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Introduction. The Maxwell equations in vacuum can be written as

divE = 4πρ , divH = 0 ,

curlE = −1
c
∂H
∂t

, curlH = 1
c
∂E
∂t

+ 4π
c
j ,

(1)

where E is the electric field, H is the magnetic field, ρ is the charge density, j is the current
density and c is the speed of light in vacuum; the charge is conserved, so we have the continuity
equation

∂ρ

∂t
+ divj = 0 . (2)

If we take the div in the second-row equations, we get the first-row equations, so we have to solve
only the former. These are two coupled sets each of three equations, with six unknown (E and
H); it follows that we have only three unknowns.

In equations (1) the charges and the currents determine the field. We can formulate the problem
of the electromagnetic interaction of two charges, i.e. the interaction of a charge with the field
generated by another charge; we may even talk about the interaction of two fields, each generated
by distinct charges. But it would be quite improper to talk about self-interaction, i.e. the
interaction of a charge with its own field, i.e. with itself, or the interaction of a field with itself; we
know that the estimation of such effects leads to the Lorentz damping, which indicates the limits
of such an improper formulation of the problem. In particular, such restrictions lead to distances
larger than the classical charge radius e2/mc2, or Compton’s wavelength ~/mc = (e2/mc2) ~c

e2
,

where e is the charge, m is the particle mass, ~ is Planck’s constant and e2/~c = 1/137 is the
fine structure constant. Also, the fields should be restricted to Schwinger limit e/(e2/mc2)2 =
m2c4/e3, or mc2/e(~/mc) = (m2c4/e3) e2

~c
, which is a very high field. Beyond these limits the

Electromagnetism, either classical or quantum-mechanical, becomes meaningless.

Quantum Electrodynamics aims at describing the electromagnetic interaction of relativistic quantum-
mechanical charges. The proper part of this interaction, as described above, which is an external-
field type interaction, is given by Dirac’s theorie of radiation. The Lamb shift and the anomalous
magnetic moment of the electron forced the Quantum Electrodynamics to approach the improper
self-interaction part. As it is well-known, this attempt leads to divergences.

It is claimed that Quantum Electrodynamics succeeds in removing the divergences by the so-called
renormalization technique and the regularization of the divergent integrals; also, it is claimed
that the finite results obtained this way are in very good agreement with the experimental data
for the Lamb shift and the anomalous magnetic moment. It is shown herein that the Quantum
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Electrodynamics is based on incorrect assumptions and incorrect manipulation of the mathematics.
Consequently, its claims are doubtful, at least.

Photons. It is essential for the renormalization technique to work with an explicitly (manifestly)
covariant formulation. To this end we introduce the field tensor

F µν =









0 −Ex −Ey −Ez

Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0









; (3)

(in Fµν the electric field changes sign). With this notation the Maxwell equations read

∂νF
µν = −4π

c
jµ ,

∂ρFµν + ∂µFνρ + ∂νFρν = 0 ,
(4)

where the current density is
jµ = (cρ, j) , ∂µj

µ = 0 . (5)

It is customary to introduce the potentials Aµ = (Φ,A), where Φ is the scalar potential and A is
the vector potential; then

Fµν = ∂µAν − ∂νAµ (6)

and the Maxwell equations become

∂ν∂
νAµ − ∂µ(∂νA

ν) =
4π

c
jµ . (7)

It is claimed that the Maxwell equations given by equations (4) (or (7)) could be derived as
Euler-Lagrange equations from the lagrangian density

L = −
1

16πc
FµνF

µν −
1

c2
jµA

µ , (8)

where Aµ are viewed as independent coordinates (the field part of equation (8) is proportional to
E2 − H2). The quantization must be compatible with the relativistic form of the lagrangian; it
involves commutation relations between the coordinates Aµ and the canonical conjugate momenta

πµ =
∂L

∂tAµ

=
1

4πc2
(

∂µA0 − ∂0Aµ
)

=
1

4πc2
F µ0 . (9)

We can see that π0 = 0, such that the canonical quantization cannot be done.

Actually, by the definition given by equation (6) of the potentials we have four potentials and
need to express by them only three fields. Consequently, the four potentials are not independent.
Therefore, we cannot treat them as independent coordinates in the variation of the lagrangian
given by equation (8). On the other hand, in order to get the interaction contribution to the
equations of motion, it is necessary to view the four potentials as independent variables. It follows
that we cannot have a lagrangian theory of the electromagnetic field and charges in the covariant
form.

In order to reduce the number of potentials from four to three we impose usually the Lorenz gauge

∂µA
µ = 0 ; (10)
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this condition connects the scalar potential to the longitudinal component of the vector poten-
tial. We might think of using a Lagrange multiplier for this condition in the variation of the
action, which would allow the use of the four potentials as independent variables. Unfortunately,
the divergence given by equation (10) is ineffective in the action. The reason for not having a
lagrangian theory for the electromagnetic field and charges in the covariant form resides in the
fact that the scalar potential includes a static part (an instantaneous interaction) which does not
describe a motion; while the lagrangian theory is specfically designed to describe a motion. It
remains that we need to explicitly eliminate the redundant degree of freedom of the longitudinal
component of the vector potential, or the scalar potential, and quantize the remaining part of
transverse photons; we shall see that the scalar and the longitudinal "photons" disappear from
the interaction problem.

The Quantum Electrodynamics adopts a different route. The lagrangian

L = −
1

8π
(∂µAν)(∂

µAν)−
1

c
jµA

µ (11)

is used to get the equations of motion

∂ν∂
νAµ =

4π

c
jµ . (12)

and the conjugate momenta

πµ =
∂L

∂tAµ

= −
1

4πc
∂0Aµ . (13)

Although the Lorenz contribution ∂µA
µ disappears from the equation of motion (12), the potentials

are still treated as four independent coordinates. This procedure modifies the Maxwell equations
(equations (12) are different from equations (7)) and leads to virtual photons and the infrared
catastrophe associated with the soft photons. In addition, the canonical quantization of the
four potentials involves unphysical quantum-mechanical conditions, which are circumvented only
formally by various technical procedures (like the Gupta-Bleuler procedure).

It is difficult to assess the consequences of these modifications. For the S matrix, the photon
propagator can be derived without resorting to the scalar potential and the longitudinal component
of the vector potential; it is sufficient to use the transverse photons and the covariant form of the
propagator; however, the latter continues to assume the existence of the redundant potentials.1

The infrared divergences are eliminated by comparing the results with the classical results (where
the Lorenz condition is used explictly); this technique is known as the Bloch-Nordsieck theorem.
However, the elimination of the divergent contributions does not warrant the inexistence of other
illegitimate, though finite, contributions.

Elimination of the superfluous potentials. We expand in Fourier series all the quantities,
like the scalar potential

Φ =
∑

k

Φke
ikr , Φ∗

−k
= Φk . (14)

According to Maxwell equations the vector potential is a polar vector which changes sign under
time reversal; therefore, additional conditions should be imposed on the Fourier expansion (as in
Dirac theory of radiation), which, however, are immaterial for what follows. From the Lorenz
gauge we get the longitudinal part of the vector potential

Al
k
=
ik

k2
Φ̇k . (15)

1L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 4, Quantum Electrodynamics (V. B. Berestetskii,
E. M. Lifshitz and L. P. Pitaevskii), Pergamon (1982).
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Making use of this relationship and the wave equation 1
c2
Φ̈k + k2Φk = 4πρk, we get the electric

field

Ek = −
4πik

k2
ρk −

1

c
Ȧ

t

k
, (16)

where At
k

is the transverse part of the vector potential. The magnetic field is given by Hk =
ik ×At

k
. The electromagnetic energy is

E =
1

8π

∫

(

E2 +H2
)

dV =
∑

k

2π

k2
ρkρ−k +

1

8π

∑

k

(

1

c2
Ȧ

t

k
Ȧ

t

−k
+ k2At

k
At

−k

)

. (17)

We can see that this energy includes the Coulomb energy Vc =
∑

k

2π
k2
ρkρ−k.

The interaction energy is computed from the mechanical work done per unit time

V =
∫

dtdV jE =
∫

dtdV
(

−1
c
j ∂A

∂t
− jgradΦ

)

=

= −1
c

∫

dV jA+
∫

dtdV divj · Φ = −1
c

∫

dV jA−
∫

dtdV ∂ρ

∂t
Φ .

(18)

In the mechanical action the last term in this equation becomes
∫

dtdV ρ
∂Φ

∂t
=

∫

dV ρΦ , (19)

such that the interaction energy acquires the well-known form

V =

∫

dV

(

ρΦ−
1

c
jA

)

. (20)

This energy can be decomposed into longitudinal and transverse contributions

V =
∫

dtdV [(jE)l + (jE)t] =

=
∫

dV
(

ρΦ− 1
c
jlAl

)

− 1
c

∫

dV jtAt .
(21)

Let us compute the longitudial part of this interaction by using the continuity equation jl
k
= ik

k2
ρ̇k

and the longitudinal part of the electric field given by equation (16); we get

Vl =

∫

dtdV (jE)l = −

∫

dt
∑

k

4π

k2
ρ̇kρ−k = −

∑

k

2π

k2
ρkρ−k = −Vc . (22)

We can see that the longitudinal part of the interaction cancels out the Coulomb contribution to
the electromagnetic energy, such that we are left with a total energy

E + V =
1

8π

∑

k

(

1

c2
Ȧ

t

k
Ȧ

t

−k
+ k2At

k
At

−k

)

−
1

c

∑

k

jt
k
At

−k
(23)

arising only from the transverse fields. The work done by charges upon the field, which is the
longitudinal part of the interaction, is stored in the Coulomb part of the field, and viceversa. We
note that this is so only if we use explicitly the Lorenz gauge, which is not the procedure of the
Quantum Electrodynamics.

The transverse part of the electromagnetic energy

Et =
1

8π

∑

k

(

1

c2
Ȧ

t

k
Ȧ

t

−k
+ k2At

k
At

−k

)

(24)
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can be quantized by

At
k
= αk

(

ekak + e−ka
∗

−k

)

, Ȧ
t

k
= iαkωk

(

ekak − e−ka
∗

−k

)

, (25)

where ek are real unit vectors perpendicular to k (polarization vectors), ωk = ck and αk =
c
√

2π~/ωk; we get

Et =
∑

k

1

2
~ωk(aka

∗

k
+ a∗

k
ak) (26)

and equations (25) from the quantum-mecahnical equations of motion with the commutation
relations [ak, a

∗

k
′] = δkk′, [ak, ak′ ] = 0. Two contributions of the type given by equation (26) exist,

corresponding to the two transverse polarizations.

The S-matrix expansion. By means of the Dirac equation the Quantum Electrodynamics
builds up the Dirac field for electrons. This field describes the electrons (and their antiparticles
- the positrons) as quanta of energy, which can be created or destroyed in interaction processes.
The electron field assumes, at one point, one electron or no electrons; there exists no more than
one electron (positron) at one point (they are fermions). The free hamiltonian H0 includes the
electromagnetic energy, corresponding to the lagrangian given by equation (11), and the Dirac
field energy. The interaction hamiltonian is

V =
1

c

∫

dV jµAµ , (27)

where jµ is the current density of the Dirac field. The wavefunction, which depends on the
occupation numbers of photons and fermions, satisfies the Schroedinger equation

i~
∂ψ

∂t
= (H0 + V )ψ ; (28)

by ψ = e−
i

~
H0tϕ (the interaction representation), this equation becomes

i~
∂ϕ

∂t
= V (t)ϕ , V (t) = e

i

~
H0tV e−

i

~
H0t . (29)

The solution of this equation can be written as

ϕ = ϕ0 −
i
~

∫ t

t0
dt1V (t1)ϕ(t1) =

= ϕ0 −
i
~

∫ t

t0
dt1V (t1)ϕ0 +

(

− i
~

)2 ∫ t

t0
dt1

∫ t1

t0
dt2V (t1)V (t2)ϕ0 + ... .

(30)

This expansion describes scattering (interaction) processes. The wavefunction ϕ0 is the incoming
wavefunction corresponding to t0 = −∞; the wavefunction ϕ corresponding to t = +∞ is the
outgoing wavefunction; the operator S which connects ϕ to ϕ0 by ϕ = Sϕ0 is the S-matrix. The
expansion given by equation (30) is the S-matrix expansion. The scalar product (ϕ, ϕ0) gives the
transition amplitudes. They are computed from equation (30) by using the Wick’s theorem and
the Feynman propagators.

The S-matrix expansion is written by Feynman and Dyson in Quantum Electrodynamics as

ϕ = ϕ0 −
1
1!

i
~

∫ t

t0
dt1T [V (t1)]ϕ0 +

1
2!

(

− i
~

)2 ∫ t

t0
dt1

∫ t

t0
dt2T [V (t1)V (t2)]ϕ0 + ... =

= Te
−

i

~

∫
t

t0
dt1V (t1)ϕ0 ,

(31)
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where T denotes the chronological ordering: the interaction terms should be written from left to
right in the order of the descending times. The Feynman-Dyson S-matrix expansion is incorrect.
Indeed, let us compute

I =

∫ t

t0

dt1

∫ t1

t0

dt2f(t1)f(t2) (32)

for any function f(t). We get

I =

∫ t

t0

dt1f(t1)F (t1)− [F (t)− F (t0)]F (t0) , (33)

where F is the primitive of the function f . Similarly, we get

IT = 1
2

∫ t

t0
dt1

∫ t

t0
dt2T [f(t1)f(t2)] =

= 1
2

∫ t

t0
dt1 [f(t1)F (t1)− F (t1)f(t1)]−

1
2
[F (t)− F (t0)]F (t0) +

1
2
F (t) [F (t)− F (t0)] .

(34)

We can see that I 6= IT .

Dirac equation. The Dirac equation was devised to describe the motion of a relativistic quantum-
mechanical electron. It reads

γµpµψ = mcψ , (35)

where γµ are the Dirac matrices, pµ = i~∂µ are the electron momenta, ∂µ = (∂/c∂t, grad), m is
the electron mass and ψ is a four-component spinor. The equation can also be written as

i~
∂ψ

c∂t
= (−i~αgrad+mcβ)ψ , (36)

where α = γ0γ and β = γ0. However, a relativistic electron has an energy pc of the order mc2,
which leads to a mechanical action of the order mc2τ ; if mc2τ <a few ~, which means τ of the
order of the Compton time τc = ~/mc2 and distances of the order of the Compton wavelength
λc = ~/mc, then the Dirac equation is valid. On the contrary, if τ ≫ τc and distances d are such
that d ≫ λc, then we are in the quasi-classical limit and the Dirac equation becomes

E/c = αp+mcβ , (37)

which is not a valid equation. The Dirac equation has not a classical limit. It follows that the Dirac
equation cannot be used to describe the motion of a relativistic quantum-mechanical electron in
this range of parameters. Moreover, for distances shorter than the Compton wavelength, or for
shorter times than the Compton time, the electromagnetic field becomes meaningless. This can be
seen, for instance, for an electron in the Coulomb field of a heavy nucleus with atomic number Z,
when the field Ze/(~/mc)2 is comparable with Schwinger’s field given by eE(~/mc) = mc2; we get
in this case Z = ~c/e2 = 137, which shows that such atoms cannot exist. For distances and times
shorter than the Compton values, athough the Dirac equation is valid, it is not appropriate to
descrbe the electromagnetic interaction. It remains that the great merit of the Dirac equation is the
fact that it puts the electron equation in a relativistically invariant form, which leads to predicting
the fermionic nature of the electrons, the one-half spin of the electron and the anti-electron (the
positron), all consequences of the Relativity. The quantum-mechanical motion of the relativistic
electron over distances and times of the order of the Compton values is the Zitterbewegung. The
Zitterbewegung is not a physical motion. It is associated with the destruction and creation of the
electron quantum. In the S-matrix processes, when absorbing or emitting a photon, the electron is
destroyed and created, such that the uncertainty in energy is of the order mc2. These unphysical
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processes cannot be described by any equation. If it could, it would amount to describing by
equations the quantum-mechanical uncertainty, which is non-sensical. Therefore, we must content
ourselves with a basic cutoff in working with electron equations, of the order of the Compton
wavelength for distances, and, correspondingly, the Compton time for durations. The effects
associated with shorter distances and times than a cutoff of the order of the Compton cutoff are
uncertainties.

Quantum-mechanical Klein-Gordon equation. The motion of the relativistic quantum-
mechanical electron proceeds by a change δxµ in the coordinates xµ, denoted uµ, according to the
scheme xµ −→ xµ + δxµ, δxµ = uµ, xµ −→ xµ + uµ. We will take the first-order variations with
respect to uµ of the Dirac equation

γµ∂µψ =
mc

i~
ψ . (38)

According to the Dirac equation the Zitterbewegung implies that the coordinates should be viewed
as matrices (like γµ). We write xµ = sµ · 1, where s0 = ct, s = r and 1 denotes the unit matrix; we
have xµx

µ = sµs
µ · 1 = s2 · 1, where s2 = c2t2 − r

2. For δxµ we need δxµδx
µ = uµu

µ = u2 = ds2;
the (non-trivial) solution of this equation is

δxµ = uµ =
1

2
uγµ (39)

(since γµγ
µ = 4). The first-order expansion of the Dirac equation is

γµ (∂µψ + uν∂ν∂µψ) =
mc

i~
(ψ + uν∂νψ) , (40)

or

∂µ∂µψ = −
m2c2

~2
ψ , (41)

which corresponds to the Klein-Gordon equation pµp
µψ = m2c2ψ. We note that u is absorbed

into ψ, hence the bosonic character of the latter. We write

ψ =
∑

k

c

√

~

2εk
(ψkα) e

ikr , (42)

where εk = εk = c
√

k2 +m2c2/~2,

(ψkα) =









ck,+1

ck,−1

b∗
−k,−1

b∗
−k,+1









, (43)

and the c’s and the b’s satisfy usual bosonic commutation relations for four distinct types of
bosons, corresponding to ckσ and bkσ; σ = ±1 is the spin label and the c’s and the b’s correspond
to positive and negative energies (frequencies), respectively. We attribute this field to the motion
of the electrons. This bosonic field has an energy

He =
∑

kσ

~εk (c
∗

kσckσ + b∗
kσbkσ) , (44)

a momentum and a charge, similar to the Dirac field, and a current density given by

jµ = (cρ, j) =
ie

~

(

ψ∂µψ −
(

∂µψ
)

ψ
)

, (45)
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or
ρ = ie

~c2

(

ψψ̇ − ψ̇ψ
)

, ji = − ie
~

(

ψ∂iψ − ∂iψψ
)

, (46)

where the adjoint ψ is the transposed and conjugate to ψ. This current density can be written
immediately in terms of the c and b operators. In addition, the Klein-Gordon equation can be
obtained from a lagrangian theory. The electron motion is the motion of the Zitterbewegung.

The linear approximation used in the expansion above spoils the effects of the electromagnetic
field, such that, in the presence of the electromagnetic field, we need to use the covariant derivative
Dµ = ∂µ −

e
ic~
Aµ, according to ψ −→ ψ + uµDµψ; we get the Klein-Gordon equation

(

pµ −
e

c
Aµ

)(

pµ −
e

c
Aµ

)

ψ −
ie~

2c
σµνFµνψ = m2c2ψ (47)

with electromagnetic field. In addition, the limits of the Electromagnetism imply a lower bound
upon the interaction (photons) wavelength, of the order of the Compton wavelength (as well as
upon the electron wavelength). We can see that it amounts to applying twice the Dirac equation.
We can see that the interaction terms are

vp =
1

c
jµA

µ =
ie

c~

[

ψ (∂µψ)−
(

∂µψ
)

ψ
]

Aµ (48)

(where the gauge condition ∂µA
µ = 0 is used),

vd = −
e2

c2~2

(

ψψ
)

AµA
µ (49)

and
vH = − e

2c~
ψ (

∑

+
∑

∗)ψH ,

vE = ie
2c~
ψ (α−α∗)ψE ,

(50)

where

α =

(

0 σ

σ 0

)

, Σ =

(

σ 0
0 σ

)

(51)

and σ are the Pauli matrices. The interactions vH and vE arise from the σµνFµν-term in equation
(47). This is known as the "Pauli term". The symmetrization and antisymmetrization in equations
(50) ensure the consistency of the equations of motion (for ψ and ψ and real energy).

Now, we can proceed to do perturbation theory and S-matrix expansion (using equation (30))
making use of the free electron hamiltonian He given by equation (44), the free photon hamilto-
nian Et given by equation (26) (only transverse photons) and the interactions terms given above.
Obviously, we must use a cutof wavelength of the order of the Compton wavelength λc = ~/mc.
Similarly, we retain in vp only the transverse part.

Experimental situation. The calculations performed by using the Dirac field imply using twice
the Dirac equation, which amounts to using the Klein-Gordon equation. In the lowest order of
the perturbation theory such calculations do not imply the electron self-energy, nor the vacuum
polarization. The results are the same as those obtained by the Dirac theory of radiation, or by
using the quantum-mechanical theory of perturbation, as described in Heitler’s book.2 To this ap-
proximation, the interaction does not occur over regions with dimension smaller than the Compton
wavelength. These results are in good agreement with experimental measurements. Higher-order

2W. Heitler, The Quatum Theory of Radiation, Dover (1984).
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calculations in the perturbation theory, involving electron self-energy and vacuum polarization,
imply interactions over distances of the order of the Compton wavelength (self-interaction), and
lead to divergences (ultraviolet divergences). Apart from their theoretical interest, such calcu-
lations were prompted by two experimentally measured effects, namely the Lamb shift and the
anomalous magnetic momemt of the electron.

In order to eliminate these divergences the Quantum Electrodynamics devised a renormalization
and regularization scheme. The resulting finite quantities are extremely small corrections. It is
claimed that these results are in very good agreement with the experimental measurements.

The renormalization and regularization procedure is based on arbitrary modifications of the diver-
gent integrals and on an obscure claim that the interaction effects should act upon bare particles
with an infinite mass and an infinite charge, such that, cancelling out these two infinities, the one
arising from interaction and the other arising from the bare particles, we would get finite results.
This procedure is almost impossible to be applied in practice, and many errors were discovered in
calculations of the Lamb shift and the anomalous magnetic moment of the electron.3 Moreover,
it seems that the experimental measurements are affected by unknown, unexplainable errors. In-
deed, according to the boson theory described above, the results must depend on the cutoff used,
which is of the order of the Compton wavelength but it has no definite value. These calculations,
as well as the corresponding experimental results only tell that we are dealing with uncertainties;
we can assess their order of magnitude, but, of course, we cannot give a definite value.

c© J. Theor. Phys. 2020, apoma@theor1.theory.nipne.ro

3O. Consa, "Something is rotten in the state of QED" (2020).


