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Abstract

Within the framework of the geometric-growth model of energy accumulation in the
focal region we derive the single-event (Gutenberg-Richter) and the two-event (bivariate,
pair) statistical distributions of earthquakes. In earthquake clusters, consisting of foreshock-
main shock-aftershock sequences, we identify dynamical correlations, associated, mainly, with
high-magnitude main shocks, and purely statistical correlations, associated with moderate-
magnitude main shocks. It is shown that the dynamical correlations may account, at least
partially, for the roff-off effect in the Gutenberg-Richter distributions. The appropriate tool
of approaching the accompanying seismic activity (foreshocks and aftershocks) is the pair
distribution function for the difference in magnitude, where the magnitude difference is al-
lowed to take negative values. The seismic activity which accompanies a main shock can be
viewed as fluctuations in magnitude, with a vanishing mean value of the magnitude differ-
ence and the standard deviation as a measure of the average difference in magnitude between
the main shock and the greatest aftershock or foreshock (Bath’s law). Making use of the
magnitude-difference distribution we derive the Bath’s law and discuss statistical correlations
in earthquake distributions. Deterministic time-magnitude correlations are also presented.

1 Introduction

The Bath’s law states that the average difference AM between the magnitude of a main shock and
the magnitude of its largest aftershock is independent of the magnitude of the main shock.[1, 2]
The reference value of the average magnitude difference is AM = 1.2. Deviations from this value
have been reported (see, for instance, Refs. [3]|-[5]), some being discussed in Ref. [1].

The earliest advance in understanding the origin of the empirical Bath’s law was made in Ref.
[6], where the main shock and its aftershocks were viewed as members of the same statistical
ensemble, distributed in magnitude. The magnitude-difference distribution introduced in Ref.
[6] may include correlations, which are viewed sometimes as indicating that the main shocks are
statistically distinct from the aftershocks, or the foreshocks.|7, 8] The Bath’s law enjoyed many
discussions and attempts of elucidation.[9]-[15] The prevailing opinion ascribes the variations in
AM to the bias in selecting data and the insufficiency in the realizations of the statistical ensemble.
This standpoint was substantiated by means of the binomial distribution.|3, 5, 15| In order to
account for the deviations of AM the ETAS (epidemic-type aftershock sequence) model for the
differences in the selection procedure of the mainshocks and the aftershocks was employed.|[15]
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According to this model, the variations in the number AM are related to the realizations of the
statistical ensemble and the values of the fitting parameters (see also Refs. [3, 5]).

We show in this paper that the appropriate tool of approaching the accompanying seismic activity
(foreshocks and aftershocks) of the main shocks is the distribution function of the difference in
magnitude. This distribution is derived herein by using the pair (two-event, bivariate) distribution,
as well as by means of the conditional probabilities (the Bayes theorem). Making use of the pair
distribution, we identify dynamical correlations in the foreshock-main shock-aftershock sequences,
apart from purely statistical correlations. The dynamical correlations arise from an "earthquake
interaction", i.e. an exchange (transfer) of energy (e.g. a static stress) between focal regions.
The dynamical correlations may account, at least partially, for the roll-off effect in the small-
magnitude region of the Gutenberg-Richter statistical distributions. By using the pair distribution
we are led to extend the difference in magnitude to negative values, thus obtaining a symmetric
distribution for the foreshocks and aftershocks. Such a magnitude-difference distribution has a
vanishing mean value for the magnitude difference. This suggests to view the accompanying
seismic activity as representing fluctuations in magnitude, and to take their standard deviation
as a measure for the Bath’s average difference AM between the magnitude of the main shock and
its largest aftershock (foreshock). This way, the Bath’s law is derived. In addition, it is suggested
that moderate-magnitude doublets may be viewed as "Bath partners". Also, deterministic time-
magnitude correlations in the associated seismic activity are presented.

2 Single-event distributions

According to the geometric-growth model of energy accumulation in a localized focal region,|[16]
the accumulated energy E is related to the accumulation time ¢ by

1+t/to=(1+E/Ey)" (1)

where ty and Ej are time and energy thresholds and r is a geometrical parameter. This parameter
is related to the reciprocal of the number of effective dimensions of the focal region and to the
anisotropic strain accumulation rate. The parameter r varies in the range 1/3 < r < 1. An
average parameter » may take any value in this range.

The threshold parameters should be viewed as very small, such that t/ty, E/Ey > 1; equation (1)
may be written as

A uniform frequency of events F'(t) = ¢,/t in time ¢ indicates that 1/t, is the seismicity rate. The
time and energy distributions are

P(t):—wzt—w ():EHT' (3)

Making use of E/Ey = ¢®™ t/ty = ™ where M is the magnitude, 3 = br and b = %-ln 10 = 3.45
(according to Ref. [17]), we get the Gutenberg-Richter magnitude distribution|18]

P(M) = pePM (4)

Equation (4) is used to fit the empirical distribution P(M) = AN/NyAM of AN earthquakes with
magnitude in the range (M, M + AM) out of the total number of earthquakes Ny = T'/ty which
occurred in time 7' > ty. Also, the cumulative distribution P.,(M) = e M of all the earthquakes
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with magnitude greater than M is used io fit the empirical excedence rate P.,(M) = N./Ny,
usually in the logarithmic form In N, = In Ny — M. The fiting parameter 5 (the slope of the
logarithmic excedence rate) varies from region to region and depends on the period of time T
and the size of the data set. Its variation range is 1.15 < [ < 3.45 (in decimal logarithms
0.5 < B < 1.5), in agreement with the theoretical range given by § = br, 1/3 < r < 1. Usually,
the average value 5 = 2.3 (r = 2/3) is taken as the reference value.[19, 20|

3 Bivariate distribution

Apart from regular (background) earthquakes, there exist earthquakes which are preceded by
foreshocks and followed by aftershocks. Such earthquake clusters consist of a main shock, with
magnitude M, and accompanying (associated) foreshocks and aftershocks with magnitude M
smaller than M, (M < Mj). Very likely, since such sequence earthquakes are associated in time
and space, they are correlated. In general, correlations are included in bivariate (two-event, pair)
distributions, which are given by the mixed second-order derivative of a generating function of
two variables. Let us assume that two successive earthquakes may occur in time ¢, one after time
t; = toe®™1, another after time ¢, = toe®™2 from the occurrence of the former. Using the partition
t =11 +t9 and the generating function F'(t1,ts) = to/(t1 +t2) given above, we get the distribution
OPF 2to

or, properly normalized,
eB(M1+Mz)

(GﬁMl ~|»66M2)3 . (6)

This distribution is different from P(M;)P(M,) = B2 PMi+M2) which indicates that the two
events M o are correlated. Making use of the notation M; = M, + m, we get

P(My, M) = 4>

) efﬁmam(Ml,Mg)efﬁ\m\

(14 e=Blml)?

P(My, Ms) = 4P : (7)

where | m |< max(M;, Ms). Equation (7) highlights the magnitude-difference distribution in
the variable m. If we integrate this distribution with respect to the variable M, (and redefine
M, = M), we get the marginal distribution

P™(M) = BePM —2 (8)

(14e=821)
and the corresponding cumulative distribution
Pg;g(M) =e M 1+62—,6’1M ) (9)

We can see in these equations the presence of the single-event distribution~ e=#M .

4 Dynamical correlations

The bivariate distribution derived above exhibits an interesting particularity: in the limit of small
magnitudes the cumulative marginal distributions can be written as

—
=

P™(M) = e‘ﬁMﬁ ~ e_ﬁMli G e M (10)

SIS
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We can see that the slope [ of the logarithmic cumulative Gutenberg-Richter distribution is
changed into the smaller slope /3/2 in the region of small magnitudes. Such a deviation (called the
roll-off effect) is well known in empirical studies;|21, 22] it is attributed usually to an insufficient
determination of the small-magnitude data. We can see that it is due, at least partially, to
correlations. Since the great majority of earthquakes is concentrated on small magnitudes, we can
say that there exists a sub-set of earthquakes governed by the single-event distribution

P(M) = %ﬁe%fw | (11)
This distribution can be derived from a time-energy accumulation law t/t, = (E/Ey)"/? (where
the parameter r is changed into /2, equation (2)); according to this law, the same energy is ac-
cumulated in a shorter time (in comparison with the r-law). Very likely, these correlations imply
an interaction between focal regions (an "earthquake interaction"), as, for instance, an exchange
(transfer) of static stress; we call this type of correlations dynamical correlations. Since the large-
magnitude main shocks have a large productivity of accompanying small-magnitude seismic events,
the dynamical correlations belong, mainly, to clusters with high-magnitude main shocks. Making
use of the empirical distributions, it is easy to find the relationship N? = (4AN2/ANAM)Ny,
where N, and Nj is the total number of dynamically-correlated earthquakes and the rest of earth-
quakes (governed by the Gutenberg-Richter distribution ~ e=#M), respectively. We can see that
N, ~ /Ny, like the statistical deviation. Since N, < Ny, the dynamically correlated earthquakes
do not affect much the Gutenberg-Richter distribution, except for small magnitudes.

The bivariate distribution given above can be written both for the earthquakes governed by the
Gutenberg-Richter distribution ~ e™#M and for the sub-set of dynamically-correlated earthquakes
governed by the distribution ~ e~3M  The procedure of extracting dynamically-correlated earth-
quakes can be iterated, passing from (/2 to §/4, etc; however, the number of affected earthquakes
tends rapidly to zero, and the procedure becomes irrelevant.

5 Bath’s law

Let M, and M be the magnitudes of the main shock and an acompanying earthquake (foreshock
or aftershock), respectively. We define the ordered magnitude difference m = My — M > 0 for
foreshocks and m = M — M, < 0 for aftershocks, such that | m |< M. According to equation (7),
the bivariate distribution of the pair consisting of the main shock and an acompanying event is

e_ﬁ‘m‘

P(M,,m)=4p8% " ——
( ) =45 (1 + e—Blml)?

(12)

This distribution is symmetric with respect to the change aftershocks (m < 0)-foreshocks (m > 0).

First, we apply this distribution to the dynamically-correlated earthquakes; to this end, we replace
B in equations (12) by (/2. Since the exponential e=28Iml falls off rapidly to zero with increasing
| m |, we may discard it in the denominator in equation (12). More, for large M, we may also
discard the condition | m |< M, and let | m | go to infinity. We get

P(M,,m) ~ L3235 Mse=36lml (13)

We can see that that the events M, and | m | are independent in this distribution. The only
correlations left in equation (13) are the dynamical correlations;.we may use the independent
magnitude-difference distribution

p(m) = (e ¥ (14)
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It is worth noting that this distribution can also be derived from conditional probabilities (and
Bayes theorem). Indeed, since My = My — My + My and My = My — My + My, the law ~ e~ 28M
suggests a magnitude-difference distribution ~ e~ 3PM=Mz) for M > M, and fixed Ms, and a
distribution ~ e~ 38(M2=M1) fo. My > M; and fixed M;. In both cases, these distributions can be
written as ~ e~ 2% where m = My — My (or m = My — My), | m |< maz(M,, M), irrespective
of which M, 5 is fixed.

Making use of the distribution p(m), the mean value 7 is zero (m = 0). The next correction to
this mean value, i.e. the smallest deviation of m, is the standard deviation Am = Vm2. Using
equation (14) we get m? = 8/32. We may conclude that the average difference in magnitude
between the main shock and its largest aftershock (or foreshock) is given by

22
3

This is the Bath’s law. The number 2v/2/8 does not depend on the magnitude M, (but it
depends on the parameter 3, corresponding to various realizations of the statistical ensemble). It
is worth noting that Am given by equation (15) implies an averaging (of the squared magnitude
differences). Making use of the reference value § = 2.3 we get AM = 1.23, which is the Bath’s
reference value for the magnitude difference. In the geometric-growth model the reference value
3 = 2.3 corresponds to the parameter r = 2/3. We can check that higher-order moments m?",
n = 2,3, ... are larger than m? (for any value of 3 in the range 1.15 < 3 < 3.45).

AM = Am = (15)

If we extend the dynamical correlations to moderate-magnitude mainshocks, we keep the condition
| m |< My; this condition accounts for purely statistical correlations; we get AM = /2/f, which
leads to AM =~ 0.61 for the reference value § = 2.3. Such a variablility of AM can often be
found in empirical studies. For instance, from the analysis made in Ref. [3| of Southern California
earthquakes 1990-2001 we may infere 5 ~ 2 and an average AM ~ 0.45 (with large errors); from
Ref. [5], New Zealand catalog (1962-1999) and Preliminary Determination of Epicentres catalog
(1973-2001), we may infere  ~ 2.5 — 2.3 and an average AM = 0.43 — 0.54, respectively, while
AM = /2/p gives 0.56 — 0.61. In other cases, like the California-Nevada data analyzed in Ref.
[4], the parameters are § = 2.3 and AM ~ 1.2, in agreement with the formula given in equation
(15). We note that AM = 1/2/3 given here is an over-estimate, because it extends, in fact, the
dynamical correlations (equation (11)) to small-magnitude main shocks.

Leaving aside the dynamical correlations we are left with purely statistical correlations for clusters
with moderate-magnitude main shocks. Purely statistical correlations may appear as a result of
"unknown causes". For instance, an earthquake may produce changes in the neighbourhood of
its focal region (adjacent regions), and these changes may influence the occurrence of another
earthquake. Similarly, an associated seismic activity may be triggered by a "dynamic stress",
not a static one.[23] "Unknown causes" is used here in the sense that the model employed for
describing these earthquakes does not account for such causes. For moderate-magnitude main
shocks we may still discard the exponential in the denominator in equations (12), but keep the
condition | m |< M. We get

P(M,,m) ~ e BMse=Alml (16)

and Am = 1/4/2f. For the reference vale 8 = 2.3 we get Am ~ 0.31. The Bath partner for such
a small value of the magnitude difference looks rather as a doublet.[24, 25]

The correlation coefficient (covariance) R = MM /AM;AM between the main shock and an
accompanying event M = M;— | m | (] m |< M;) can be computed by using the distribution
given in equation (16). We get R = 2/+/5. For the correlation coefficient beteen two accompanying
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events M; and M, we need the three-events distribution (which includes M; o and M). This
distribution can be derived in the same manner as the pair distribution given by equation (5).

6 Time-magnitude correlations

Let us assume that an amount of energy F accumulated in time ¢ is released by two successive
earthquakes with energies Ej o, such as E' = E; 4+ E,. Since, according to equation (2),

t/to = (FE/Ey)" = (E\/Ey+ Ey/Fy) <
(17)
< (EV/Eo)" + (Eo/Ey)" = ti/tg +ta/to

where ¢, 5 are the accumulation times for the energies E) 5, we can see that the time correspond-
ing to the pair energy is shorter than the sum of the independent accumulation times of the
members of the pair. This indicates correlations, which may be expected in earthquake clusters.
This is another type of correlations, different from dynamical or purely statistical correlations in
magnitude. They are deterministic time-magnitude correlations, arising from the non-linearity
of the accumulation law given by equation (2). The time interval 7 between the two successive

earthquakes,
T=04[1+Ey/E) —1] (18)

given by t = t; + 7, depends on the accumulation time ¢;. If we introduce the magnitudes M; 5 in
equation (18), we get
r=t [(1+e™) 1] (19)

where m = M; — Ms. We can see that this equation relates the time 7 to the magnitude difference.
The same equation can be applied to dynamically-correlated earthquakes, by replacing r by r/2.
We get

r/2
T="1 {(1 + e_bm) ”_ 1} : (20)
These correlations can be called time-magnitude correlations.

We apply this equation to a main shock-aftershock sequence, where M; is the magnitude of the
main shock (m > 0); similar results are valid for the foreshock-main shock sequence. For the
largest aftershock, where m may be replaced by Am = 2v/2/3, we get

r/2
To = tl |:<1 + eibAm) / — 1:| ~
(21)
—bAm 72\/5/7"

~ =rtie = %Ttle

1
2

(for bAm > 1). This is the occurrence time of the Bath partner, measured from the occurrence
of the main shock. The ratio 7y/t; varies between 3.5 x 107 (r = 1/3) and 3 x 1072 (r = 1); for
r=2/3 we get 1o/t; =5 x 1073,

It is worth noting, according to equation (20), that a partner close to the main shock in magnitude
(bm < 1) occurs after a lapse of time

At~y (272 1) (22)

which is much greater than 7y (At/t; varies between 0.12 and 0.41 for 1/3 < r < 1). We can
see that, even if the pair probability p(m) = (8 /4)6’%5"”‘ is greater for m = 0, an earthquake
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Figure 1: The magnitude M, of the accompanying seismic events vs the time 7 elapsed from the
main event with magnitude M; and accumulation time ¢; (equation (23) for M; = 5, b = 3.45,
r = 2/3). The Bath partner M, ~ 3.8 corresponds to 75/t; ~ 5 x 1073. Higher values of the
magnitude My occur at much longer times, where the correlations are unlikely.

close in magnitude to the main shock occurs much later, where it may be difficult to view it as

r/2
an aftershock. Since (1 +e7tm / (in equation (20)) is a decreasing function of m, we can say,

indeed, that the largest aftershock is farther in time with respect to the main shock in comparison
with aftershocks lower in magnitude. The duration 7y given by equations (21) for the occurrence
of the largest aftershock may be taken as a measure of the extension in time of the aftershock (and
the foreshock) activity. It may serve as a criterion for defining the accompaning seismic activity.

From equation (20) we can get the distribution of the magnitudes M of the acompanying earth-
quakes with respect to the time 7, measured from the occurrence of the main shock with magnitude
M, either in the future (aftershocks) or in the past (foreshocks). Indeed, we get from equation

(20)

1
Mz =M+ 1o [(1 +7/t) " — 1} ’ (23)

where t; (= toe2®1) is the accumulation time of the main shock; My in equation (23) is defined

for (1 + e~ M " 1 <7/t <2772 —1(0 < My < M;). The function M, is plotted in Fig. 1 vs
7/ty for b = 3.45, r =2/3 (f = 2.3) and M; = 5. For 7/t; very close to zero the magnitude M,
is vanishing, and for 7/t; — 27/2 — 1 the magnitude M, tends to M;; the Bath partner occurs
at To/t] ~ %Te*Q\/i/r ~ 5 x 1072 with the magnitude M, = 3.8. The function M(7/t;) is a very
steep function, for the whole (reasonable) range of parameters; the whole accompanying seismic
activity is, practically, concentrated in the lapse of time 75. On the scale 7/t; the pair probability
of this activity is an abruptly increasing function of My. If we use M; given by equation (23) in
the distribution % Be_%BMQ for small values of 7/t1, we get an Omori-type law, as expected.

Finally, we note that the aftershock (foreshock) magnitude M, given by equation (23) can be
approximated by

1 1 2T
My~ (1—zr| M ++In|— 24
? < 2r> 1+bn<rto) 2
for 1
§re_(1—r/2)bM1 <71/t < <2r/2 _ 1) o38M ’ (25)

where 1 is the cutoff time. The lower bound %rtoe_(l_r/ DPMiip equation (25) corresponds to a
(very small) quiescence time elapsed from the occurence of the main shock (M = 0). This time
is much shorter than the cutoff time ¢y, so, in fact, it is irrelevant. The cumulative fraction of
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aftershocks (foreshocks) with magnitude from zero to My is Ny /N = 1 — eféﬁMQ, where N is
the total number of aftershocks (foreshocks). Making use of equation (24) we get the cumulative

fraction for time 7

t r/2
Noun/N = 1= (2] s (26)

This fraction is a rapidly increasing function of time, as it was pointed out recently.[26] The cutoff
time, which is necessary in equation (26), remains an empirical parameter.

7 Concluding remarks

In foreshock-main shock-aftershock sequences of associated (accompanying) earthquakes we can
discerne two types of correlations. One type, which we call dynamical correlations, imply an
"interaction between earthquakes", i.e. an interaction between their focal regions (e.g., a static
stress). Another type consists of purely statistical correlations. The single-event distribution for
the dynamical correlations is derived by analyzing the bivariate (two-event, pair) distribution.
It is a Gutenberg-Richter-type exponential law with the parameter 5 changed into §/2. This
change reflects a roll-off effect in the small-magnitude region of the Gutenberg-Richter distribution,
related, mainly, to clusters with high-magnitude main shocks.

The correlations are discussed by means of the magnitude-difference distribution for earthquake
pairs, where the difference in magnitude is extended to negative values. This distribution has
a vanishing mean value of the magnitude difference, such that the foreshock-aftershock seismic
activity appears as fluctuations in magnitude. The corresponding standard deviation is the average
diference in magnitudes between the main shock and its greatest aftershock (foreshock). This
difference in magnitude is given by AM = 2v/2/f for dynamically correlated earthquakes, which
leads to AM = 1.2 for the reference value § = 2.3 (1 for decimal logarithms). If the purely
statistical correlations are included, the difference in magnitude is, approximately, AM = v/2/p.
The difference between these two formulae and the variability of the parameter 5 may explain the
variability in the results of the statistical analysis of empirical data for AM. The purely statistical
correlations for moderate-magnitude main shocks lead to smaller values AM = 1/4/2f3, where the
Bath partner looks rather as a doublet.

Also, deterministic time-magnitude correlations are discussed within the framework of the geometric-
growth model of energy accumulation. The time delay between the main shock and its largest
aftershock (foreshock) is estimated; it is suggested to use this time interval as a criterion of esti-
mating the temporal extension of the aftershock (foreshock) activity. The magnitude distribution
in time of the accompanying seismic activity is also presented.
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