
1

Journal of Theoretical Physics

Founded and Edited by M. Apostol 331 (2021)

ISSN 1453-4428

Relativistic uncertainties

M. Apostol
Department of Theoretical Physics, Institute of Atomic Physics,

Magurele-Bucharest MG-6, POBox MG-35, Romania
email: apoma@theory.nipne.ro

Abstract

It is shown that the classical electromagnetism requires the pointlike charges to move

indefinitely within a region with a finite classical electromagnetic radius. It is shown that the

quantum-mechanical motion of a relativistic particle requires the pointlike particles to move

indefinitely within a region with a finite radius. For massive particles this radius is of the

order of the Compton wavelength. For photons it is of the order of the wavelength. This

cutoff length, which governs relativistic uncertainties, should be included in the interaction

effects. The reason for its occurrence is the quantization of the relativistic energy-momentum

relation; the quantum-mechanical motion implies specific uncertainties in position, duration

and dynamical variables. Particularly obvious is this indefinite motion in the presence of

the matrices in the Dirac equation, which mix up the coordinates in the Zitterbewegung.

The quantum-mechanical motion of the electron field is indefinite. The definite quantum-

mechanical motion of the electrons is the motion of the Zitterbewegung, with observance

of the Compton cutoff. Thus, for electromagnetically interactiong electrons we are led to a

theory of "bosons" with charge and spin, corresponding to the electron anti-particle and spin

states. The perturbation theory of these electromagnetically interacting bosons is presented,

including electromagnetic quantum effects like spontaneous emission, mass and charge renor-

malization, Lamb shift and anomalous magnetic moment, pair creation and photon mass.

1 Classical electromagnetic radius

The representation of the pointlike charges by the Dirac δ-function leads to singular classical
electromagnetic potentials at the position of the charge. The partial differential equations of
the classical electromagnetism require to view the pointlike charges as having a radius, at least
infinitesimal. In order to avoid the self-interaction the same Maxwell equations requires a finite
classical electromagnetic radius for "pointlike" charges. We recall here the classical electromagnetic
radius of a charge.

A charge in motion generates a propagating electromagnetic field. The charge moves in this field,
so it interacts with its own field, as a consequence of the retardation. This is a self-interaction.
Since we are interested in the field near the charge, we may leave aside the scalar potential and,
according to the Lorenz gauge, the longitudinal part of the vector potential. The transverse vector
potential A is generated according to the equation

1

c2
∂2A

∂t2
−∆A =

4π

c
j , (1)



2 J. Theor. Phys.

where j is the transverse current density. Let us assume a pointlike charge q with trajectory
r0(t), acted by an external force; its charge density is ρ = qδ(r − r0) and its current density is
j = qvδ(r − r0), where v = ṙ0. Equation (1) becomes

1

c2
∂2A

∂t2
−∆A =

4πq

c
vδ(r − r0) . (2)

The field A acts upon the charge. Consequently, the charge with mass m acquires an additional
velocity v′, whose (classical, non-relativistic) equation of motion is

m
dv′

dt
= qE0 +

1

c
(v + v′)×H0 , (3)

where E0 = −1
c
∂A0

∂t
is the electric field and H0 = curlA0 is the magnetic field. The suffix 0

indicates that the fields are taken at position r0. This is the Lorentz force. Since we are interested
in the region close to the charge, we may neglect the second term on the right in equation (3),
and get

dv′

dt
= − q

mc

dA0

dt
(4)

and v′ = − q
mc

A0 (the relativistic equation of motion does not change these things). It follows
that the self-interaction produces a reaction current density

j ′ = qv′δ(r − r0) = −
q2

mc
Aδ(r − r0) , (5)

which, in turn, determines a field given by

1

c2
∂2A′

∂t2
−∆A′ = −4πq

2

mc2
Aδ(r − r0) . (6)

For r close to r0 we may limit ourselves to the static part of this field, which is A′ = − q2

mc2
A0

|r−r0| .

The total field at the position of the charge is A0 − q2A0

mc2
lim |r→r0

1
|r−r0| . This shows that the

charge must be viewed as having an undetermined position inside a region with dimension of order

a =
q2

mc2
; (7)

the field at the undetermined position of the charge is zero and the force acting on the charge is
vanishing; this way, the self-interaction is avoided. Therefore, we must limit ourselves to a cutoff
length of the order a = q2/mc2, a cutoff wavevector of the order 1/a and a cutoff frequency of
the order c/a. The pointlike charge moves indefinitely inside a spherical region with radius of the
order a; its self-energy is of the order q2/a = mc2. The parameter a is the classical electromagnetic
radius of the charge q with mass m. It sets the limits of the classical electromagnetism. The fields
are limited by Es = Hs = q/a2 = m2c4/q3 (or qEsa = mc2, mω2 = qωHs/c, with ω = c/a).
For electrons q = −e = −4.8 × 10−10esu, a ≃ 2.8 × 10−13cm−1 (c/a ≃ 1023s−1, m ≃ 10−27g,
mc2 ≃ 0.5MeV , 1eV = 1.6 × 10−12erg), Es = Hs ≃ 6 × 1015esu (1esu = 3 × 104V/m). The
Lorentz contraction along the direction of motion makes a length of the order q2/E along this
direction, where E is the charge energy. Being an unphyiscal, undetermined region, its dimension
is not subject to the relativistic invariance.

The undefined motion of a pointlike charge inside of a region with dimensions of the order a
has not very relevant consequences in the classical electromagnetism, except for its governing the
Lorentz damping and the natural breath of the spectroscopic line. The radius a may be viewed
as an uncertainty in the charge position, arising from its electromagnetic field.
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2 Relativistic quantum uncertainty

The Schroedinger equation

i~
∂ψ

∂t
= − ~2

2m
∆ψ (8)

for a free particle with mass m has a temporal scale ∼ ~

τ
and a length scale ∼ ~2

2ml2
, where τ = ∆t

is a time variation and l = ∆x is a distance (x) variation. Since these two factors should be of
the same order of magnitude,

l2/τ = l∆v ≃ ~

2m
, (9)

where v is the particle velocity, it follows

∆p∆x ≃ 1

2
~ , (10)

where ∆p is the mometum variation. This is the well-known quantum-mechanical uncertainty
relation. Since the variations of the action cannot be smaller than ~, the uncertainty relationship
is in fact ∆p∆x ≥ 1

2
~. For ~ → 0 we recover the classical limit. Similarly, since the eenrgy E is

given by Eψ = i~∂ψ
∂t

, we get ∆E∆t ≥ 1
2
~. The above inequalities are not changed by the presence

of the interaction.

The situation is completely changed for a relativistic particle. The quantization of the relativistic
energy-momentum relation E2 = c2p2 +m2c4 leads to a Klein-Gordon-type equation

~2∂
2ψ

∂t2
− c2~2∆ψ +m2c4ψ = 0 , (11)

whatever ψ may mean. We can see that the time scale is τ = ~

mc2
and the distance scale is

l = ~

mc
. These are quantum-mechanical uncertainties, for a quantum-mechanical motion, where

the durations cannot be shorter than τ and the distances cannot be shorter than l; if they were
shorter, the quantum mechanical motion is undefined, because variations smaller than ~ of the
mechanical action are meaningless. In addition, the motion proceeds with velocity c. This shows
the inadequacy of the quantum-mechanical behaviour of a pointlike relativistic particle.[1] The
reason is the square relativistic dependence of the energy E2 = c2p2 + m2c4. In dealing with
relativistic quantum-mechanical effects we must be content with using a cutoff length of the order
of the Compton wavelength λc = ~

mc
(and a cutoff time of the order ~/mc2).[2, 3] The results

depend on the choice of this cutoff, i.e. they are not definite.[4]

Moreover, the Klein-Gordon equation has not a classical limit. Indeed, if ψ = Ae
i
~
S we get from

equation (11) (
∂S
∂t

)2 − c2(gradS)2 −m2c4 − ~2

A

(
∂2A
∂t2
− c2∆A

)
= 0 ,

∂
∂t

(
A2 ∂S

∂t

)
− c2div (A2gradS) = 0 .

(12)

In the classical limit ~→ 0 and a slowly-varying A the first equation (12) is the classical Hamilton
-Jacobi equation, with S the classical action. The second equation is a continuity (conservation)
equation. But A2 ∂S

∂t
is not a positive quantity, and its motion proceeds with velocity c. It is not

possible to give a meaning to this conservation equation. In the classical limit, when A varies
slowly, this continuity equation leads to the wave equation ∂2S

∂t2
− c2∆S = 0 for the classical action,

which is improper. This shows that it is impossible to establish a standard quantum-mechanical
description for a relativistic particle. As it is well known, the proper picture is that of quantum
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fields, which, however, should be used with the cutoff described above. The Compton wavelength
sets a quantum limit for the motion of the relativistic fields and for the fields themselves. The
latter is the Schwinger limit Es = Hs = m2c3/~ | q |, where q is the particle charge. For electrons
λc = ~/mc ≃ 3.8× 10−11cm and Es = Hs ≃ 4× 1013esu. The ratio a/λc is α = a/λc = q2/~c. For
electrons α = e2/~c ≃ 1

137
is the fine-structure constant.

The same is true for photons (m = 0), where τ = ~/E and l = ~c/E is the wavelength λ, as well
as for the Dirac equation. In particular, this uncertainty is visible in the Dirac equation

γµpµψ = mcψ (13)

by the presence of the Dirac matrices γµ (µ = 0, 1, 2, 3), which mix up te coordinates and the time
over a length scale λc = ~/mc and over durations τ = ~/mc2. This indefinite motion is the fermion
Zitterbewegung.[5, 6] Also, in the classical limit the Dirac equation becomes the invalid equation
E − cαp = mcβ, where α = γ0γ, β = γ0. Moreover, the probability-conservation equation

∂

∂t
(ψ∗ψ) + c · grad(ψ∗αψ) = 0 (14)

shows that the probability current has an indefinite velocity cα, which indicates again the inade-
quacy of a standard quantum-mechanical treatment.[9, 10]

3 Charged "bosons" with spin

The quantum-mechanical motion of the electron field is undetermined. This indefiniteness leads
not only to divergences, but also to ambiguities in the regularization and renormalization cal-
culations. The determined quantum-mechanical motion of the electrons is the motion of the
Zitterbewegung, with a cutoff length of the order of the Compton wavelength λc. The technical
procedure of achieving a description of this motion is as follows.

We give a variation δxµ to the coordinates xµ, and denote it by uµ, according to the scheme
xµ −→ xµ+ δxµ, δxµ = uµ, xµ −→ xµ+ uµ. We will take the first-order variations with respect to
uµ of the Dirac equation

γµ∂µψ =
mc

i~
ψ . (15)

We write xµ = sµ ·1, where s0 = ct, s = r and 1 denotes the unit matrix; we have xµxµ = sµs
µ ·1 =

s2 · 1, where s2 = c2t2− r2. For δxµ we need δxµδxµ = uµu
µ = u2 = ds2; the (non-trivial) solution

of this equation is

δxµ = uµ =
1

2
uγµ (16)

(since γµγµ = 4). The first-order expansion of the Dirac equation is

γµ (∂µψ + uν∂ν∂µψ) =
mc

i~
(ψ + uν∂νψ) , (17)

or

∂µ∂µψ = −m
2c2

~2
ψ , (18)

which is the Klein-Gordon equation pµpµψ = m2c2ψ. The displacement field u is absorbed into ψ,
hence the bosonic character of the latter. The ψ in equation (18) originates in u multiplied by a
bispinor. It is a boson field with four bispinor components. We write it as

ψ =
1√
V

∑

k

βk(ψkα)e
ikr , (19)
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where V is the volume,

(ψkα) =




ck,+1

ck,−1

b∗−k,−1

b∗−k,+1


 , (20)

±1 are spin labels and

βk = c

√
~

2εk
, εk = c

√
k2 + k20 , k0 = mc/~. (21)

The c’s and the b’s operators satisfy usual bosonic commutation relations for four distinct types of
bosons. The c-operators correspond to particles (electrons), while the b-operators correspond to
antiparticles (positrons). The boson occupation number is the number of electrons, the presence
of the cutoff λc ensures the exclusion principle.

In the presence of the electromagnetic field we need to use the covariant derivativeDµ = ∂µ− e
ic~
Aµ,

according to ψ −→ ψ + uµDµψ; we get the Klein-Gordon equation
(
pµ −

e

c
Aµ

)(
pµ − e

c
Aµ

)
ψ − ie~

2c
σµνFµνψ = m2c2ψ (22)

with electromagnetic field, where Aµ are the electromagnetic potentials, Fµν is the field tensor and
σµν = 1

2
[γµ, γν ] is the spin matrix.

The free equation of motion of the boson field (the Klein-Gordon equation (18)) reads

1

c2
∂2ψ

∂t2
−∆ψ +

m2c2

~2
ψ = 0 . (23)

If we multiply this equation by ψ̇∗, the equation for ψ∗ by ψ̇, where ψ∗ is the adjoint of ψ
(transposed conjugate), and add the two equations, we get

∂

∂t

(
1

c2
ψ̇∗ψ̇ + ∂iψ

∗∂iψ +
m2c2

~2
ψ∗ψ

)
− ∂i

(
ψ̇∗∂iψ + ∂iψ

∗ψ̇
)
= 0 , (24)

where i = 1, 2, 3; hence, we can see that

we =
1

c2
ψ̇∗ψ̇ + ∂iψ

∗∂iψ +
m2c2

~2
ψ∗ψ (25)

is the energy density and

ge = −
1

c2

(
ψ̇∗∂iψ + ∂iψ

∗ψ̇
)

(26)

is the momentum density. The total energy is

We =
∫
drwe =

∑
kσ β

2
k
2ε2

k

c2
(c∗kσckσ + bkσb

∗
kσ) =

=
∑

kσ ~εk (c
∗
kσckσ + bkσb

∗
kσ) =

=
∑

kσ ~εk (c
∗
kσckσ + b∗kσbkσ + 1) .

(27)

The time dependence ckσ, bkσ ∼ e−iεkt is established by the canonical equations of motion of these
operators with the hamiltonian We. Similarly, the total momentum is

Ge =
∫
drge =

∑
kσ ~k (c∗kσckσ + bkσb

∗
kσ) =

=
∑

kσ ~k (c∗kσckσ + b∗kσbkσ + 1) .
(28)
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If we multiply the equations for ψ and ψ∗ by ψ∗ and ψ, respectively, and subtract the two equations
from one another, we get another law of conservation, which reads

1

c2
∂

∂t

(
ψ∗ψ̇ − ψ̇∗ψ

)
− ∂i (ψ∗∂iψ − ∂iψ∗ψ) = 0 ; (29)

hence,
Q = ie

~c2

∫
dr

(
ψ∗ψ̇ − ψ̇∗ψ

)
= e

∑
kσ (c

∗
kσckσ − bkσb∗kσ) =

= e
∑

kσ (c
∗
kσckσ − b∗kσbkσ − 1)

(30)

is the electric charge (where e is the particle charge) and

J = − ie
~

∫
dr (ψ∗gradψ − gradψ∗ψ) =

= e
∑

kσ
c2k
εk

(c∗kσckσ − bkσb∗kσ) =

= e
∑

kσ
c2k
εk

(c∗kσckσ − b∗kσbkσ − 1)

(31)

is the electric current. With the notation

ρ = ie
~c2

(
ψ∗ψ̇ − ψ̇∗ψ

)
, ji = − ie

~
(ψ∗∂iψ − ∂iψ∗ψ) , (32)

jµ = (cρ, j) =
ie

~
(ψ∗∂µψ − (∂µψ∗)ψ) , (33)

equation (29) is the continuity equation ∂µjµ = 0.

4 Interaction

We adopt the energy We given by equation (27) as the free electron hamiltonian

He =
∑

kσ

~εk (c
∗
kσckσ + b∗kσbkσ) , (34)

where εk = c
√
k2 + k20, k0 = mc/~ being the inverse of the Compton wavelength (Compton

wavevector). The interaction of the electrons with the electromagnetic field is derived from equa-
tion (22); this equation can be written as

(pµp
µ − e

c
pµA

µ − e
c
Aµp

µ + e2

c2
AµA

µ+

+ e~
c

∑
H− ie~

c
αE−m2c2)ψ = 0 ,

(35)

since

−ie~
2c
σµνFµν =

e~

c

∑
H− ie~

c
αE , (36)

where E is the electric field, H is the magnetic field,

α =

(
0 σ

σ 0

)
, Σ =

(
σ 0
0 σ

)
(37)
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and σ are the Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
,

σz =

(
1 0
0 −1

)
.

(38)

Hence, we get the equation of motion

1
c2
∂2ψ
∂t2
−∆ψ + m2c2

~2
ψ + e

c~2
pµA

µψ + e
c~2
Aµp

µψ−

− e2

c2~2
AµA

µψ − e
c~

∑
Hψ + ie

c~
αEψ = 0 .

(39)

The interaction energy densities are

vp =
1

c
jµA

µ =
ie

c~
[ψ∗ (∂µψ)− (∂µψ

∗)ψ]Aµ (40)

(where the gauge condition ∂µAµ = 0 is used),

vd = −
e2

c2~2
(ψ∗ψ)AµA

µ (41)

and
vH = − e

c~
ψ∗∑ψH ,

vE = ie
c~
ψ∗αψE .

(42)

The interaction is obtained by integrating these densities over the whole space,

Vp,d,H,E =

∫
drvp,d,H,E . (43)

The labels p and d are chosen by analogy with the non-relativistic "paramagnetic" and "diamag-
netic" contributions. The interactions vH and vE arise from the σµνFµν-term in equation (22).
This is known as the "Pauli term".[11]

The interaction vp can be written as ρΦ− 1
c
jA, where the charge density ρ and the current density

j are given by equation (32), Φ is the scalar potential and A is the vector potential. The vector
potential has a longitudinal component Al and a transverse component At. The longitudinal
component is related to the scalar potential through the Lorenz gauge,

Al =
1√
V

∑

k

ik

ck2
Φ̇ke

ikr (44)

(1
c
∂Φ
∂t

+ divA = 0). The scalar potential satisfies the Maxwell equation

1

c2
Φ̈−∆Φ = 4πρ =

4πie

~c2

(
ψ∗ψ̇ − ψ̇∗ψ

)
. (45)

The longitudinal part ρΦ − 1
c
jAl of the interaction gives minus the Coulomb energy Vc =∑

k
2π
k2
ρkρ−k, while the longitudinal part 1

8π

∫
drE2

l of the electromagnetic field, where El is the
longitudinal electric field, gives Vc. Therefore, we remain with the transverse interaction

vp = −
1

c
jAt (46)
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and the transverse part of the energy of the electromagnetic field

Hem = Hph =
∑

k

~ωka
∗
kak , (47)

which corresponds to photons with energy ~ωk = ~ck (for a fixed polarization, equation. The
transverse vector potential reads

At =
1√
V

∑

k

αkek

(
ake

ikr + a∗ke
−ikr) , (48)

where αk = c
√

2π~/ωk and ek is the polarization vector. Since the longitudinal field has a
vanishing free hamiltonian (Vc = 1

8π

∫
drE2

l = 0 for Φ̈k + ω2
kΦk = 0 in equation (45)), this

field cannot be quantized as an independent kind of photons (there is no scalar or longitudinal
"photon").

In all other interaction terms where the scalar potential and the longitudinal vector potential
occur, we replace them by their expressions given by the equation of motion (45):

ρk = e
~c2

√
V

∑
k′σ βk′+kβk′ (εk′+k + εk′) ·

·
(
c∗k′+kσck′σ − b−k′−k−σb

∗
−k′−σ

)
,

Φk = − 4πe
~
√
V

∑
k′σ

βk′+kβk′(εk′+k+εk′)
(εk′+k−εk′)

2−ω2
k

·

·
(
c∗k′+kσck′σ − b−k′−k−σb

∗
−k′−σ

)
,

(49)

Atk = αk

(
ekak + e−ka

∗
−k

)
, αk = c

√
2π~
ωk

,

Alk = 4πe
~
√
V

∑
k′σ

ik
kωk

βk′+kβk′(ε2k′+k
−ε2

k′)

(εk′+k−εk′)
2−ω2

k

·

·
(
c∗k′+kσck′σ − b−k′−k−σb

∗
−k′−σ

)

(50)

and

Elk = −4πik
k2

ρk . (51)

In addition, from the continuity equation we get the Fourier component of the longitudinal current

jlk = e
~c2

√
V

∑
k′σ

k

k2
βk′+kβk′

(
ε2k′+k − ε2k′

)
·

·
(
c∗k′+kσck′σ − b−k′−k−σb

∗
−k′−σ

)
.

(52)

For convenience, also we give below a few bilinear forms:

ψ∗ψ =
1

V

∑

kk′σ

βkβk′

(
c∗kσck′σ + b−k,−σb

∗
−k′,−σ

)
e−i(k−k′)r , (53)

j0 =
e
c~V

∑
kk′σ βkβk′ (εk + εk′) ·

·
(
c∗kσck′σ − b−k,−σb

∗
−k′,−σ

)
e−i(k−k′)r ,

(54)
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j = e
~V

∑
kk′σ βkβk′ (k+ k′) ·

·
(
c∗kσck′σ + b−k,−σb

∗
−k′,−σ

)
e−i(k−k′)r .

(55)

The longitudinal contribution Φ2 − 1
c2
(A2

l + 2AlAt) in the interaction vd (equation (41)) brings
an interaction of the order e3, at least; if we limit ourselves to e2-orders at most, we may use

vd ≃
e2

c2~2
(ψ∗ψ)AtAt . (56)

Similarly, only the transverse field contributes to vH . It is worth noting that the longitudinal
degrees of freedom of the electromagnetic field are removed from the problem, by means of equa-
tions (49)-(52); they are replaced by the degrees of freedom of the charges. Similar interaction
contributions arise from an external (transverse, purely radiation field).

For convenience, the interactions vH,E (equations (42)) can be written as

vH = − e
2c~
ψ∗ (

∑
+
∑∗)ψH ,

vE = ie
2c~
ψ∗ (α−α∗)ψE .

(57)

In the first equation (57) only the matrices σx,z remain, while in the second equation (57) only
the matrix σy remains.

5 Perturbation theory

5.1 Interaction representation

The state vectors | v > are obtained by the action of the electron and photon creation operators
upon the vacuum (c∗kσ, b

∗
kσ, a

∗
k). The time evolution of the state vectors is given by Schroedinger

equation

i~
∂

∂t
| v >= (H0 + V ) | v > , (58)

where H0 = He +Hph and V = Vp + Vd + VH + VE, given above. The electron hamiltonian is

He =
∑

kσ

~εk (c
∗
kσckσ + b∗kσbkσ) , (59)

where εk = c
√
k2 + k20, k0 = mc/~ being the inverse of the Compton wavelength. The spin label

takes two values σ ± 1. The photon hamiltonian is

Hph =
∑

k

~ωka
∗
kak , (60)

where ~ωk = ~ck (for a fixed polarization). The interaction is given by

Vp,d,E,H =

∫
drvp,d,E,H , (61)

where the interaction densities vp,d,E,H are given above.
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We adopt the interaction representation, where | v >= e−
i
~
H0t|̃ v >, which means that all the

operators have the form

Õ = e
i
~
H0tOe−

i
~
H0t , (62)

such that their equation of motion is

˙̃
O =

i

~
[H0, Õ] ; (63)

we can see that ãk = e−iωktak, c̃kσ = e−iεktckσ and b̃kσ = e−iεktbkσ. Equation (58) becomes

i~
∂

∂t
|̃ v > = e

i
~
H0tV e−

i
~
H0t |̃ v > ; (64)

we denote all the Õ-operators by O(t) and all the states |̃ v > by | v(t) >, and write

i~
∂

∂t
| v(t) >= V (t) | v(t) > . (65)

The solution of this equation is

| v(t) >=| v(ti) > −
i

~

∫ t

ti

dt
′

V (t
′

) | v(t′) > , (66)

or
| v(t) >=| v(ti) > − i

~

∫ t
ti
dt

′

V (t
′

) | v(ti) > +

+
(
− i

~

)2 ∫ t
ti
dt

′

V (t
′

)
∫ t′
ti
dt

′′

V (t
′′

) | v(ti) > +... ,

(67)

where ti is the initial moment of time. The initial time is ti = 0 and the final time is tf = t. The
product < vf | vi >, where | vi,f >=| v(ti,f) >, is the amplitude of transition from the initial
to the final state (with normalized states). We note that the Schroedinger evolution equation
is not relativistically invariant. However, in computing the transition probabilities we may let
the time go to infinity (and the initial moment to minus infinity), such that the solution gets
a constant coefficient (the scattering matrix), which is irrelevant for the relativistic invariance.
The interaction includes a position integral over the whole space. The relativistic invariance is
improper for an evolution equation which does not include a position or a moment of time.

In an elementary act of interaction there exists a photon with energy ~ωk = ~ck and momentum
~k and an electron with energy e2k, such that the ratio of these two energies gives the coupling
constant α = e2/~c. For electrons α = 1/137 is the fine structure constant. It follows that
calculations up to the second-order of the perturbation theory suffice. In addition, whenever
divergent integrals occur we use a cutoff wavevector of the order k0 = mc/~ (the inverse of the
Compton wavelength).

5.2 Interacting electron

The initial state of an electron is | vi >= c∗kσ | 0 >. The first-order perturbation state produced
by the interaction vp is

| v >(1)
p =

2e

c~2

∑

k′

αk′βkβk′+kke−k′S∆εa
∗
−k′c∗k′+kσ | 0 > , (68)
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where

S∆ε =
ei(εk′+k+ωk′−εk)t − 1

εk′+k + ωk′ − εk
, ∆ε = εk′+k + ωk′ − εk (69)

and αk = c
√

2π~/ωk, βk = c
√
~/2εk. The electron changes its state and emits a photon. The

second-order perturbation state produced by the same interaction vp is

| v >(2)
p = e2

c2~4

∑
k′ αkαk′−kβkβk′+kβ

2
k′ [2k

′e−k] ·

· [(k′ + k)ek−k′]
S∆ε+S∆ε2

∆ε1
a∗−ka

∗
k−k′c∗k′+kσ | 0 > ,

(70)

where
∆ε1 = εk′ + ωk′−k − εk , ∆ε2 = εk′ − ωk − εk′+k ,

∆ε = ∆ε1 −∆ε2 ;
(71)

the electron emits two photons (an additional term is present for bound states). The first non-
vanishing contribution of the interaction vd is of the order e2:

| v >(2)
d = − ie2

c2~3
tβ2

k

∑
k′ α2

k′c∗kσ | 0 > −

− ie2

c2~3

∑
k′q αk′αk′−qβkβk′+q·

· (e−k′ek′−q)S∆εa
∗
−k′a∗k′−qc

∗
k+qσ | 0 > ,

(72)

where
∆ε = ωk′ + ωk′−q − εk . (73)

The contributions of the other interactions (vH , vE) are estimated in the same way.

5.3 Spontaneous emission

Equation (68) gives the amplitude of spontaneous emission of a photon,

f = ec

√
2πEph
EiEf

sin θ · S∆ε , (74)

where Eph = ~ω is the energy of the photon, Ei,f are the initial and final energies of the electon and
θ is the angle between the direction of propagation of the electron and the direction of propagation
of the photon. For the probability of emission (polarized photon, per unit volume),

|S∆ε|2 = 2πtδ(∆ε) . (75)

If there is a width of the energy levels, the factor S∆ε becomes

S∆ε =
ei∆εte−γt − 1

∆ε+ iγ
(76)

and |S∆ε|2 −→ 1/ (∆ε2 + γ2/4) for t −→∞ (a natural line breadth is caused by the field emitted
by the charge).1 On the other hand, πδ(∆ε)←− (γ/2)/ (∆ε2 + γ2/4) for γ ≪ ∆ε; it follows that
the relevant time is of the order t ≃ 1/γ, as expected. This is the typical result for photon emission
or absorption, dipole (multipole) radiation (from bound states), Zeeman, Stark and photoelectric
effects. The results are similar with those of the radiation theory.[12]-[15]

1V. Weisskopf and E. Wigner, "Berechnung der natuerlichen Linienbreite auf Grund der Diracschen Lichttheo-
rie", Z. Phys. 63 54 (1930); "Ueber die naturliche Linienbreite in der Strahlung des harmonischen Oszillators", Z.
Phys. 65 18 (1930). See also W. Heitler, The Quantum Theory of Radiation, Dover (1984).
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5.4 Diamagnetic self-energy: a mass renormalization

The first term in equation (72) gives an interacting state

| v >=| vi > −
ie2

c2~3
tβ2

k

∑

k′

α2
k′ | vi > , (77)

which indicates a change

∆Ed =
e2

c2~2
β2
k

∑

k′

α2
k′ (78)

in the energy of the electron; or

∆Ed =
e2c~

2πE

∫
dk′ · k′ , (79)

where E =
√
p2c2 +m2c4 is the original energy of the electron. This self-energy is infinite. It is

associated with photon fluctuations of the vacuum: the electron generates and absorbs a photon,
according to the diamagnetic interaction ∼ (ψ∗ψ)A2 (a factor 2 should be included for the two
photon polarizations).

Such divergences are typical for higher-order terms in the perturbation series, including even some
second-order contributions. Their origin is twofold. On one hand, they arise from the pointlike
nature of the electron, which generates a Coulomb static potential (related to the integration
extended to infinity in equation (79)). On the other hand, they arise in higher-orders of the
perturbations series as a consequence of the deficient formulation of the interaction problem.
Indeed, the interaction problem is based on two equations. First, the electromagnetic field satisfies
the Maxwell equations

1

c2
∂2Aµ
∂t2

−∆Aµ =
4π

c
jµ , (80)

where the current jµ is a bilinear form of ψ and ψ∗. These later quantities are expressed with cre-
ation and destruction operators, which obey the Schroedinger equation of motion; for an operator
O, this equation reads Ȯ = i

~
[H,O], where H is the hamiltonian which includes the interaction

with the electromagnetic field. Starting with the second order of the perturbation theory, we have
a contribution to jµ from the field, by using Schroedinger equation; introducing this contribution
in equation (80), it gives a field-field self-interaction, which is unphysical. Similarly, we may ex-
press the field by means of the current density jµ from equation (80) and introduce it into the
Schroedinger equation; then, starting with the second-order of the perturbation theory, we have
an interaction of the particle (charge) with itself, which again is unphysical. In fact, the separation
of the charges from their fields is impossible in higher orders of the perturbation theory, as it is
known from the impossibility of eliminating the fields from the classical equation of motion of the
charges in higher-orders of relativistic corrections. Ultimately, this entanglement of the charges
and their fields arises from the formulation of the interaction problem; it manifests itself as an
indeterminacy of the motion over short distances. The relativistic quantum-mechanical motion is
not determined over distances of the order of the Compton wavelength.

It is worthwhile recalling in this context the relativistic equation of motion

µc
duµ

dt
=

1

c
F µνjν (81)

for a mass density µ, where uµ is the four-velocity (uµ = dxµ/ds) and Fµν = ∂µAν − ∂νAµ is
the electromagnetic field (the change of µ and t makes this a relativistic invariant equation); the
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current density is jµ = ρdxµ/dt = ρuµ(ds/dt), where ρ is the charge density (which changes
like µ). We may solve this equation for jµ ( uµ) as a function of F µν , introduce this jµ in
equation (80) and get fields determined by themselves. Similarly, we may solve equation (80)
for fields as functions of uµ (jµ), introduce these fields in equation (81) and get four-velocities
determined by four-velocities. In both cases we get field or particle (charge) self-interaction,
which is unphysical. We cannot disentangle the fields from the charges. This situation is well
known from the relativistic corrections to the classical lagrangian of the charges, where, in higher-
orders of relativistic corrections, the charges cannot be separated from fields. Similarly, the Dirac
equation

γµ
(
pµ −

e

c
Aµ

)
ψ = mcψ (82)

is entangled with Maxwell equations (80), the indeterminacy of the motion over short distances
being embodied in the Dirac matrices.

It follows that in computing higher-order contributions to the perturbation series of the relativistic
quantum-mechanical quantities one should be content with the approximation scheme provided
by averaging the Dirac equation over distances of the order of the Compton wavelength, i.e. with
the approximation scheme provided by the boson field; this scheme gives results with a "certain
uncertainty". The fact that in Dirac equation the indeterminacy of the short-distance motion
is associated with the Dirac matrices may support the attempt of disentangling the fields from
the charges, by means, for instance of the renormalization technique, carried out in a covariant
fashion. Though a reasonable idea, the renormalization implies regularization techniques which
are improper. The standard renormalization scheme forces the separation of the particles from
the fields; and it implies a subtraction of infinities in the regularization of the Feynman integrals
which is arbitrary. The experimental measurements force, indeed, the particle-field separation,
and we may admit that the two separations, the theoretical one and the experimental one, may
coincide. However, the subtraction of the infinities remains arbitrary, undetermined. In addition,
the existence of competing interaction with other charges (like mesons), makes any agreement
problematic, and, ultimately, the agreement with the experiment, if it exists, is accidental. In
fact, as it is well known, the consistent application of the separation procedure in all orders of the
perturbation theory, makes the interaction infinite or zero.[3, 16, 17] The renormalization and the
regularization techniques are inconsistent.

The cutoff in equation (79) is of the order of the inverse of the Compton wavelength λc =
~

mc
; by

using it, we get

∆Ed =
e2m2c3

4π~E
, (83)

which, in the non-relativistic limit, becomes ∆Ed ≃ e2/4πλc = (1/4π)·
·(e2/~c)mc2. This is a mass renormalization, due to photon fluctuations (α = e2/~c = 1/137 is
the fine structure constant). Similar results are obtained from second-order contributions.

5.5 Lamb shift

Let us consider a set of electron bound states denoted by n, with orthonormalized wavefunctions
ϕn (instead of plane waves eikr). The first-order interacting state generated by the interaction vp
is

| v >(1)
p = − ie

c~2

∑

n1k

αkβnβn1
[Gn1n(k)e−k]S∆εa

∗
−kc

∗
nσ | 0 > , (84)
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where ∆ε = ωk − εn and

Gnn′(k) =

∫
dr (ϕ∗

ngradϕn′ − gradϕ∗
n · ϕn′) eikr (85)

(without the b-electrons). The second-order interacting state includes, apart from two photons, a
contribution arising from the photon fluctuations, given by

| v >(2)
p = e2

c2~4

∑
n1n2k

α2
kβnβn1

β2
n2
·

· [Gn1n2
(k)ek] [Gn2n(−k)ek] ·

·
∫ t
0
dt1e

−i(ωk+εn2
)t1

∫ t1
0
dt2e

i(ωk−εn+εn2
)t2c∗n1σ | 0 > .

(86)

We can see that the electron emits and absorbs a photon and changes its state. Noteworthy, for
free electrons this contribution is zero. A self-interacting contribution corresponds to n1 = n.
In addition, the main contribution arises from a degenerate state n2 = n′, if it exists. In these
circumstances, equation (86) becomes

| v >(2)
p = e2

c2~4

∑
k
α2
kβ

4
n [Gnn′(k)ek] [Gn′n(−k)ek] ·

·
∫ t
0
dt1e

−i(ωk+εn)t1
∫ t1
0
dt2e

iωkt2c∗nσ | 0 > ,

(87)

or
| v >(2)

p = e2

c2~4

∑
k α

2
kβ

4
n·

· [Gnn′(k)ek] [Gn′n(−k)ek]Sc∗nσ | 0 > ,

(88)

where

S =
1

ωk

[
e−iεnt − 1

εn
− e−i(εn+ωk)t − 1

εn + ωk

]
. (89)

For atomic bound states Gnn′(k)ek and the range of k are of the order 1/a, where a is the
dimension of the atomic state. In the limit k −→ 0 equation (89) becomes

S = − ∂

∂εn

e−iεnt − 1

εn
; (90)

in the limit of large t we get S ≃ it/εn, such that equation (88) becomes

| v >(2)
p = it

e2λ3c
8π~a4

| vi > , (91)

where εn ≃ c/λc. Therefore, we get an energy shift

∆Ep ≃ −En
(

e2

8πaEn

)(
λc
a

)3

; (92)

since En is of the order e2/a, this shift is ∆Ep/En ≃ 1
8π
(λc/a)

3. It is the splitting of the two
degenerate states. The result is smaller by one order of magnitude than the standard result.[18]-
[22] The standard result is ∆E ≃ 103MHz (1eV ≃ 2.4 × 1014Hz ), ∆E/E ≃ 3 × 10−7 (E =
13.6eV ), while ∆Ep/En ≃ 2 × 10−8 (equation (92) with λc = 3.8 × 10−11cm and a = 0.53Å).
The main source of errors is the restriction to long-wavelength photons in equation (90) and the
approximation εn ≃ c/λc. A slight variation in the cutoff λc may compensate the difference.
The "mass renormalization" applied by Bethe[19] is improper both in using the non-relativistic
approximation and the cutoff 242eV .
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5.6 Spin-flip photon emission

In the interaction vH = − e
2c~
ψ∗(Σ + Σ∗)ψH it is convenient to use the spin wavefunctions ϕσ in

writing the field ψ. The interacting-electron initial state c∗kσ | 0 > becomes

| v >(1)
H = e

c~2

∑
k′ sinϕ(k′)k′αk′βkβk′+k·

·S∆εa
∗
−k′c∗k′+k,−σ | 0 > ,

(93)

where ϕ(k′) is the angle in the parametrization

k′ = k′(sin θ cosϕ, sin θ sinϕ, cos θ) ,

ek′ = eθ = (cos θ cosϕ, cos θ sinϕ,− sin θ)
(94)

and
k′ × ek′ = eϕ = (− sinϕ, cosϕ, 0) (95)

(actually, related to the angle between the spin and the propagation wavevector of the photon); the
spin operator σ is directed along the vector eϕ (where only the σx-component remains), such that,
on emitting a photon, the magnetic field changes and the spin is reversed. Equation (93) gives
the amplitude of spin-flip photon emission (∆ε = εk′+k + ωk′ − εk). The second-order correction,
as well as the contributions of the interaction vE can be estimated in the same way; the latter
implies vacuum polarization and photon fluctuations.

5.7 Anomalous magnetic moment

Let us assume an external, uniform and constant, magnetic field H0. The first contribution of vH
with H0 to the interacting state (apart from the zeroth order contribution) arises in the third-order
of the perturbation theory. The structure of this contribution is

−
( e

c~

)3

[ψ∗ (Σψ)H]1 [ψ
∗ (Σψ)H]2

[
ψ8 (Σψ)

]
3
H0c

∗
kσ | 0 > , (96)

where the magnetic field is

H =
∑

q

iαq (q× eq)
(
aq − a∗−q

)
eiqr (97)

and the suffixes 1, 2, 3 denote the times; in equation (96) the space integration is included. Spin
wavefunctions should be included, which amounts to products of spin operators. The full contri-
bution to the interacting state is obtained by inserting the time integrations

(
− i
~

)3 ∫ t

0

dt1 ·
∫ t1

0

dt2 ·
∫ t2

0

dt3 ; (98)

a factor 3 is included for the three positions of H0 in equation (96). Obviously, only the c-operators
contribute.

We can see that, in fact, the time t3 does not appear in equation (96), as expected. The external
field plays the role of a probe, which lasts a short time ∆t; consequently, we replace the t3-
integration by

− i
~

∫ ∆t

0

dt3 = −
i∆t

~
=
δt

~
=

1

mc2
. (99)
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The remaining time integrations are

S =

∫ t

0

dt1e
−iεk+qt1 ·

∫ t1

0

dt2e
i(εk+q−εk)t2 . (100)

In this equation the wavevector q of the (emitted and absorbed) photon brings a comparatively
small contribution, such that

S = − ∂

∂εk

e−iεkt − 1

εk
≃ it

εk
. (101)

Taking into account the spin contribution

[σy(q× eq)y]
2 = q2 cos2 ϕ (102)

(we recall the relationship σiσj = δij + iεijkσk for the Pauli matrices), we get the energy change

∆EH = −3

~

( e

c~

)3∑

q

cos2 ϕ(q)

εkmc2
q2α2

qβ
4
kβ

2
k+q (H0σ) . (103)

In this expression we may approximate εk by ck0 (k0 = mc/~) and βk+q ≃ βk (and average over
directions); we get the relative change in the magnetic moment (the Bohr magneton µ =| e |
~/2mc)

∆µ/µ ≃ 3

32π
· e

2

~c
(104)

(a factor 2 should be included for the two polarizations). The result is comparable with Schwinger’s
standard result (∆µ/µ = α/2π).[22, 23] The result should be multiplied by a factor (kc/k0)3, where
kc is the cutoff. The standard result is obtained for kc ≃ k0/

√
2, characteristic for a gaussian

distribution. The standard result implies an improper regularization of a divergent integral (see,
for instance, Ref. [15]).

5.8 Pair creation: photon annihilation

The interaction vE = ie
2c~
ψ∗ (α−α∗)ψE is responsible for pair creation (destruction). The electric

field is
E =

∑

q

iqαq

(
eqaq − e−qa

∗
−q

)
eiqr , (105)

after the spatial integration the interaction becomes

VE = − e
c~

∑
kq qαqβkβk−q

(
c∗kσyb

∗
−k+q + b−kσyck−q

)
·

·
(
eqaq − e−qa

∗
−q

)
,

(106)

where the spin suffixes are included. We can see that an external photon is absorbed and generates
an electron pair, with opposite spins. The interacting state is given by

− e

c~

∑

k

qαqβkβk−qc
∗
kσyeqyb

∗
−k+qe

−iωqt | 0 > , (107)

where the time integration should be included. We get the amplitude

f = − ie

c~2
qαqβkβk−q cosϕ sinϕS∆ε (108)
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for the pair c∗k+b
∗
−k+q,−, where ∆ε = εk+ εk−q−ωq (|S∆ε|2 = 2πtδ(∆ε)) and ϕ = ϕ(q) is given by

equation (94). We can see that the momentum is conserved, but the energy cannot be conserved,
since the equation √

k2 + k20 +
√

(k− q)2 + k20 = q (109)

has no solutions (as it is well known).

5.9 Pair creation: external field

The coupling of vE with vp or vH leads to pair creation; vH can be generated by an external
magnetic field. Similarly, we can consider an interaction vE generated by an external (static)
electric field, like the field grad(Ze/r) of a nucleus with charge Ze. This electric field is

E = −
∑

k

4πiZek

k2
e−ikr ; (110)

it generates an interaction

V0 =
4πe2Z
c~

∑
kk1

1
k2
βk1

βk1+k·

·
(
c∗k1

σykyb
∗
−k1−k + b−k1

σykyck1+k

) (111)

(of the vE-type). We couple this interaction with

Vp = − e
c~

∑
kq
αqβkβk−q(2k− q)·

·
(
c∗kck−q + b∗−k+qb−k

) (
eqaq − e−qa

∗
−q

)
.

(112)

The interaction V0 does not depend on time; we use for it the integral given by equation (99). We
apply

−2i
~mc2

∫ t

0

dt1Vp(t1)V0 (113)

to the state a∗q | 0 > (the factor 2 in equation (113) arises from the product (Vp + V0)(Vp + V0)).
The temporal factor S∆ε implies

εk+q − εq = ωq , (114)

an equation which is only approximately satisfied for small k and q of the order k0. The momentum
is not conserved, since the (large) nucleus is static. There are two amplitudes for creation of pairs
(k,−k + q − k′) and (−k + q,k − k′), with opposite spins and undetermined k′. The order of
magnitude of these amplitudes is

f ≃ ± 4πie3Z

~mc2k20

√
2πc~

k0

k

k′
sin θ sin θ′ cosϕ′S∆ε , (115)

where θ is the angle between k and q and θ′, ϕ′ are the angles of k′. This amplitude has the
dimension

√
α · vol3/2, where α = e2/c~ is the fine-structure constant. The factor vol3/2 is reduced

by the density of states. Also, the amplitude given by equation (115) can be written as f ≃√
αZreλ

7/2
c , where re = e2/mc2 is the classical radius of the electron. Electron-positron pairs can

also be created by polarizing the vacuum by an external electromagnetic field.[24]

The uncertainty implied by the second-order perturbation theory requires a density of states
∼ 1/λ3c for each electron; and a factor ∼ 1/λc for the photon; it follows a cross-section σ ≃ αZr2e ,
which has the order of magnitude of the standard result.[25] This is the Bethe-Heitler process.
The coupling of VE with V0 leads to the Bremsstrahlung of an electron (c∗kσ | 0 >) in an external
field (and synchroton radiation).
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5.10 Pair creation: two-photon annihilation

The coupling of VE (equation (106)) with Vp (equation (112)) leads to pair creation by the annihi-
lation of two photons. We apply the second-order perturbation operator (VpVE) to the intial state
a∗qa

∗
−q | 0 >. The time integration leads to S∆ε, where ∆ε = 2εk − 2ωq, for the pair (k,−k) with

opposite spins, and to S∆ε, ∆ε = εk − εk−q − ωq, an approximate energy conservation. This is
the Breit-Wheeler process. The energy conservation 2εk − 2ωq is satisfied for k −→ 0 and q ≃ k0.
The amplitude of formation of the pair (k,−k) is

f ≃ ∓ 4i

~2

( e

c~

)2

q2α2
qβ

2
0

β2
q

εq
sinΘ cos θ sinϕ · S∆ε , (116)

where Θ is the angle between k and q and θ, ϕ are the angles of the wavevector q (with respect
to the electron spin). For q ≃ k0 the order of magnitude of the amplitude f is f ≃ αλ3c (where
S ≃ τ ≃ λc/c), in agreement with the standard result (we note that re = αλc).[26] The process of
pair formation by annihilation of two photons is related to the process of pair annihilation with
the formation of two photons.[27]

5.11 Charge renormalization

Let us consider the interaction of a charge e with a static charge Q. The latter generates an
interaction V0 given by equation (111). The first non-vanishing correction to the initial state
c∗kσ | 0 > appears in the second order of the perturbation theory; it is due to vacuum polarization.
Before effecting the time integration, this contribution reads

(
4πeQ
c~

)2∑
q,q′

1
q2q′2

βkβ
2
k−q′βk−q−q′(σyqy)(σyq

′
y)·

·ei(εk−q′−εk)t1eiεk−q′ t2c∗k−q−q′ | 0 > .

(117)

The main contribution to the state kσ, with small k, comes from small q = −q′. This is a quasi-
static interaction; instead of two V0 generated by Q, we may use only one generated by Q and
another generated by e; then (eQ)2 is replaced by e3Q. The integration over q′ gives q2∆q ≃ 1/λ3c .
The main contribution of the time integration is S∆ε/εk,

S∆ε =
ei(εk+q−εk)t − 1

εk+q − εk
≃ it . (118)

After averaging over angles we get a change

∆E ≃ 1

3~

(
4πeQ

c~

)2
β4
0

ε0
λ3c

∑

k

1

k2
(119)

in energy, which should be compared with the Coulomb interaction 4πeQ
∑

k
1
k2

. It follows a charge
renormalization of the order δe/e ≃ π

6
α, a result comparable with the standard results.[28]-[31]

5.12 Photon mass

The vacuum polarization accompanied by photon fluctuations in the perturbation series does not
change the energy of the photon. However, the interaction with a "real" electron gives mass to
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the photon. Indeed, the interaction leads to

1
c2
∂2Aµ

∂t2
−∆Aµ + 8πe2

c2~2
(ψ∗ψ)Aµ =

= 4π
c
jµ − 4πie~

c
∂νψ

∗ (σµν − σµν∗)ψ ,

(120)

which is a wave equation with sources and mass. For an electron (both spin orientations) we get
a photon mass given by

m2
ph =

e2~2

Ec2
· 1
λ3c

= α
(
mc2/E

)
m2 , (121)

where E is the energy of the electron. The photons interacting with the electrons are similar
with radiation propagating in matter (polaritons). The photon mass leads to a screened Coulomb
interaction 1

r
e−

mphc

~
r.

6 Conclusion

The quantization of the relativistic motion implies a cutoff length of the order of the Compton
wavelength (and corresponding thresholds in energy, momentum, duration). Being associated to
an undefined, unphysical motion, it is not subject to the relativistic invariance requirement.

Acknowledgments. The author is indebted to the members of the Laboratory of Theoretical
Physics at Magurele-Bucharest for many fruitful discussions. This work has been supported by
the Scientific Research Agency of the Romanian Government through Grant PN 19060101/2019.

References

[1] V. F. Weisskopf, "On the self-energy and the electromagnetic field of the electron", Phys.
Rev. 56 72-85 (1939).

[2] L. Landau and R. Peierls, "Erweiterung des Unbestimmtheitsprinzips fur die relativistische
Quantentheorie", Z. Phys. 69 56-69 (1931).

[3] L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 4, Quantum Electrodynamics

(V. Berestetskii, E. Lifshitz, L. Pitaevskii), Butterworth-Heinemann (1971).

[4] T. A. Welton, "Some observable effects of the quantum-mechanical fluctuations of the elec-
tromagnetic field", Phys. Rev. 74 1157-1167 (1948).

[5] E. Schroedinger, "Ueber die kraeftefreie Bewegung in der relativistischen Quantenmechanik",
Sitzungsberichte der Preussischen Akademie der Wissenschaften, Berlin, 418 (1930)

[6] E. Schroedinger, "Zur Quantendynamik des Elektrons", Sitzungsberichte der Preussischen
Akademie der Wissenschaften, Berlin, 63 (1931).

[9] G. Breit, "An interpretation of Dirac’s theory of the electron", Proc. Nat. Acad. Sci. 14

553-559 (1928)

[10] W. H. Furry and J. R. Oppenheimer, "On the theory of the electron and positive", Phys.
Rev. 45 245-262 (1934).



20 J. Theor. Phys.

[11] W. Pauli, "Relativistic field theories of elementary particles", Revs. Mod. Phys. 13 203-232
(1941).

[12] P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation", Proc.
Roy. Soc. A114 243-265 (1927)

[13] P. A. M. Dirac "The quantum theory of dispersion", Proc. Roy. Soc. A114 710-718 (1927).

[14] E. Fermi, "Quantum theory of radiation", Revs. Mod. Phys. 4 87-132 (1932).

[15] W. Heitler, The Quantum Theory of Radiation, Dover (1984).

[16] L. Landau, "On the Quantum Theory of Fields", in Niels Bohr and the Development of

Physics, ed. W. Pauli, Pergamon Press (1955) and references therein.

[17] M. Gell-Mann and F. E. Low, "Quantum Electrodynamics at small distances", Phys. Rev.
95 1300-1312 (1954).

[18] W. E. Lamb and R. C. Retherford, "Fine structure of the hydrogen atom by a microwave
method", Phys. Rev. 72 241-243 (1947).

[19] H. Bethe, "The electromagnetic shift of the energy levels", Phys. Rev. 72 339-341 (1947).

[20] ; J. B. French and V. F. Weisskopf, "The electromagnetic shift of the energy levels", Phys.
Rev. 75 1240-1248 (1949).

[21] R. Feynman, "Relativistic cut-off for Quantum Electrodynamics", Phys. Rev. 74 1430-1438
(1948) (correction in "Space-time approach to Quantum Electrodynamics", Phys. Rev. 76

769-789 (1949)).

[22] J. Schwinger, "Quantum Electrodynamics. III. The electromagnetic properties of the electron-
Radiative corrections to scattering", Phys. Rev. 76 790-817 (1949).

[23] J. Schwinger, "On Quantum-Electrodynamics and the magnetic moment of the electron",
Phys. Rev. 73 416-417 (1948).

[24] M. Apostol, "Dynamics of electron-positron pairs in a vacuum polarized by an external elec-
tromagnetic field", J. Mod. Opt. 58 611-618 (2011).

[25] H. Bethe and W. Heitler, "On the stopping of fast particles and on the creation of positive
electrons", Proc. Roy. Soc. A146 83-112 (1934).

[26] G. Breit and J. A. Wheeler, "Collision of two light quanta", Phys. Rev. 46 1087-1091 (1934).

[27] P. A. M. Dirac, "On the annihilation of electrons and protons", Proc. Cambr. Phil. Soc. 126

361-365 (1930).

[28] J. Schwinger, "Quantum Electrodynamics. II. Vacuum polarization and self-energy", Phys.
Rev. 75 651-679 (1949).

[29] R. P. Feynman, "Space-time approach to Quantum Electrodynamics", Phys. Rev. 76 769-789
(1949).

[30] R. Serber, "Linear modifications in the Maxwell field equations", Phys. Rev. 48 49-54 (1935).

[31] E. A. Uehling, "Polarization effects in the positron theory", Phys. Rev. 48 55-63 (1935).



J. Theor. Phys. 21

c© J. Theor. Phys. 2021, apoma@theor1.theory.nipne.ro


