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Abstract

The screening, the configurational correlations and the interaction correlations in the
Debye-Huckel theory of binary electrolytes are examined by exploiting the charge conserva-
tion and the properties of the equilibrium state. A non-zero ionic radius is employed in order
to account for solvation effects. The corrections brought by this radius to the interaction
energy and the limiting law of ionic mobility (electrical conductance) are re-derived. A possi-
ble stabilization of the ions in equilibrium positions, arising from counterion configurational
correlations, is analyzed for associated electrolytes. Some well-known technical difficulties of
the Debye-Huckel theory are revisited, with emphasis on statistical-dynamical correlations,
excluded volume of the particles and multiple-boundary conditions.

The Debye-Huckel classical theory of electrolytes[1] enjoyed many discussions throughout the
years. The attempts of improving, or extending, this theory highlight its central concept of
screening the electrical charges (see, for instance, Refs. [2, 3]). In electron plasmas (like ionized
gases, or electrons in metals) the electrons, which are much more mobile than the ions, screen the
ion interaction.[4] A similar situation occurs in colloids, where the electrolyte charges are more
mobile than the colloid particles,[5] or in electrolytes with a high mass assymetry. In these cases
a certain charge asymmetry occurs in treating the screening, in the sense that one kind of charges
are screened by the other kind. In contrast, in electrolyte solutions with comparable dynamical
properties of the ions the screening is due to the all kinds of ions. The difficulties raised by an
inadvertent ionic asymmetry in electrolytes have been discussed a long time ago, in connection
with the electrolyte conductance.[6, 7]

We analyze in this Note the screening, the configurational and the interaction correlations in
binary electrolytes, within the Debye-Huckel theory. In order to account for solvation effects a
non-zero ionic radius is explicitly employed, and the corrections brought by this radius to the
interaction energy and the limiting law of ion mobility (electrical conductance) are re-derived. A
possible stabilization of the ions in equilibrium positions (counterion configurational correlations)
is discussed in associated electrolytes. Well-kown technical difficulties of the Debye-Huckel the-
ory are revisited,[8] with emphasis on statistical-dynamical correlations, excluded volume of the
particles and multiple-boundary conditions in a space with multiple voids.

To begin with, as a general remark, the density of an ensemble of N pointlike particles with
determined (distinct) positions ri is

n(r) =
∑

i

δ(r − ri) . (1)
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For any fixed position r all the functions δ(r − ri) are zero, except that with ri close to r,
inside a mean volume per particle v0. In a continuum model we can write n(r) = 1/v0 and
n(r) = 1/v0 = ∆N/∆V , where ∆N is the number of particles within an infinitesimal volume ∆V
constructed around the point r (the volume ∆V is large at the microscopic scale of the particles
and infinitesimally small at the macroscopic scale). Since the positions are statistical variables in
this case, the probability of localizing ∆N particles in the volume ∆V is given by the Boltzmann
distribution

∆N

N
=

e−βU(r)

∫

dre−βU(r)
∆V , (2)

where β = 1/T is the inverse of the temperature T , V denotes the volume and U(r) is the potential
energy at the point r. We get the statistical density

n(r) = C(N/V )e−βU(r) , (3)

where C = V/
∫

dre−βU(r) (such that
∫

drn(r) = N). If the particles are endowed with a charge
q, the charge density is qn(r).

We consider an electrolyte dissolved in a polar solvent, consisting of N identical cations with
charge +q and N identical anions with charge −q (N ≫ 1) in a macroscopic volume V (binary
electrolyte).[8] We denote by ± the two ionic species (cation/anion) and by i, j = 1, 2, ...N the
ions of each species. We assume that the ions are spheres with the same radius r0. Both q and r0
are viewed as parameters, corresponding to ion solvation; they depend on the nature of the solvent
and the ions. Different radii r0 for the two ionic species may lead to different charges, and specific
solvation models are then necessary.[9, 10] The results presented below can easily be extended to
distinct ionic charges and numbers of ions (e.g., ternary electrolytes). The interaction of the ions
with the solvent molecules is taken into account by a dielectric constant.

The radius r0 limits the available volume for each particle. We need to consider an excluded
volume. This circumstance reflects a type of configurational correlations. Mainly, we limit our-
selves to non-associated electrolytes, i.e. we assume that the ions are not associated in space in
formations of two or more ions (strong electrolytes). We assume that the available volume for an
ion is V −(2N−1)v ≃ V −2Nv (N ≫ 1), where v = 4π

3
(2r0)

3(≪ V ), where r0 is a parameter. For
instance, we cannot put an ion in a sphere with a volume strictly smaller than 4π

3
r30; if two ions are

present, we cannot put one of them in a volume strictly smaller than v. In multiple integrations,
where the coordinates of the ions are independent variables, the excluded volumes are counted
twice, such that a corresponding factor 1/2 should be included. We consider an available volume
V which includes 2N spherical voids with radius r0. If the coordinates r±i of the cations/anions
are determined, the density is defined by

n±(r) =
∑

i

1

2πr20
δ(| r − r

±
i | −r0) . (4)

The variable r in equation (4) takes values everywhere in the volume V , the integration over the
volume V being performed by means of

∫

r>r0
drδ(r − r0) =

1
2
; we get

∫

V drn±(r) = N . Equation
(4) indicates a surface charge distribution, which may be viewed as being appropriate for ion
solvation. The Coulomb potential generated by a surface charge in the volume V is the same as
the potential generated by a pointlike charge, or a charge distributed in a sphere with radius r0.
The assumption of an excluded volume is associated with a surface charge.

If the ionic positions are statistical variables, the ionic density is defined by the Boltzmann prob-
ability, as in equation (3). In order to define the statistical ionic density we need a continuum
model, where contributions of the order of the ionic volume ∼ r30 are neglected. We assume the
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existence of an electrostatic potential Φ(r) in the volume V , such that the energy of an ion placed
in the potential is

U(ri) =
±q

2πr20

∫

V
drδ(| r − r

±
i | −r0)Φ(r) =

±q

4π

∫

doΦ(r±
i + r0) , (5)

where do is the element of solid angle and r0 is the vector of length r0. A series expansion in
powers of the coordinates of the vector r0 leads immediately to

U(ri) = ±qΦ(ri)±
q

6
r20∆Φ(ri) +O(r40) ; (6)

since there is no charge at ri, the term with the laplacian in equation (6) vanishes, so we are left
with U(ri) = ±qΦ(ri), up to contributions of the order r40. We can see, indeed, that contributions
of the order r30 are absent in the potential energy and the ionic density. In all the subsequent
calculations we limit ourselves to terms of the order r20, such that we define the ionic densities in
the whole volume V , like the potential Φ. Both the ionic density and the electrostatic potential
are macroscopic quantities, defined in a continuum model. Finally, we get the ionic densities

n±(r) = C±ne
∓βqΦ(r) (7)

where n = N/V and the constants C± are determined by

∫

V
drn±(r) = C±n

∫

V
dre∓βqΦ(r) = N . (8)

The charge density is given by ±qn±(r), where n±(r) are given either by equation (4) or by
equation (8), up to contributions of the order r20.

The electrostatic potential Φ(r) obeys the Poisson equation

∆Φ = −4πq [n+(r)− n−(r)] (9)

in the volume V ; the dielectric constant of the solvent is tacitly assumed in equation (9) (its
explicit introduction would complicate the notation). The boundary conditions for this equation
are discussed below. As long as the inter-particle collisions are rare, as for a dilute electrolyte,
or by imposing specific configurational correlations, we may assume that the densities n±(r) and
the potential Φ(r) vary slowly in space. In the close neighbourhood of an ion the Coulomb
potential varies abruptly, but we should subtract the self-energy, as shown below, which leads to
a smooth variation. Consequently, in the series expansion of the exponentials e±βqΦ we may write

approximately Φn = Φ ·Φn−1 for any n ≥ 1, and Φn = Φ
2
Φn−2 = ... = Φ

n
, such that Φn = Φ ·Φn−1

,
where Φn = 1

V

∫

V drΦn, n = 1, 2, .... This amounts to avoid interaction self-correlations at the

same point, as it is naturally to expect. It is easy to see that the exponentials e±βqΦ can be written
as

e±βqΦ ≃ 1 + γ∓βqΦ , (10)

where

γ∓ =
e±βqΦ − 1

βqΦ
. (11)

The ionic densities become now

n±(r) = C±ne
∓βqΦ(r) ≃ C±n[1 + γ±βqΦ(r)] (12)
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with the normalization conditions

C±(1 + γ±βqΦ) = 1 ; (13)

equation (9) becomes

∆Φ = −4πqn(C+ − C−)− 4π(C+γ+ − C−γ−)q
2nβΦ(r) . (14)

The potential Φ(r) changes the local densities from their uniform-distribution values n to n±(r) =
C±n[1+γ±βqΦ(r)]; the change is proportional to the potential, δn±(r) ∼ Φ(r). Since the number
of ions is conserved (

∫

V drn±(r) = N), the average potential is zero, Φ = 0. This condition leads
to C± = 1 (equation (13)), γ± = ∓1 (equation (11)) and

∆Φ = κ2Φ(r) , (15)

where κ2 = 8πβq2n.

This equation is solved by using the boundary conditions provided by equation (4), according to
the charge conservation. The solution is a superposition of potentials vanishing at infinity, given
by

Φ(r) = q∗
∑

i





e−κ|r−r
+

i
|

| r − r
+
i | −

e−κ|r−r
−
i
|

| r − r
−
i |



 , (16)

where the constant of integration q∗ (an effective charge) is determined shortly from the charge
conservation. Before this, we analyze the condition Φ = 0. Equation (16) defines the well-known
Debye-Huckel screened potential.[1, 8] We can see that in the close neighbourhood of an ion the
main contribution to the potential given by equation (16) is q∗e−κr/r, for r close to r0. For small
values of r0 this contribution has an abrupt variation, arising from the Coulomb self-potential q∗/r
for r ≃ r0 in the expansion q∗e−κr/r = q∗/r − q∗κ + .... This Coulomb self-potential should be
removed, such that the assumption of a smooth potential in the Poisson equation is not affected.

The calculation of the average potential Φ = 1
V

∫

V drΦ(r) can be done, most convenienly, by
integrating over the whole volume V and subtracting the contribution of the volume Vint of the
spheres with radius r0. In the integral over the volume Vint, for a fixed sphere, we need to separate
the contribution of that sphere from the contributions of the other spheres. For instance, we get

∫

Vint
dr
∑

i
q∗e

−κ|r−r
+

i
|

|r−r
+

i
|

= 4πq∗

κ2 N [1− (1 + κr0)e
−κr0 ] +

+4πq∗

κ2 (κr0 cosh κr0 − sinh κr0)

(

∑

i 6=j
e
−κr

++

ij

κr++

ij

+
∑

ij
e
−κr

+−
ij

κr+−
ij

)

,

(17)

where r++
ij =| r+

i − r
+
j | and r+−

ij =| r+
i − r

−
j |. A similar contribution arises from the other term

of the potential in equation (16), such that the average potential is

Φ = −4πq∗

κ2V
(κr0 cosh κr0 − sinh κr0)

∑

i 6=j

(

e
−κr

++

ij

κr++

ij

− e
−κr

−−
ij

κr−−
ij

)

(18)

(where r−−
ij =| r−

i − r
−
j |). Since κr0 cosh κr0 − sinh κr0 = (κr0)

3/3 + ..., we can see that Φ = 0
within our approximation of a small excluded volume. This condition defines the equilibrium state
of the electrolyte. Also, it follows that κr0 should be much less than unity.

The effective charge q∗ is determined from the condition that the integral
∫

dr∆Φ over the volume
V is equal to 4π multiplied by the total charge. The integral

∫

dr∆Φ reduces to a sum of surface
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integrals of gradΦ over the spherical surfaces with radius r0 surrounding the ions (the contribution
of the surface at infinity is zero). Let us assume a cation placed at r+i . The surface integrals can
be effected straightforwardly, with the result

q∗(1 + κr0)e
−κr0 − q∗ (κr0 cosh κr0 − sinh κr0)





∑

j, j 6=i

e−κr++

ij

κr++
ij

−
∑

j

e−κr+−
ij

κr+−
ij



 = q . (19)

For an anion placed at ri the result is the same with q∗, q changed to −q∗, −q and r++
ij changed

in r−−
ij . The summation over all the cations and separately over all the anions leads to the same

charge q∗, providing the condition Φ = 0 given above (equation (18)) is satisfied. Therefore, the
effective charge is given by

q∗(1 + κr0)e
−κr0 − q∗ (κr0 cosh κr0 − sinh κr0)





1

N

∑

i 6=j

e−κr++

ij

κr++
ij

− 1

N

∑

i,j

e−κr+−
ij

κr+−
ij



 = q , (20)

i.e.

q∗ = q
eκr0

1 + κr0
≃ 1 +

1

2
(κr0)

2 . (21)

We note that a non-zero ionic radius r0 6= 0 leads to an enhanced effective charge q∗ > q.

We pass now to computing the electrostatic energy E of the electrolyte. It is given by E =
1
2

∫

drρ(r)Φ(r) (without including the self-energy), where ρ(r) is the charge density. If we use

ρ = q(n+ − n−) = −2nβq2Φ

(according to equations (12)), we get E = −κ2

8π

∫

drΦ2(r) = 0. This is too crude an approximation,
because the potential Φ given by equation (16) shows that the main contribution arises from the
regions near the ionic positions, where | r − r

±
i |≃ r0, which indicates the use of the ionic density

given by equation (4), instead of the statistical density. According to equation (4), the charge
densities of the ionic spheres are

ρ±(r) = ±
∑

i

q

2πr20
δ(| r − r

±
i | −r0) . (22)

The potential given by equation (16) can be written as

Φ(r) =
∑

i

[

Φ+
i (r) + Φ−

i (r)
]

,

Φ±
i (r) = ±q∗ e

−κ|r−r
±
i

|

|r−r
±
i
|

,

(23)

such that the electrostatic energy is given by

E =
∫

V
dr





1

2

∑

i 6=j

ρ+i Φ
+
j +

1

2

∑

i 6=j

ρ−i Φ
−
j +

∑

ij

ρ+i Φ
−
j



 , (24)

where we avoid the self-energy of the screened ions; equation (24) accounts only for the electrostatic
interaction energy of the screened ionic charges. The integration in this equation is performed
immediately; we get

E =
qq∗

2κr0
sinh κr0





∑

i 6=j





e−κr++

ij

r++
ij

+
e−κr−−

ij

r−−
ij



− 2
∑

ij

e−κr+−
ij

r+−
ij



 , (25)
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where q∗ sinhκr0
κr0

= q
[

1 + 1
3
(κr0)

2
]

.

In general, the calculation of the summations in equation (25) can be done by using two-particle
correlation functions.[11, 12, 13] For a uniform distribution of ions equation (25) leads to E = 0,
such that a non-vanishing contribution may result from self-energies. For high densities (or low
temperature) the summations in equation (25) can be performed by taking into account the
excluded volumes indicated by i 6= j and r+−

ij in a uniform distribution of ions. For like ions a

volume V /N = 4π
3
a3 is assigned to each ion, where 2a is the mean separation distance between

these ions (a > r0); the corrresponding excluded volume is 4π
3
(2a)3. For counterions a volume

V /2N = 4π
3
a3 is assigned to each ion, the excluded volume is 4π

3
(2a)3, where a = a/21/3. This

assumption of excluded volumes reflects a type of configurational correlations. We give here the
computation of the first summation in equation (25) (for a fixed ri), omitting the superscripts
++:

∑′

j
e−κrij

rij
= n

∫

V 1
dr e−κ|ri−r|

|ri−r|
− n

∫

2r0<r<2a dr
e−κr

r
=

=
∑−4πn

κ2 [(1 + 2κr0)e
−2κr0 − (1 + 2κa)e−2κa] ,

(26)

where Σ = n
∫

V 1
dr e−κr

r
=
∑

i
e−κri

ri
(and the prime means the excluded volume); the volume V 1 is

the whole volume V minus the spherical volumes with radius 2r0. The calculation of Σ leads to

Σ = n
∫

V dr e−κr

r
− n

∑

i

∫

r<2r0
dr e−κ|ri+r|

|ri+r|
=

= 4πn
κ2 − 4πn

κ3 (2κr0 cosh 2κr0 − sinh 2κr0)
∑

,

(27)

i.e. Σ = 4πn/κ2. The quantity Σ does not enter the final result of equation (25). Introducing all
the three summations in equation (25), we get

E =
4πqq∗n

κ3r0
N sinh κr0

[

(1 + 2κa)e−2κa − (1 + 2κa)e−2κa
]

. (28)

It is easy to see that E given by equation (28) is always negative (for a < a), indicating a bound
state. Formally, we may get a simplified expression of E in the limits κr0 ≪ 1 and κa, κa ≪ 1; it
is the Coulomb energy

E ≃ −6q2

a
(1− 2−2/3)N + ... = −2.2

q2

a
N + ... . (29)

The error introduced in the above calculation by the continuum approximation of a uniform ionic
distribution with excluded volume (in comparison with the discrete summations) may change
slightly the numerical coefficient 1 − 2−2/3 in equation (29); however, the counterions are always
closer to each other than the like ions, such that the energy is always negative. The fluctua-
tions of the parameter a about the equilibrium position, a −→ a + δa (< δa >= 0), lead to a
positive change δE = 8πq2nN(δa)2 > 0 in energy, which shows that the equilibrium is stable.
For lower temperatures or lower dilutions the electrolyte solute looks like a liquid, while for even
lower temperatures and higher concentrations, where the Debye length becomes comparable to, or
shorter than the mean inter-ion separation distance a (κa ≥ 1), the ions may stabilize themselves
in equilibrium positions (in estimating the numerical values of the energy in equation (29) we
should include the dielectric constant of the solvent). In this case the equilibrium state should be
re-constructed, by including the repulsive ionic interaction. Such a long-range order in electrolytes
has been suggested a long time ago.[14] The stabilization of the ions in equilbrium positions indi-
cates an associated electrolyte, similar to an ionic solid (e.g., the factor 2.2 in equation (29) is a
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Madelung constant[15]). We emphasize that this is an ideal situation. It is difficult to illustrate
such an ionic solid by numerical calculations, because of the finite spatial extension of the ionic
sample, which generates instabilities. The factor 1/2 in a3 = a3/2 is reminiscent of the correlation
factor introduced by Bjerrum for associated electrolytes.[16]

For high temperatures or high dilutions (κa ≪ 1) the electrolyte behaves like a (non-ideal) gas.
The excluded volumes are practically zero, as a consequence of the thermal motion, the interaction
energy given by equation (25) is vanishing, and we are left with the self-energy of the screened
ions (not included in equation (25)), which is given by

Eion =
qq∗

2πr20

∫

r>r0
dr

e−κr

r
δ(r − r0) =

qq∗

r0
e−κr0 =

q2

r0(1 + κr0)
; (30)

subtracting the Coulomb self-energy and multiplying by 1
2
· 2N , we get the well-known total

interaction (or correlation) energy[1, 8]

Eint = − q2κN

1 + κr0
≃ −q2κN

[

1− κr0 + (κr0)
2
]

. (31)

Using Eint/T
2 = − ∂

∂T
(Fint/T ), we get the interaction free energy Fint (up to a T -independent

term in Fint/T , arising from the excluded volume). According to the theorem of small increments,
Fint gives also the interaction contribution to the Gibbs free energy at constant pressure and
temperature for the electrolyte solution (in computing the Gibbs free energy it is convenient to
introduce the number of particles and the molecular volume of the solvent).[17] The statistical
equilibrium requires an estimation of the interaction effects up to relative corrections of the order
q2/aT = (κa)2 ≪ 1, where a is the mean inter-ionic separation distance. The energy given by
equation (31) satisfies this criterion, since Eint/N(q2/a) is of the order κa. Also, the energy given
by equation (29) satisfies this criterion, although the energy given by equation (28) may lead to
κa ≥ 1, which requires the re-construction of the equilibrium state. Higher-order correlations may
bring contributions which infringe upon this criterion, or are irrelevant.

The non-zero ionic radius r0 brings a small correction to the relaxation change in the mobility of
the ions. We give here a simple derivation of the relaxation change in mobility for high dilution.
According to Onsager,[7] this change consists of two factors. The first factor arises from the
change brought about by the external electric field in the localization probability. This change is
−β

∫

drρδΦ, where ρ is the charge distribution of an ion and δΦ = −κq∗e−κr0δx/r is the change
in the potential of a counterion, with δx the change in position along the electric field (removing
the Coulomb contribution). It is easy to see that δx is the projection along the direction of the
electric field of the displacement r cos θ produced by the field along r, i.e. r cos2 θ, where θ is
the angle between r and the direction of the field. Averaging over directions, we get δx = 1

3
r,

such that δΦ = −1
3
κq∗e−κr0 and the change in probability is −1

3
βqq∗κe−κr0 . The second factor

arises from the change in the mean correlated mobility. The mobility µ, defined as velocity
divided by force, v = µF , implies a correlated mobility arising from the product of two velocities,
v1v2 = µ1µ2F

2. The correlated mobility S is given by S = µ − √
µS, where µ is the average

mobility (for counterions).[7] In general, for two counterions with charges q1,2 and mobilities µ1,2

the average mobility is µ = (q1µ1 − q2µ2)/(q1 − q2)(µ1 + µ2); for binary electrolytes q1 = −q2 = q
and µ = 1/2.[18] It follows that the mobility factor is S = 1−1/

√
2. Finally, we get the mobilities

corrected by the counterion relaxation

µ1,2 −→ µ1,2

(

1− S

3
βqq∗κe−κr0

)

= µ1,2

[

1− Sβq2κ

3(1 + κr0)

]

; (32)
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we can see that a non-zero ionic radius further reduces the ion mobility.[19] A similar result is
valid for the electrophoretic part of the change in the mobility, by replacing the screening length
κ−1 by κ−1 + r0 = κ−1(1 + κr0).

In the opposite limit of higher concentrations, or lower temperatures, there may appear two dis-
tinct behaviours of the conductance. If the configurational correlations and association dominate,
especially in solvents with small dielectric constants, we may have a further decrease in conduc-
tance; their effect may be diminished in solvents with larger dielectric constants, such that the
conductance may exhibit a tendency of increasing with increasing concentration.

In conclusion, the equilibrium state of the electrolytes implies a vanishing average electrostatic
potential (Φ = 0) and the absence of the interaction self-correlations (γ = 1); the main role
in their interaction properties is played by screening and configurational correlations. For high
concentrations and low temperatures the Coulomb interaction dominates. Its minimization leads
to ionic excluded volumes, which reflect a type of configurational correlations, such that the ions
may be stabilized in equilibrium positions. This situaton may correspond to associated electrolytes
(similar with ionic solids). For higher dilutions, or higher temperatures (which is the current
situation in electrolyte solutions) the screening correlations dominate, and the interaction energy
is the self-energy of the screened ions (correlation energy). A non-zero ionic radius, which reflects
another type of configuration correlations, may account for solvation effects; it leads to well-known
corrections to the screening, the interaction energy and the ionic mobility, through an effective
charge ocurring in the electrostatic potential.
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