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Abstract

Quasi-free electrons sliding over the free surface of a solid are identified. We may say that
this circumstance gives rise to topological conductors. Superficial plasmonic oscillations and
polaritonic waves are highlighted for these electrons. It is shown that the surface electrons
behave as a degenerate two-dimensional Fermi gas (thermodynamically equivalent with a two-
dimensional Bose gas). A characterization as complete as possible is made for the surface
electrons, including single-particle properties, transport properties, the solenoidal effect and
the skin effect. The transport properties are governed by much shorter mean freepaths and
lifetimes of the quasi-particles, due to te lower density of the surface electrons in comparison
with the bulk electrons. Absorption rate of uniform quasi-static magnetic field is computed.

Introduction. Let us consider an ensemble of many fermions, leaving aside their interaction and
the question of their stability. This is a very idealized picture, where we may expect surprising
things. One of such things is related to the dimensionality of the space the fermions move in.
Indeed, in three dimensions the density dn of fermionic states is proportional to

√
εdε, where ε is

the energy of a fermionic state, while in two dimensions dn ∼ dε and in one dimension dn ∼ dε/
√
ε.

We can see that at the Fermi level there exists a large state density in three dimensions, which
indicates the possibility of a normal Fermi liquid picture, when interaction is present; in two
dimensions the state density does not depend on the Fermi level, so we may expect no difference
between the thermodynamics of a two-dimensional gas of fermions and the thermodynamics of
a two-dimensional gas of bosons. Indeed, this indication is verified by a direct calculation.[1] In
one dimension the fermionic state density is very small at the Fermi level, such that we expect a
dynamics governed entirely by bosonic density degrees of freedom, and no Fermi surface (points).
We say that the one-dimensional models of fermions are bosonized.[2]

More surprises are claimed to appear in two-dimensional ensembles of many fermions. For instance,
since in two dimensions there exist rotations only about one axis, it is suggested that the spin does
not exist anymore for fermions in two dimesions. Moreover, an electron state around a localized
magnetic flux may have any phase; in particular, for an integral number of magnetic flux quanta
the electric charge of the electron would be fractional, because the electric charge multiplies the
magnetic flux in the phase. So, it appeared the idea of composite electrons, i.e. electrons with an
associated number of quanta of magnetic flux, which would have a fractional occupation number
and a fractional statistics (any fraction, so their denomination of anyons).[3]

The fermion ensembles in two dimensions received a new impetus with the discovery of the
graphene.[4] Since graphene sheets occur with a small size, the edge electronic states have been
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brought into discussion.[5] The electric field preserves a Kramers degeneracy of the electronic spin
states, related to the time reversal symmetry; but a magnetic field removes this degeneracy, and
trasforms the graphene bulk in an insulator. This is not so for the edge states, which have a
completely different spectrum than the bulk ones. The graphene edges remain conducting the
electrical current. It is said that the edge states are protected by the time reversal symmetry, and
they define a conductor surrounding an insulator; the latter is called a topological one, because
its surface is a conductor.[6]

However, the surface is the deed of the devil. It seems that Pauli said that "God made the bulk;
the surface was invented by the devil". We show in this paper that quasi-free surface electrons
are ubiquituous

Topological conductors. Let us consider a solid consisting ofN atoms (ions), placed at positions
ri, i = 1, 2, ...N , and N electrons. The wavefunction of a free electron is 1√

V
eikr,where k is

the wavevector and V is the volume. An electron can be trapped in an atom (ion), where its
wavefunction is 1√

v
χ(r − ri); χ is a function localized over the volume v, which is of the order

of the volume assigned in the solid to an atom placed at ri, such that 1
v

∫

dr | χ |2= 1. The
wavefunction of an electron trapped in any atom in solid is

1√
N

∑

i

1√
v
χ(r − ri) . (1)

The amplitude of probability for a electron to be trapped in solid is

1√
N

∑

i

1√
vV

∫

drχ∗(r − ri)e
ikr =

1√
N

∑

i

√

v

V
eikri , (2)

such that the probability for the electron to be trapped is

P =
v

NV

∑

ij

eik(ri−rj) . (3)

If the atoms are distributed randomly, the summation in equation (3) gives N2δk0, such that we
get P = Nv/V . Since Nv = V , this probability is equal to unity. It follows that in an amorphous
solid all the electrons can be trapped, and the solid is an insulator, as it is well known. If the
solid is crytalline, the summation in equation (3) gives N2δkg, where g is a vector of the reciprocal
lattice. It follows that the electron states lying on the walls of the Brillouin zone are trapped. The
corresponding energy bands are blocked by the exclusion principle. Therefore, again the solid is
an insulator (actually, there are 2N electrons in each band, as a consequence of their spin states).
If the band is not completed, the crystalline solid is a conductor, as it is well known.

The situation is different in a two-dimensional solid, i.e. a solid with the atoms arranged on
a plane surface. In this case the electrons are delocalized over a transverse distance d, where
d > a, v = a3. The above probability reads P = (Nσ/S)a

d
, where S is the area of the solid,

V = Sd, and σ = a2 is the area of the cross-section of the volume assigned to an atom. Now,
for an amorphous two-dimensional solid Nσ/S = 1, such that P = a/d < 1. It follows that
an amorphous two-dimensioanal solid is always a conductor. A similar conclusion holds for a
crystalline two-dimensional solid, and for a one-dimensional solid.

An estimation of the distance d can be obtained from simple geometrical arguments. An electron
moving along a single plane layer of atoms has a transverse distance d = 2a at its disposition,
while it has only the distance d = a if the layer of atoms is sandwitched between two other atomic
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layers. It the layer of atoms is deposited on a solid surface, the distance d becomes equal to a,
but the extent of the atomic volume in the transverse direction is reduced to a/2. In both cases
the ratio a/d is equal to 1/2.

It is well known that the mean inter-atomic separation distance is modified at the surface of a solid,
in comparison with the bulk, albeit to a very small extent. For instance, in an anharmonic solid
the lattice parameter is slightly increased at the surface, or has an oscillatory behaviour.[13] This
makes the electrons at the surface to have a small additional room, measured by the transverse
distance d > a. On the other hand, the electrons and the ions at the surface form a charge
inversion layer, where the electrons spill over the surface, leaving behind a positive ionic charge;
the characteristic dimension of this layer is of the order of the mean inter-atomic distance.[8]-[10]
Therefore, we may expect that a small amount of electrons at the surface of an insulator are
quasi-free. Their motion is completely decoupled from the bulk electrons. We may say that this
circumstance defines a topological conductor. A special discussion requires metals consisting of
micro-crystallites, or metallic glasses, alloys, etc, where the electron band structure varies slightly
locally (in a quasi-classical description). This variation is abrupt at the surface, where the energy
bands are split and the surface quasi-free electrons occupy an incomplete band.

We give here an estimation of the thickness of the distorted superficial layer of a solid. As it is well
known, at the atomic level the physical quantities vary abruptly and indeterminately in space and
time. Usually, we average this motion over small spatial regions and small durations. Thereby, we
get homogeneous domains, which microscopically may be sufficiently large, but macroscopically
they are very small. At the surface this homogeneity is lost, such that we may estimate the
thickness of the superficial layer as the dimension of a domain. The variation of the volume
due to the atomic extent of the particles is δΩ/Ω = a30/a

3, where a0 is the atomic dimension
and a is the mean inter-atomic separation distance; it follows δΩ = (a0/a)

3a3Nd, where Nd is
the number of atoms in a domain. On the other hand, the volume variation of a domain is
δΩ = Aa = N

2/3
d a3, where A is the area of the surface which encloses the domain. These two

relations lead to N1/3
d = (a/a0)

3, which indicates a dimension D = N
1/3
d a = (a/a0)

3a for a domain.
For instance, making use of typical values a0 = 1Å and a = 4Å, we get D = 64a = 256Å and
Nd = (R/a)3 ≃ 105. This is an estimation of the size of the domains and the thickness of the
superficial layer. An order of magnitude 102Å is estimated, by other arguments in Ref. [11].
Averaging over fractions of domains at the surface leads to surface electromagnetic fields distinct
from the bulk fields, which sustain surface plasmon-polaritons.[12] In addition, the change in the
electronic structure at the surface highlights surface electrons decoupled from the bulk.

it is expected that the density n of the surface electrons is much reduced in comparison with
their bulk density nb; we write n = βnb (the typical electron density in a solid is nb = 1022cm−3).
Indeed, the maximum deviation from homogeneity of a single domain describe above is one atom
in 64 atoms, which indicates a factor β = 1/64 of the order β = 10−2. On the other hand, the
relative variation of the lattice parameter at the surface of an anharmonic solid is of the order
10−6.[7] We may take an average order of magnitude 10−4 for the parameter β.

Collective motion. As it is well known, the existence of a (quasi-) plane surface leads to the
existence of a surface plasmonic mode with frequency ωp/

√
2, where ωp = (4πnbe

2/m)1/2 is the
bulk plasmon frequency; −e and m are the electron charge and the electron mass.[13] This mode
corresponds to a motion perpendicular to the surface and exists only in conjunction with the
bulk plasmon. On the other hand, polaritonic modes may exist in the superficial layer, due to
electromagnetic waves propagating along the surface. These modes have been identified recently in
a wire with a circular cross-section;[12] they may guide electromagnetic waves along the surface,
propagating dispersionless with the speed of light in vacuum.[14]-[17] These modes are called



4 J. Theor. Phys.

surface plasmon-polariton modes, since they have a resonant behaviour at the surface plasmon
frequency.

A different plasmon mode may appear along the finite dimension of a superficial layer. In general,
the bulk plasmon is generated by the local internal (polarization) field. Indeed, if the charges q
(q = −e) with concentration nb suffer a local displacement u, then a local charge density imbalance
−nbqdivu occurs, which generates an internal field given by divE = −4πnbqdivu. This equation
holds locally, with a spatial variation in all the three directions, in general. Consequently, the
internal field is given by E = −4πnbqu. In the equation of motion for a charge

mü +mω2
cu+mγu̇ = qE0 + qE , (4)

where ωc is a characteristic (internal) frequency of the charge, γ is a small dissipation coefficient
and E0 is the external electric field, the internal field generates the term −4πnbq

2u, which leads
to the plasma frequency ωp = (4πnbq

2/m)1/2. For the motion of the superficial charges along a
finite dimension L the div does not hold locally anymore; the smallest charge density imbalance
is given approximately by δn ≃ nu/L, where n = βnb (nb = 1/a3) is the surface electron density,
u is the displacement and L is of the order of the linear dimension of the surface, for a body
with a relatively smooth surface. The electric potential of the surface charges is of the order is
ϕ ≃ β1/3q/a. The corresponding interaction energy for a charge is qϕ(u/L)2 = (β1/3q2/a)(u/L)2,
which indicates that a charge has an eigenfrequency ω0 given by (β1/3q2/a)(u/L)2 = mω2

0u
2, i.e.

ω0 =
1

L

√

β1/3
q2

ma
= β1/6 a

L

√

q2

ma3
= β1/6ωp

a

L
. (5)

This eigenfrequency of the motion of the surface electrons is much lower than the bulk plasma
frequency; indeed, for L = 10cm we get ω0 ≃ 10−8ωp (for typical distances a = 4Å. we may
neglect the factor β1/6). The equation of motion for these superficial charges mü + mω2

cu +
mω2

0u + mγu̇ = qE0 gives an internal field Ei = −mω2
0u/q = E0ω

2
0/(ω

2 − ω2
c − ω2

0 + iωγ), a
total field Et = E0 +Ei = E0(ω

2 − ω2
c + iωγ)/(ω2 − ω2

c − ω2
0 + iωγ), a surface dielectric function

ε = 1−ω2
0/(ω

2−ω2
c + iωγ) and a conductivity σ = (nq2/m)iω/((ω2−ω2

c + iωγ) (j = nqu̇ = σEt).
The resonance exhibited by the polarizability α = ω2

0/((ω
2−ω2

c −ω2
0+iωγ) at ω2 = ω2

c+ω
2
0 may be

tested experimentally (Ei = αE0). For the surface quasi-free electrons ωc = 0. We note that the
surface conductivity is smaller by the factor β than the bulk conductivity. ωps = (4πβnbq

2/m)1/2

may be viewed as the plasma frequency of the surface electrons.

We note that the plasma frequency given above can be written as ω0 = v/R, where v =
√

q2/ma
is a characteristic velocity (we leave aside the factor β1/6); for electrons and typical values of a this
velocity is of the order 108cm/s; for L = 10cm we get ω0 = 10Mhz (and ωp = 1015s−1). A similar
set of frequencies cl/R, where c is the speed of light in vacuum and l = 1, 2, , , ,, was obtained for
polaritons moving along the circumference of a wire with radius R.[12]

Single-particle properties. Thermodynamics. We consider here the surface electrons of a
long and thin wire, with length L and radius R of the circular circumference, L≫ R. We consider
both L and R much larger than the mean inter-atomic separation distance a and omit the motion
across the small thickness D of the surface layer. As it is well known, the thermodynamic properties
of a two-dimensional gas of electrons are equivalent with the thermodynamic properties of a gas of
bosons.[1] (In two dimensions there is no superfluid transition). The single-particle wavefunctions
of the surface electrons are 1√

2π
eilϕ 1√

L
eikx, where ϕ is the angle on the circumference, l is any integer

and k is the continuous wavevector along the length of the wire (direction x). The corresponding
single-electron energies are given by

ε =
~
2

2mR2
l2 +

~
2

2m
k2 . (6)
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These energies define a continuous two-dimensional Fermi sea, which is a circular disk in the
variables

√

~2/2mR2l and
√

~2/2mk. The superficial density of electrons is given by

ns =
m

π~2

∫ ∞

0

dε
1

e(ε−µ)/T + 1
, (7)

an equation wich defines the chemical potential µ (spin included). We can see that the thermal
wavelength λ = (π~2/2mT )1/2, where T is the temperature, is much smaller than the (macroscopic)
dimensions R, L and the thickness of the layer of the superficial electrons, over a wide range of
temperatures, such that the thermodynamcs is well defined and the gas is degenerate. From
equation (7) we get µ = π~2ns/m. Therefore, the chemical potential of the surface electrons is
smaller by the factor β2/3 than the chemical potential of the bulk electrons. The grand-partition
potential is given by

Ω = −mA
π~2

∫ ∞

0

dε
ε

e(ε−µ)/T + 1
= −E = −pA , (8)

where A is the area of the cylindrical surface of the wire, E is the energy and p is the "pressure",
i.e. the force per unit length. We get

E =
mA

2π~2
µ2

(

1 +
π2

3
T 2/µ2 + ...

)

, (9)

whence, by means of E = −T 2∂(F/T )/∂T , we may get the free energy and all the other thermody-
namic properties. The contribution of the surface electrons to the speific heat is Cs = πmAT/3~2.

Transport properties. The two-dimensional Fermi sea defined by the chemical potential µ
computed above has a Fermi wavevector of the order β1/31/a, where a denotes the mean separation
distance between the (bulk) electrons, in both directions, i.e. along the wire and along the
circumference of the wire. In typical metals the Fermi velocity vF = ~/ma is of the order 107 −
108cm/s (n = 1022cm−3). For the surface electrons it is diminished by the factor β1/3. The
single-particle elementary excitations are quasi-particles, with a lifetime governed by the thermal
uncertainty, phonons, impurities, etc. The static electrical conductivity computed above reads
σ = nq2/mγ = βω2

p/4πγ. This equation may be used to get the dissipation coefficient γ. In
typical metals at room temperature γ = 1013 − 1014s−1 (and ωp = 1015s−1) for bulk electrons;
we may assume that the same order of magnitude is preserved for the surface electrons. The
parameter γ defines a lifetime τlf = 1/γ and a mean freepath Λ = vF τlf of the order 0.1−1µm for
bulk electrons at room temperature. For the surface electrons the mean freepath is Λs = β1/3Λ.
Similarly, the quasi-particles lifetime is of the order τlf = ~µ/T 2, which gives γ = 1012s−1 for
bulk electrons (µ = 1eV ) at room temperature. For the surface electrons we get τlf = β2/3τlfbulk,
γs = β−2/3γ and Λs = βΛ. We can see that the mean freepath of the surface electrons may be
appreciably smaller than the mean freepath of the bulk electrons. The transport properties of the
surface electrons are much poorer than those of the bulk electrons, as a consequence of their much
lower density. The dissipation coefficient is diminished in oscillations (ω 6= 0). We note that the
surface current along the wire is smaller by a factor D/R than the bulk current, where D is the
thickness of the surface layer (estimated above as 256Å).

Solenoidal effect. Let us assume a uniform harmonic displacement

u0e
−iωtDδ(r − b) (10)

along the circumference of the wire with radius b; D is the tickness of the superficial region where
this displacement is confined. It gives rise to a current density

j = −iωnqu0(0,− sinΦ, cosΦ)e−iωtDδ(r − b) , (11)
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were Φ is the angle in the (y, z)-plane. The vector potential is given by

A =
1

c

∫

dR′ j(R
′, t− | R−R′ | /c)
| R−R′ | , (12)

where R = (x, r cosϕ, r sinϕ) and R′ = (x′, r′ cosΦ, r′ sinΦ). We introduce the angle ϕ′ = ϕ− Φ
and notice that the contribution to the integral comes from even functions of cosϕ′. The integral
over x′ gives the Hankel function H(1)

0 , such that we get[18]

A =
2πnqω

c
u0bD

(

0,−z
r
,
y

r

)

∫ π

0

dϕ′ cosϕ′H
(1)
0

(ω

c

√

r2 + b2 − 2rb cosϕ′
)

e−iωt . (13)

In this expression we can use the asymptotic behaviour of the Hankel functions. We limit ourselves
to quasi-static fields, i.e. fields, which satisfy the condition ωr/c, ωb/c ≪ 1 (wavelengths much
larger than the dimensions of the wire). The Hankel function goes like H(1)

0 (z) ≃ 2i
π
ln z in this

limit, such that we get

A = −2πinqω

c
u0b

2D

(

0,− z

r2 + b2
,

y

r2 + b2

)

e−iωt (14)

and the magnetic field

H = curlA = −4πinqω

c
u0b

2De−iωt

(

b2

(r2 + b2)2
, 0, 0

)

=
4π

c
Dj

(

b4

(r2 + b2)2
, 0, 0

)

; (15)

this formula coincides with the well-known magnetic field along the axis of an infinite solenoid,
Hx = 4πDj/c (r −→ 0). The electric field is smaller by a factor ωb/c than the magnetic field.

Let us consider a uniform, quasi-static longitudinal magnetic field H applied along the axis of
the wire. According to the Faraday equation curlE = −1

c
∂H
∂t

it generates an electric field E
along the circumference, given by E = iωrH/2c. If electrical charges are present along this
circumference, they get a displacement u = −iqrH/2mc(ω + iγ) and a current density j =
−nq2ωrH/2mc(ω + iγ) = σE. For reasonable values of these parameters the displacement is
very large. We can estimate the induced magnetic field Hi from the Maxwell-Ampere equation
curlH i =

1
c
∂E
∂t

+ 4π
c
j, which leads to

Hi =

(

ω2

2c2
−
ω2
p

2c2
ω

ω + iγ

)

r2

3
H =

1

2c2
(

ω2 + 4πiσω
) r2

3
H . (16)

This field is uniform and directed along the axis of the wire. For reasonable values of the parameters
(even if the factor β is included for the surface electrons), this induced magnetic field is much
larger than the applied field and directed in the opposite direction. Therefore, we may expect that
the applied magnetic field is expeled from the wire. This result is valid for metals. For insulators
with surface electrons the conductivity is small and real, and the external magnetic field may
penetrate.

The above estimation does not include the mutual dependence of the external and induced fields.
This dependence is included by curlH = 1

c
∂E
∂t

+ 4π
c
σE, or ∆H − 1

c2
∂2H
∂t2

− 4πσ
c2

∂H
∂t

= 0; the second-
order time derivative may be neglected, such that, the solution of this equation in cylindrical
coordinates is a Bessel function of imaginary argument, which is damped over distances of the
order c/

√

| σ | ω ≃ c/ωp, i.e. the plasma wavelength. This is the well-known skin effect. For
metals this wavelength is very small, for insulators it is large, irrespective of the presence of the
surface electrons.
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Quantum-mechanical effects. Let us focus now on the surface electrons in a wire with radius
R; their single-particle wavefunctions are 1√

2π
eilϕ 1√

L
eikx and their energy is given by equation (6).

We assume an external uniform quasi-static electromagnetic field with the magnetic component
H directed along the axis of the wire, H = (H, 0, 0), where H = H0 cosωt. The vector potential
is A = 1

2
H(0,−z, y); in cylindrical coordinates it has only the angular component Aϕ = 1

2
Hr,

where r is the radius of the cross-section. For the moment we allow also a motion along the small
thickness D of the surface layer (coordinate r) and write the hamiltonian of these free electrons
as

H =
1

2m

(

pr −
q

c
A
)2

+
1

2m
p2x . (17)

The canonical transformation ψ = e
iq

c~

∫
r

Adlχ leads to the Schroedinger equation

i~
∂χ

∂t
=

1

2m

(

p2r + p2x
)

χ− q

∫ r

Edlχ ; (18)

we can see that this canonical transformation removes the vector potential and introduces the
work done by the electric field E upon the electrons. This electric field is given by E = −1

c
∂A
∂t

and
has only the ϕ-component (acts along the circumference); it is proportional to the vector potential,
dephased in time. Now, we can neglect the transverse motion and writes the Schroedinger equation
as

i~
∂χ

∂t
= − ~

2

2m

(

∂2

R2∂ϕ2
+

∂2

∂x2

)

χ− qωH0R
2

2c
ϕ sinωt . (19)

In this equation we may view the H0-term as a perturbation, denoted by V sinωt. The amplitude
of transition from the initial state i to the final state f is given by

afi = − i

~

∫ t

0

dt′Vfi sinωt
′e

i
~
(εf−εi)t

′

. (20)

For absorption we retain only the term e−iωt in sinωt. The transition does not imply the motion
along the x-coordinate; it is a transition from the state l to the state l′. For a long time we get
the number of transitions per unit time

| afi |2 /t =
π2C2

~

1

(l′ − l)2
δ

(

~
2

2mR2
(l′2 − l2)− ~ω

)

, (21)

where C = −qωH0R
2/2c. We sum (integrate) over the final states l′ and get

| a |2 /t = π2C2

~

2mR2

~2
F (l) , (22)

where

F (l) =
16l3

B2

2l2 +B

(B + 4l2)2
(23)

and B = 2mR2ω/~. In order to get the total rate of absorption we should sum (integrate) over
all the states l up to lmax given by µ = ~2

2mR2 l
2
max, which amounts to B = ~ω

µ
l2max. It is easy to see

that in equation (23) l/lmax < 1 is much larger than
√
B/lmax. Finally, we multiply by ~ω to get

the absorbed power given by

P =
π2q2ω2H2

0R
4

4c2~
. (24)
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The electrons near the Fermi surface are quasi-classical, except those with small k (and large l)
and those with small l (and large k). The states with small values of l are quantum-mechanical.
If we neglect the transverse motion their wavefunction can be writen as

ψ = e
iq
2c~

HR2ϕχ , (25)

where χ = 1√
2π
eilϕ 1√

L
eikx. The current density associated with the hamiltonian given by equation

(17) is

j =
iq~

2m
(gradψ∗ · ψ − ψ∗gradψ)− q2

mc
Aψ∗ψ (26)

(leaving aside the spin contribution). If we neglect the perturbation and use the wavefunctiions
given by equation (25), the diamagnetic contribution to the current (the A-term) cancels out
exactly the paramagentic contribution, such that we get

j =
1

2πL

(

q~k

m
,
q~l

mR
, 0

)

(27)

(in cylindrical coordinates x, ϕ, r; a proper normalization introduces a factor 1/RD). Since there
exist two values ±k and two values ±l, the total current is zero.

If qHR2/2c~ = qHπR2/ch = integer, i.e. the flux Φ = ch
q
× integer, for a constant magnetic field,

then the wavefunctions ψ are the same as the wavefunctions χ; ch/q is the quantum of magnetic
flux.

Concluding remarks. Quasi-free electrons are identified on the surface of solids, irrespective
of the structure and the state, which define topological conductors. The surface electrons are
decoupled from the bulk electrons. Their occurrence is caused by the surface discontinuity, where
the solid properties vary abruptly. The surface electrons from a quasi-two-dimensional electron gas,
with poor transport properties. They exhibit specfic plasmonic modes, sustain surface plasmon-
polariton modes and are active in absorption of quasi-static magnetic fields.
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