular
character of the seismic activity in the given region and in the given (long) time period.

Unfortunately, the scenario described above is not supported by data, at least for Vrancea region.
The variations in the parameter β are quasi-uniformly increasing in time, due to the accumulation
of small-magnitude earthquakes. This quasi-uniform tendency is interrupted from time to time
by large-magnitude earthquakes, which decrease appreciably the parameter β. Two examples of
short-time variations of beta are given in Fig. 1 for Vrancea seismic activity. The time t0 is
from January 1st 1980 to December 31st 2009, with 5396 earthquakes with magnitude greater
than M ≥ 2. The Gutenberg-Richter fit to these data gives β0 = 2.121 (error 17%). We have
updated the parameter β for each week of the year 2010 (Fig. 1, panel a). We can see that
this parameter increases continuously over the whole this year (due to the accumulation of small-
magnitude earthquakes). A similar procedure was used for each of the next years up to 2019 (8498
earthquakes with M ≥ 2 in the whole period 1980 − 2019, taken from Ref. [36]). In some years
the continuous increase of the parameter β is disrupted by the occurrence of greater-magnitude
earthquakes, like in the year 2011 (Fig. 1, panel b). Such variations of the parameter β cannot
be fitted by a normal distributions, and, therefore, they cannot be viewed as fluctuations. We
can only say, very imprecisely and qualitatively, that after a period of small-magnitude seismic
activity it is likely to follow a few earthquakes with greater magnitude, and viceversa, which is
a useless, common-sense expectation. Rigorously speaking, the seismic activity is not at (quasi-)
equilibrium, because the tectonic energy source feeds it continuously.

Concluding remarks. The Gutenberg-Richter statistical distribution in magnitude is derived for
a canonical ensemble by the standard procedure of maximizing the quasi-equilibrium entropy. By
assuming the seismic activity as consisting of a sequence of random, independent earthquakes with
various magnitudes, the corresponding microcanonical ensemble is examined by standard methods
and the fluctuations normal distribution is derived for earthquakes (Einstein’s fluctuation formula).
The existence of fluctuations may induce the idea of a possible short-term prediction, based on the
analysis of these fluctuations. This scenario is examined here for the seismic activity in Vrancea,
and found inconsistent. The seismic activity is feeded continuously by the tectonic energy and,
consequently, it cannot be viewed as a quasi-equilibrum statistical ensemble. The Gutenberg-
Richter distribution is shifted continuously towards small-magnitude earthquakes, with random
re-arrangements caused by higher-magnitude earthquakes.

Acknowledgements

The authors are indebted to the colleagues in the Institute of Earth’s Physics, Magurele-Bucharest,
for many enlightening discussions. This work was partially carried out within the Program Nucleu
2019, funded by Romanian Ministry of Research and Innovation, Research Grant #PN19-08-01-
02/2019.

References

[1] J. B. Berrill and R. O. Davis, "Maximum entropy and the magnitude distribution", Bull.
Seism. Soc. Am. 70 1823-1831 (1980).

[2] P. Y. Shen and L. Mansinha, "On the principle of maximum entropy and the earthquake
frequency-magnitude relation", Geophys. J. Roy. astr. Soc. 74 777-785 (1983).

[3] W. M. Dong, A. B. Bao and H. C. Shah, "Use of maximum entropy principle in earthquake
recurrence relationships", Bull. Sesm. Soc. Am. 74 725-737 (1984).



J. Theor. Phys. 9

[4] L. Masinha and P. Y. Shen, "On the magnitude entropy of earthquakes", Tectonophys. 138

115-119 (1987).

[5] I. Main and P. W. Burton, "Information theory and the earthquake frequency-magnitude
distribution", Bull. Seism. Soc. Am. 74 1409-1426 (1984).

[6] T. Nicholson, M. Sambridge and O. Gudmundsson, "On entropy and clustering in earthquake
hypocentre distributions", Geophys. J. Int. 142 37-51 ((2000).

[7] I. Main and F. Al-Kindy, "Entropy, energy and proximity to criticality in global earthquake
populations", Geophys. Res. Lett. 29 (7) 10.1029/2001GL014078 (2002).

[8] A. de Santis, G. Cianchini, P. Favali, L. Beranzoli and E. Boschi, "The Gutenberg-Richter
law and entropy of earthquakes: two case studies in Central Italy", Bull. Sesim. Soc. Am.
101 1386-1395 (2011).

[9] C. E. Shannon, "A mathematical theory of communication", Bell Syst. Tech. J. 27 379-423,
623-666 (1948).

[10] N. Wiener, Cybernetics, MIT Press, Cambridge, Massachussets (1948).

[11] B. Gutenberg and C. Richter, "Magnitude and energy of earthquakes", Ann. Geofis. 9 1-15
(1956) (Ann. Geophys. 53 7-12 (2010))

[12] B. Gutenberg and C. Richter, "Frequency of earthquakes in California", Bull. Seism. Soc.
Am. 34 185-188 (1944).

[13] C. F. Richter, Elementary Seismology, Freeman, San Francisco, California (1958).

[14] K. E. Bullen, An Introduction to the Theory of Seismology, Cambridge University Press,
London (1963).

[15] G. Ranalli, "A statistical study of aftershock sequences", Ann. Geofis. 22 359-397 (1969).

[16] T. Utsu and A. Seki, "A relation between the area of aftershock region and the energy of the
mainshock" (in Japanese), J. Seism. Soc. Japan 7 233 (1955).

[17] T. Utsu, "Aftershocks and earthquake statistics (I,II): Source parameters which characterize
an aftershock sequence and their interrelations", J. Fac. Sci. Hokkaido Univ., Ser. VII, 3

129-195, 196-266 (1969).

[18] H. Kanamori, "The energy release in earthquakes", J. Geophys. Res. 82 2981-2987 (1977).

[19] T. C. Hanks and H. Kanamori, "A moment magnitude scale", J. Geophys. Res. 84 2348-2350
(1979).

[20] B. F. Apostol, "A Model of Seismic Focus and Related Statistical Distributions of Earth-
quakes", Rom. Reps. Phys. 58 583-600 (2006).

[21] B. F. Apostol, B. F., "A Model of Seismic Focus and Related Statistical Distributions of
Earthquakes", Phys. Lett. A357 462-466 (2006).

[22] B. F. Apostol, "An inverse problem in seismology: derivation of the seismic source parameters
from P an S seismic waves", J. Seismol. 23 1017-1030 (2019).



10 J. Theor. Phys.

[23] B. Bender, "Maximum likelihood estimation of b-values for magnitude grouped data", Bul.
Seism. Soc. Am. 73 831-851 (1983).

[24] W. Marzocchi and L. Sandri, "A review and new insights on the estimation of the b-value
and its uncertainty", Ann. Geophys. 46 1271-1282 (2003).

[25] M. Bath, "Lateral inhomogeneities of the upper mantle", Tectonophysics, 2 483-514 (1965).l

[26] K. R. Felzer, T. W. Becker, R. E. Abercrombie, G. Ekstrom and J. R. Rice, "Triggering of the
1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992 Mw 7.3 Landers earthquake",
J. Geophys. Res. 107 2190 10.1029/2001JB000911 (2002).

[27] R. Console, A. M. Lombardi, M. Murru and D. Rhoades, "Bath’s law and the self-similarity
of earthquakes", J. Geophys. Res. 108 2128 10.1029/2001JB001651 (2003).

[28] D. Vere-Jones, "A note on the statistical interpretation of Bath’s law", Bull. Seismol. Soc.
Amer. 59 1535-1541 (1969).

[29] D. Vere-Jones, "Stochastic models for earthquake sequences", Geophys. J. R. Astron. Soc.
42 811-826 (1975).

[30] F. Evison and D. Rhoades, "Model of long term seismogenesis", Ann. Geophys. 44 81-93
(2001).

[31] A. M. Lombardi, "Probability interpretation of "Bath’s law", Ann. Geophys. 45 455-472
(2002).

[32] A. Helmstetter and D. Sornnette, "Bath’s law derived from the Gutenberg-Richter law and
from aftershock properties", Geophsy. Res. Lett. 30 2069 10.1029/2003GL018186 (2003).

[33] T. Utsu, "Statistical features of seismicity", International Geophysics 81 Part A, 719-732
(2002).

[34] B. F. Apostol, "Bath’s law, correlations and magnitude distributions", arXiv 2006.07591v1
[physics.geo-ph], 13 June.

[35] B. F. Apostol, Statistical Seismology, Internal Report, Institute of Earth’s Physics, Magurele
(2019).

[36] Romanian Earthquake Catalogue (ROMPLUS Catalog), National Institute for Earth Physics,
Romania (2018) (updated).

[37] S. Stein and M. Wysession, An Introduction to Seismology, Earthquakes, and Earth Structure,
Blackwell, NY (2003).

[38] T. Lay and T. C. Wallace, Modern Global Seismology, Academic Press, San Diego, California
(1995).

[39] A. Udias, Principles of Seismology, Cambridge University Press, NY (1999).

[40] C. Frohich and S. D. Davis, "Teleseismic b values; or much ado about 1.0", J. Geophys. Res.
98 631-644 (1993).

[41] L. Landau and E. Lifshitz, Statistical Physics, Course of Theoretical Physics, vol. 5, Elsevier,
Oxford (1980).



J. Theor. Phys. 11

[42] J. W. Gibbs, Elementary Principles in Statistical Mechanics, Scribner’s sons, NY (1902).

[43] A. Einstein, "Zum gegenwaertigen Stand des Strahlungsproblem", Phys. Z. 10 185-193 (1909).

[44] C. Kisslinger, "Aftershocks and fault-zone properties", Adv. Geophys. 38 1-36 (1996).

c© J. Theor. Phys. 2020, apoma@theor1.theory.nipne.ro


