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Abstract

Within the framework of the geometric-growth model of energy accumulation in the
focal region we derive the single-event (Gutenberg-Richter) and the two-event (bivariate,
pair) statistical distributions of earthquakes. In earthquake clusters, consisting of foreshock-
main shock-aftershock sequences, we identify dynamical correlations, associated, mainly, with
high-magnitude main shocks, and purely statistical correlations, associated with moderate-
magnitude main shocks. It is shown that the dynamical correlations may account, at least
partially, for the roff-off effect in the Gutenberg-Richter distributions. The appropriate tool
of approaching the accompanying seismic activity (foreshocks and aftershocks) is the pair
distribution function for the difference in magnitude, where the magnitude difference is al-
lowed to take negative values. The seismic activity which accompanies a main shock can be
viewed as fluctuations in magnitude, with a vanishing mean value of the magnitude differ-
ence and the standard deviation as a measure of the average difference in magnitude between
the main shock and the greatest aftershock or foreshock (Bath’s law). Making use of the
magnitude-difference distribution we derive the Bath’s law and discuss statistical correlations
in earthquake distributions. Deterministic time-magnitude correlations are also presented.

1 Introduction

The Bath’s law states that the average difference ∆M between the magnitude of a main shock and
the magnitude of its largest aftershock is independent of the magnitude of the main shock.[1, 2]
The reference value of the average magnitude difference is ∆M = 1.2. Deviations from this value
have been reported (see, for instance, Refs. [3]-[5]), some being discussed in Ref. [1].

The earliest advance in understanding the origin of the empirical Bath’s law was made in Ref.
[6], where the main shock and its aftershocks were viewed as members of the same statistical
ensemble, distributed in magnitude. The magnitude-difference distribution introduced in Ref.
[6] may include correlations, which are viewed sometimes as indicating that the main shocks are
statistically distinct from the aftershocks, or the foreshocks.[7, 8] The Bath’s law enjoyed many
discussions and attempts of elucidation.[9]-[15] The prevailing opinion ascribes the variations in
∆M to the bias in selecting data and the insufficiency in the realizations of the statistical ensemble.
This standpoint was substantiated by means of the binomial distribution.[3, 5, 15] In order to
account for the deviations of ∆M the ETAS (epidemic-type aftershock sequence) model for the
differences in the selection procedure of the mainshocks and the aftershocks was employed.[15]
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According to this model, the variations in the number ∆M are related to the realizations of the
statistical ensemble and the values of the fitting parameters (see also Refs. [3, 5]).

We show in this paper that the appropriate tool of approaching the accompanying seismic activity
(foreshocks and aftershocks) of the main shocks is the distribution function of the difference in
magnitude. This distribution is derived herein by using the pair (two-event, bivariate) distribution,
as well as by means of the conditional probabilities (the Bayes theorem). Making use of the pair
distribution, we identify dynamical correlations in the foreshock-main shock-aftershock sequences,
apart from purely statistical correlations. The dynamical correlations arise from an "earthquake
interaction", i.e. an exchange (transfer) of energy (e.g. a static stress) between focal regions.
The dynamical correlations may account, at least partially, for the roll-off effect in the small-
magnitude region of the Gutenberg-Richter statistical distributions. By using the pair distribution
we are led to extend the difference in magnitude to negative values, thus obtaining a symmetric
distribution for the foreshocks and aftershocks. Such a magnitude-difference distribution has a
vanishing mean value for the magnitude difference. This suggests to view the accompanying
seismic activity as representing fluctuations in magnitude, and to take their standard deviation
as a measure for the Bath’s average difference ∆M between the magnitude of the main shock and
its largest aftershock (foreshock). This way, the Bath’s law is derived. In addition, it is suggested
that moderate-magnitude doublets may be viewed as "Bath partners". Also, deterministic time-
magnitude correlations in the associated seismic activity are presented.

2 Single-event distributions

According to the geometric-growth model of energy accumulation in a localized focal region,[16]
the accumulated energy E is related to the accumulation time t by

1 + t/t0 = (1 + E/E0)
r , (1)

where t0 and E0 are time and energy thresholds and r is a geometrical parameter. This parameter
is related to the reciprocal of the number of effective dimensions of the focal region and to the
anisotropic strain accumulation rate. The parameter r varies in the range 1/3 < r < 1. An
average parameter r may take any value in this range.

The threshold parameters should be viewed as very small, such that t/t0, E/E0 ≫ 1; equation (1)
may be written as

t/t0 ≃ (E/E0)
r . (2)

A uniform frequency of events F (t) = t0/t in time t indicates that 1/t0 is the seismicity rate. The
time and energy distributions are

P (t) = −∂F (t)

∂t
=

t0
t2

, P (E) =
rEr

0

E1+r
. (3)

Making use of E/E0 = ebM , t/t0 = eβM , where M is the magnitude, β = br and b = 3
2
· ln 10 = 3.45

(according to Ref. [17]), we get the Gutenberg-Richter magnitude distribution[18]

P (M) = βe−βM . (4)

Equation (4) is used to fit the empirical distribution P (M) = ∆N/N0∆M of ∆N earthquakes with
magnitude in the range (M,M +∆M) out of the total number of earthquakes N0 = T/t0 which
occurred in time T ≫ t0. Also, the cumulative distribution Pex(M) = e−βM of all the earthquakes
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with magnitude greater than M is used io fit the empirical excedence rate Pex(M) = Nex/N0,
usually in the logarithmic form lnNex = lnN0 − βM . The fiting parameter β (the slope of the
logarithmic excedence rate) varies from region to region and depends on the period of time T
and the size of the data set. Its variation range is 1.15 < β < 3.45 (in decimal logarithms
0.5 < β < 1.5), in agreement with the theoretical range given by β = br, 1/3 < r < 1. Usually,
the average value β = 2.3 (r = 2/3) is taken as the reference value.[19, 20]

3 Bivariate distribution

Apart from regular (background) earthquakes, there exist earthquakes which are preceded by
foreshocks and followed by aftershocks. Such earthquake clusters consist of a main shock, with
magnitude Ms, and accompanying (associated) foreshocks and aftershocks with magnitude M
smaller than Ms (M < Ms). Very likely, since such sequence earthquakes are associated in time
and space, they are correlated. In general, correlations are included in bivariate (two-event, pair)
distributions, which are given by the mixed second-order derivative of a generating function of
two variables. Let us assume that two successive earthquakes may occur in time t, one after time
t1 = t0e

βM1, another after time t2 = t0e
βM2 from the occurrence of the former. Using the partition

t = t1+ t2 and the generating function F (t1, t2) = t0/(t1+ t2) given above, we get the distribution

P (t1, t2) ∼
∂2F

∂t1∂t2
=

2t0
(t1 + t2)3

, (5)

or, properly normalized,

P (M1,M2) = 4β2 eβ(M1+M2)

(eβM1 + eβM2)3
. (6)

This distribution is different from P (M1)P (M2) = β2e−β(M1+M2), which indicates that the two
events M1,2 are correlated. Making use of the notation M1 = M2 +m, we get

P (M1,M2) = 4β2 e
−βmax(M1,M2)e−β|m|

(1 + e−β|m|)
3 , (7)

where | m |< max(M1,M2). Equation (7) highlights the magnitude-difference distribution in
the variable m. If we integrate this distribution with respect to the variable M2 (and redefine
M1 = M), we get the marginal distribution

Pmg(M) = βe−βM 2

(1+e−βM)
2 (8)

and the corresponding cumulative distribution

Pmg
ex (M) = e−βM 2

1+e−βM , (9)

We can see in these equations the presence of the single-event distribution∼ e−βM .

4 Dynamical correlations

The bivariate distribution derived above exhibits an interesting particularity: in the limit of small
magnitudes the cumulative marginal distributions can be written as

Pmg
ex (M) = e−βM 2

1+e−βM ≃ e−βM 1
1− 1

2
βM

≃ e−
1

2
βM . (10)
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We can see that the slope β of the logarithmic cumulative Gutenberg-Richter distribution is
changed into the smaller slope β/2 in the region of small magnitudes. Such a deviation (called the
roll-off effect) is well known in empirical studies;[21, 22] it is attributed usually to an insufficient
determination of the small-magnitude data. We can see that it is due, at least partially, to
correlations. Since the great majority of earthquakes is concentrated on small magnitudes, we can
say that there exists a sub-set of earthquakes governed by the single-event distribution

Pc(M) =
1

2
βe−

1

2
βM . (11)

This distribution can be derived from a time-energy accumulation law t/t0 = (E/E0)
r/2 (where

the parameter r is changed into r/2, equation (2)); according to this law, the same energy is ac-
cumulated in a shorter time (in comparison with the r-law). Very likely, these correlations imply
an interaction between focal regions (an "earthquake interaction"), as, for instance, an exchange
(transfer) of static stress; we call this type of correlations dynamical correlations. Since the large-
magnitude main shocks have a large productivity of accompanying small-magnitude seismic events,
the dynamical correlations belong, mainly, to clusters with high-magnitude main shocks. Making
use of the empirical distributions, it is easy to find the relationship N2

c = (4∆N2
c /∆N∆M)N0,

where Nc and N0 is the total number of dynamically-correlated earthquakes and the rest of earth-
quakes (governed by the Gutenberg-Richter distribution ∼ e−βM), respectively. We can see that
Nc ∼

√
N0, like the statistical deviation. Since Nc ≪ N0, the dynamically correlated earthquakes

do not affect much the Gutenberg-Richter distribution, except for small magnitudes.

The bivariate distribution given above can be written both for the earthquakes governed by the
Gutenberg-Richter distribution ∼ e−βM and for the sub-set of dynamically-correlated earthquakes
governed by the distribution ∼ e−

1

2
βM . The procedure of extracting dynamically-correlated earth-

quakes can be iterated, passing from β/2 to β/4, etc; however, the number of affected earthquakes
tends rapidly to zero, and the procedure becomes irrelevant.

5 Bath’s law

Let Ms and M be the magnitudes of the main shock and an acompanying earthquake (foreshock
or aftershock), respectively. We define the ordered magnitude difference m = Ms − M > 0 for
foreshocks and m = M −Ms < 0 for aftershocks, such that | m |< Ms. According to equation (7),
the bivariate distribution of the pair consisting of the main shock and an acompanying event is

P (Ms, m) = 4β2e−βMs
e−β|m|

(1 + e−β|m|)
3 . (12)

This distribution is symmetric with respect to the change aftershocks (m < 0)-foreshocks (m > 0).

First, we apply this distribution to the dynamically-correlated earthquakes; to this end, we replace
β in equations (12) by β/2. Since the exponential e−

1

2
β|m| falls off rapidly to zero with increasing

| m |, we may discard it in the denominator in equation (12). More, for large Ms we may also
discard the condition | m |< Ms and let | m | go to infinity. We get

P (Ms, m) ≃ 1
8
β2e−

1

2
βMse−

1

2
β|m| . (13)

We can see that that the events Ms and | m | are independent in this distribution. The only
correlations left in equation (13) are the dynamical correlations;.we may use the independent
magnitude-difference distribution

p(m) =
1

4
βe−

1

2
β|m| . (14)
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It is worth noting that this distribution can also be derived from conditional probabilities (and

Bayes theorem). Indeed, since M1 = M1 −M2 +M2 and M2 = M2 −M1 +M1, the law ∼ e−
1

2
βM

suggests a magnitude-difference distribution ∼ e−
1

2
β(M1−M2) for M1 > M2 and fixed M2, and a

distribution ∼ e−
1

2
β(M2−M1) for M2 > M1 and fixed M1. In both cases, these distributions can be

written as ∼ e−
1

2
β|m|, where m = M1 −M2 (or m = M2 −M1), | m |< max(M1,M2), irrespective

of which M1,2 is fixed.

Making use of the distribution p(m), the mean value m is zero (m = 0). The next correction to

this mean value, i.e. the smallest deviation of m, is the standard deviation ∆m =
√
m2. Using

equation (14) we get m2 = 8/β2. We may conclude that the average difference in magnitude
between the main shock and its largest aftershock (or foreshock) is given by

∆M = ∆m =
2
√
2

β
. (15)

This is the Bath’s law. The number 2
√
2/β does not depend on the magnitude Ms (but it

depends on the parameter β, corresponding to various realizations of the statistical ensemble). It
is worth noting that ∆m given by equation (15) implies an averaging (of the squared magnitude
differences). Making use of the reference value β = 2.3 we get ∆M = 1.23, which is the Bath’s
reference value for the magnitude difference. In the geometric-growth model the reference value
β = 2.3 corresponds to the parameter r = 2/3. We can check that higher-order moments m2n,
n = 2, 3, ... are larger than m2 (for any value of β in the range 1.15 < β < 3.45).

If we extend the dynamical correlations to moderate-magnitude mainshocks, we keep the condition
| m |< Ms; this condition accounts for purely statistical correlations; we get ∆M =

√
2/β, which

leads to ∆M ≃ 0.61 for the reference value β = 2.3. Such a variablility of ∆M can often be
found in empirical studies. For instance, from the analysis made in Ref. [3] of Southern California
earthquakes 1990-2001 we may infere β ≃ 2 and an average ∆M ≃ 0.45 (with large errors); from
Ref. [5], New Zealand catalog (1962-1999) and Preliminary Determination of Epicentres catalog
(1973-2001), we may infere β ≃ 2.5 − 2.3 and an average ∆M = 0.43 − 0.54, respectively, while
∆M =

√
2/β gives 0.56 − 0.61. In other cases, like the California-Nevada data analyzed in Ref.

[4], the parameters are β = 2.3 and ∆M ≃ 1.2, in agreement with the formula given in equation
(15). We note that ∆M =

√
2/β given here is an over-estimate, because it extends, in fact, the

dynamical correlations (equation (11)) to small-magnitude main shocks.

Leaving aside the dynamical correlations we are left with purely statistical correlations for clusters
with moderate-magnitude main shocks. Purely statistical correlations may appear as a result of
"unknown causes". For instance, an earthquake may produce changes in the neighbourhood of
its focal region (adjacent regions), and these changes may influence the occurrence of another
earthquake. Similarly, an associated seismic activity may be triggered by a "dynamic stress",
not a static one.[23] "Unknown causes" is used here in the sense that the model employed for
describing these earthquakes does not account for such causes. For moderate-magnitude main
shocks we may still discard the exponential in the denominator in equations (12), but keep the
condition | m |< Ms. We get

P (Ms, m) ≃ β2e−βMse−β|m| (16)

and ∆m = 1/
√
2β. For the reference vale β = 2.3 we get ∆m ≃ 0.31. The Bath partner for such

a small value of the magnitude difference looks rather as a doublet.[24, 25]

The correlation coefficient (covariance) R = MsM/∆Ms∆M between the main shock and an
accompanying event M = Ms− | m | (| m |< Ms) can be computed by using the distribution
given in equation (16). We get R = 2/

√
5. For the correlation coefficient beteen two accompanying
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events M1 and M2 we need the three-events distribution (which includes M1,2 and Ms). This
distribution can be derived in the same manner as the pair distribution given by equation (5).

6 Time-magnitude correlations

Let us assume that an amount of energy E accumulated in time t is released by two successive
earthquakes with energies E1,2, such as E = E1 + E2. Since, according to equation (2),

t/t0 = (E/E0)
r = (E1/E0 + E2/E0)

r <

< (E1/E0)
r + (E2/E0)

r = t1/t0 + t2/t0 ,
(17)

where t1,2 are the accumulation times for the energies E1,2, we can see that the time correspond-
ing to the pair energy is shorter than the sum of the independent accumulation times of the
members of the pair. This indicates correlations, which may be expected in earthquake clusters.
This is another type of correlations, different from dynamical or purely statistical correlations in
magnitude. They are deterministic time-magnitude correlations, arising from the non-linearity
of the accumulation law given by equation (2). The time interval τ between the two successive
earthquakes,

τ = t1 [(1 + E2/E1)
r − 1] , (18)

given by t = t1 + τ , depends on the accumulation time t1. If we introduce the magnitudes M1,2 in
equation (18), we get

τ = t1
[(

1 + e−bm
)r − 1

]

, (19)

where m = M1−M2. We can see that this equation relates the time τ to the magnitude difference.
The same equation can be applied to dynamically-correlated earthquakes, by replacing r by r/2.
We get

τ = t1

[

(

1 + e−bm
)r/2 − 1

]

, (20)

These correlations can be called time-magnitude correlations.

We apply this equation to a main shock-aftershock sequence, where M1 is the magnitude of the
main shock (m > 0); similar results are valid for the foreshock-main shock sequence. For the
largest aftershock, where m may be replaced by ∆m = 2

√
2/β, we get

τ0 = t1

[

(

1 + e−b∆m
)r/2 − 1

]

≃

≃ 1
2
rt1e

−b∆m = 1
2
rt1e

−2
√
2/r

(21)

(for b∆m ≫ 1). This is the occurrence time of the Bath partner, measured from the occurrence
of the main shock. The ratio τ0/t1 varies between 3.5× 10−5 (r = 1/3) and 3× 10−2 (r = 1); for
r = 2/3 we get τ0/t1 = 5× 10−3.

It is worth noting, according to equation (20), that a partner close to the main shock in magnitude
(bm ≪ 1) occurs after a lapse of time

∆t ≃ t1
(

2r/2 − 1
)

, (22)

which is much greater than τ0 (∆t/t1 varies between 0.12 and 0.41 for 1/3 < r < 1). We can

see that, even if the pair probability p(m) = (β/4)e−
1

2
β|m| is greater for m = 0, an earthquake



J. Theor. Phys. 7

�
�

�

�

�

�

�

�

����

� ���� ���� ���� ���� ���� ���� ���	 ���


�����

���	

Figure 1: The magnitude M2 of the accompanying seismic events vs the time τ elapsed from the
main event with magnitude M1 and accumulation time t1 (equation (23) for M1 = 5, b = 3.45,
r = 2/3). The Bath partner M2 ≃ 3.8 corresponds to τ0/t1 ≃ 5 × 10−3. Higher values of the
magnitude M2 occur at much longer times, where the correlations are unlikely.

close in magnitude to the main shock occurs much later, where it may be difficult to view it as

an aftershock. Since
(

1 + e−bm
)r/2

(in equation (20)) is a decreasing function of m, we can say,
indeed, that the largest aftershock is farther in time with respect to the main shock in comparison
with aftershocks lower in magnitude. The duration τ0 given by equations (21) for the occurrence
of the largest aftershock may be taken as a measure of the extension in time of the aftershock (and
the foreshock) activity. It may serve as a criterion for defining the accompaning seismic activity.

From equation (20) we can get the distribution of the magnitudes M2 of the acompanying earth-
quakes with respect to the time τ , measured from the occurrence of the main shock with magnitude
M1, either in the future (aftershocks) or in the past (foreshocks). Indeed, we get from equation
(20)

M2 = M1 +
1

b
ln

[

(1 + τ/t1)
2/r − 1

]

, (23)

where t1 (= t0e
1

2
βM1) is the accumulation time of the main shock; M2 in equation (23) is defined

for
(

1 + e−bM1

)r/2 − 1 < τ/t1 < 2r/2 − 1 (0 < M2 < M1). The function M2 is plotted in Fig. 1 vs

τ/t1 for b = 3.45, r = 2/3 (β = 2.3) and M1 = 5. For τ/t1 very close to zero the magnitude M2

is vanishing, and for τ/t1 −→ 2r/2 − 1 the magnitude M2 tends to M1; the Bath partner occurs

at τ0/t1 ≃ 1
2
re−2

√
2/r ≃ 5 × 10−3 with the magnitude M2 = 3.8. The function M2(τ/t1) is a very

steep function, for the whole (reasonable) range of parameters; the whole accompanying seismic
activity is, practically, concentrated in the lapse of time τ0. On the scale τ/t1 the pair probability
of this activity is an abruptly increasing function of M2. If we use M2 given by equation (23) in

the distribution 1
2
βe−

1

2
βM2 for small values of τ/t1, we get an Omori-type law, as expected.

Finally, we note that the aftershock (foreshock) magnitude M2 given by equation (23) can be
approximated by

M2 ≃
(

1− 1

2
r
)

M1 +
1

b
ln

(

2τ

rt0

)

(24)

for
1

2
re−(1−r/2)bM1 < τ/t0 <

(

2r/2 − 1
)

e
1

2
βM1 , (25)

where t0 is the cutoff time. The lower bound 1
2
rt0e

−(1−r/2)bM1 in equation (25) corresponds to a
(very small) quiescence time elapsed from the occurence of the main shock (M2 = 0). This time
is much shorter than the cutoff time t0, so, in fact, it is irrelevant. The cumulative fraction of
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aftershocks (foreshocks) with magnitude from zero to M2 is Ncum/N = 1 − e−
1

2
βM2 , where N is

the total number of aftershocks (foreshocks). Making use of equation (24) we get the cumulative
fraction for time τ

Ncum/N = 1−
(

rt0
2τ

)r/2

e−
1

2
(1−r/2)βM1 . (26)

This fraction is a rapidly increasing function of time, as it was pointed out recently.[26] The cutoff
time, which is necessary in equation (26), remains an empirical parameter.

7 Concluding remarks

In foreshock-main shock-aftershock sequences of associated (accompanying) earthquakes we can
discerne two types of correlations. One type, which we call dynamical correlations, imply an
"interaction between earthquakes", i.e. an interaction between their focal regions (e.g., a static
stress). Another type consists of purely statistical correlations. The single-event distribution for
the dynamical correlations is derived by analyzing the bivariate (two-event, pair) distribution.
It is a Gutenberg-Richter-type exponential law with the parameter β changed into β/2. This
change reflects a roll-off effect in the small-magnitude region of the Gutenberg-Richter distribution,
related, mainly, to clusters with high-magnitude main shocks.

The correlations are discussed by means of the magnitude-difference distribution for earthquake
pairs, where the difference in magnitude is extended to negative values. This distribution has
a vanishing mean value of the magnitude difference, such that the foreshock-aftershock seismic
activity appears as fluctuations in magnitude. The corresponding standard deviation is the average
diference in magnitudes between the main shock and its greatest aftershock (foreshock). This
difference in magnitude is given by ∆M = 2

√
2/β for dynamically correlated earthquakes, which

leads to ∆M = 1.2 for the reference value β = 2.3 (1 for decimal logarithms). If the purely
statistical correlations are included, the difference in magnitude is, approximately, ∆M =

√
2/β.

The difference between these two formulae and the variability of the parameter β may explain the
variability in the results of the statistical analysis of empirical data for ∆M . The purely statistical
correlations for moderate-magnitude main shocks lead to smaller values ∆M = 1/

√
2β, where the

Bath partner looks rather as a doublet.

Also, deterministic time-magnitude correlations are discussed within the framework of the geometric-
growth model of energy accumulation. The time delay between the main shock and its largest
aftershock (foreshock) is estimated; it is suggested to use this time interval as a criterion of esti-
mating the temporal extension of the aftershock (foreshock) activity. The magnitude distribution
in time of the accompanying seismic activity is also presented.
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