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Abstract

The law of increase of the electrostatic screening length with increasing concentration, re-
cently reported in highly-concentrated electrolytes (ionic liquids, inorganic salts), Refs. [3]-[6],
is derived from the dispersive plasmons generated by Coulomb and short-range interactions,
the latter arising from screened-charge electrostatic interactions.
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It is well known that an electrostatic potential Q/r, generated by a pointlike charge Q at distance
r in vacuum, is screened in an electrolyte according to the law Qe−r/λD/r, where λD is the Debye
length.[1, 2] For a binary electrolyte consisting of cations/anions with charge ±q and density
n = 1/a3 at temperature T the Debye length is λD = a

√

εaT/8πq2, where ε is the dielectric
constant. The screening law holds as long as the screened potential vary slowly over distances
much longer than the mean inter-ionic distance. This condition is met in dilute electrolytes, where
λD ≫ a. In concentrated electrolytes, λD < a (Bjerrum length q2/εT & a), the screened potential
is, practically, vanishing over long distances. In both cases the region in the immediate vicinity of
the ions should be avoided. Recently, it was found experimentally that, at high concentrations, in
a wide class of electrolytes, ionic liquids and inorganic salts, there exists a screening length which
obeys the law Λ ≃ r30/λ

2
D (up to a small additive constant), where r0 is the mean ion diameter[3]-

[6] (see also Refs. [7]-[9]). We can see that, for high concentrations, this screening length increases
with increasing concentration, in contrast to the Debye length. Scaling arguments have been
advanced in Ref. [4] to justify this new law, valid at high concentrations. We show in this Note
that this law is a consequence of the dispersive plasmons, arising from Coulomb and short-range
interactions. The short-range interactions arise from electrostatic interactions between screened
ionic charges.

Let us consider a set of identical particles with mass m and density n, with a pair-wise interaction
energy V (r1 − r2). A local displacement u(r) gives a density variation δn = −ndivu, such that
the interaction energy is

U =
1

2

∫

dr1dr2V (r1 − r2)δn(r1)δn(r2) =
1

2

∑

k

V (k)δn(k)δn(−k) , (1)

where V (k) and δn(k) = −inku(k) are the Fourier transforms of the interaction V (r) and the
density variation δn(r). We can see that δn(k) is given by the longitudinal displacement u(k)
(along the k-direction), such that the interaction energy can be written as

U = −
1

2

∑

k

n2k2V (k)u(k)u(−k) . (2)
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Similarly, the interaction energy with an external source φ(r) is

Ue =

∫

drφ(r)δn(r) = −in
∑

k

kφ(k)u(−k) (3)

and the kinetic energy is

T =
1

2

∫

drnm [u̇(r)]2 = −
1

2
nm

∑

k

u̇(k)u̇(−k) . (4)

At high concentrations both the Coulomb interaction and a short-range interaction are present. We
apply these results to a binary electrolyte consisting of cations with charge q, mass m1 and density
n and anions with charge −q, mass m2 and density n, with a Coulomb interaction ϕ(k) = ±4πq2/k2

and short-range interactions χ1,2(k) (cation-cation, anion-anion) and χ(k) (cation-anion) (with
spherical symmetry); in the above formulae V (k) = ϕ(k)+χ1(k) for cations, V (k) = ϕ(k)+χ2(k)
for anions and V (k) = −ϕ(k) + χ(k) for the cation-anion interaction. A dielectric constant can
be included in the Coulomb potential. The equations of motion for the two displacements u1,2(k)
are

m1ü1 + nk2 (ϕ+ χ1) u1 − nk2 (ϕ− χ)u2 = −ikφ ,

m2ü2 + nk2 (ϕ+ χ2)u2 − nk2 (ϕ− χ) u1 = ikφ ,
(5)

where we dropped out the argument k. It is convenient to introduce the centre-of-mass displace-
ment u and the relative displacement v,

u = m1u1+m2u2

M
, v = u1 − u2 ,

u1 = u+ m2

M
v , u2 = u− m1

M
v ,

(6)

where M = m1 +m2; equations (5) become

Mü+ nk2 (χ1 + χ2 + 2χ)u− nk2

M
(m1χ2 −m2χ1 +∆mχ) v = 0 ,

∆mü+ nk2 (χ1 − χ2) u+ 2mv̈ + nk2
(

2ϕ− χ+ m2χ1+m1χ2

M

)

v+ = −2ikφ ,

(7)

where ∆m = m1 −m2 and m = m1m2/M is the reduced mass. By making use of u, v ∼ e−iωt, we
get the solutions

u = −ikφnk2(m1χ2−m2χ1+∆mχ)

mM2(ω2
−ω2

1)(ω2
−ω2

2)
,

v = ikφ 1

m(ω2
−ω2

1)
,

(8)

where
ω2
1 = ω2

p +
nk2

2m1m2

mχ , ω2
p = nk2ϕ

m
= 4πnq2

m
,

mχ = 2
M

(m2
1χ2 +m2

2χ1 − 2m1m2χ)

(9)

and

ω2
2 =

nk2

M
(χ1 + χ2 + 2χ) (10)

in the long-wavelength limit k → 0 (see also Ref. [10]). We can see that ω2 is the frequency of
a sound wave, associated with the motion of the centre of mass. In the limit of long wavelengths
this motion mode may be neglected, since u ∼ k3, equation (8). The frequency ω1 corresponds
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to dispersive plasmons, associated with the motion of the relative coordinate. Its square can be
written as ω2

1 = ω2
p + v2sk

2, where ωp is the plasma frequency and vs = (nmχ/2m1m2)
1/2.

If the external interaction arises from an electric potential ϕ0, i.e. φ = qϕ0, the internal electric
field is Ei = −4πnqv = −ik

ω2
p

ω2
−ω2

1

ϕ0 and the total electric field is

Et = −ikϕ0

(

1 +
ω2
p

ω2 − ω2
1

)

= −ikϕt (11)

in the long-wavelength limit, where ϕt is the total potential. It follows the dielectric function

εi =
ω2 − ω2

1

ω2 − ω2
1 + ω2

p

= 1−
ω2
p

ω2 − v2sk
2
. (12)

This is a dielectric function with spatial dispersion (compare with the excitonic dielectric function
with spatial dispersion in Refs. [11]-[13]). In the static limit ω = 0 this dielectric function tends
to infinity (a perfect screening, k → 0). In this case the total dielectric constant tends to the
dielectric function of the medium.

We are interested in the total electric potential in the static limit (equation (11)), given by

ϕt = ϕ0

(

1−
ω2
p

ω2
1

)

= ϕ0
k2

k2 + k2
0

, (13)

where k2
0 = ω2

p/v
2
s = 8πMq2/mχ. We can see that an external Coulomb potential ϕ0 = Q/r

generated by a pointlike charge Q in vacuum is screened as

ϕt =
Q

r
e−k0r , (14)

the screening length being

Λ =
1

k0
=

(

mχ

8πMq2

)1/2

= vs/ωp . (15)

The screening is due to plasmons, which, at short wavelengths (k & k0), are disrupted by the
individual motion of the ions (Landau damping, see Ref. [14]).

For long distances, i.e. in the limit k → 0, the Coulomb interaction ϕ(k) = ±4πq2/k2 dominates;
for short distances (k → ∞) it is replaced by the short-range interaction. We assume that a short-
range interaction χ(k) is the Fourier transform of a hard-core interaction energy χ0 extending over
a volume v with a radius r, such that, in the long-range limit rk ≪ 1 it is given by χ(k) = χ0v.
Within the hard-core approximation two like ions in contact can be viewed as a rigid solid with
an orientation given by a vector r, whose magnitude is twice the ion diameter. For various
orientations this vector describes a sphere. Therefore, the short-range interaction appears in a
sphere with radius twice the ion diameter. We note that such a sphere involves two pairs of ions.

The ionic charge is screened locally within a Debye length λD. At high concentrations λD may
be shorter than r/2. For short Debye lengths a screened potential qe−κr/r, κ = 1/λD, can be
approximated by a Coulomb potential q/r in a volume vl with radius l. For short distances the
screened potential can be written as qe−κr/r = q/r − qκ.... The term −qκ is the contribution of
the other ions. Therefore the interaction energy with an ion with charge q is 1

2
q2κ. On the other

hand, the interaction energy due to a Coulomb potential at distance l is q2/l; therefore, κl = 2,
i.e. l = 2λD. A charge density q/vl generates a Coulomb interaction at the distance l. The charge
in an infinitesimal volume ∆v is q∆v/vl, so the interaction energy with a pointlike charge q is
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Figure 1: The chemical potentials 1012µd for a dilute gas of charges (µd ≃ −2
3
q2κ, curve a) and

1012µc for highly-concentrated charges (µc, equation (20)), in ergs, vs concentration x = 104r30n
(r0 = 2Å, m = 35, T = 300K, ε = 1, see the text). The critical concentration is xc = 0.41.

q2∆v/vll (for a purely Coulomb potential the charge is pointlike). The total interaction energy
with the nearest neighbours is obtained by summing up all these contributions over the volume
v, such that we get χ0 = q2v/vll and χ(k) = q2v2/vll. Therefore, we have χ1,2(k) = q2v21,2/vll. As
said above, this interaction involves two pairs of ions. The cation-anion interaction involves two
cation-anion pairs, which amounts to a cation pair and an anion pair; consequently, we have χ(k) =
−q2v1v2/vll. These are short-range interactions arising from screened ionic charges. We note
that these interactions are thermal-equilibrium effective interactions, through the temperature
dependence of the Debye length. By making use of χ1,2(k) and χ(k) in equation (9), we get

mχ =
2q2

Mvll
(m1v1 +m2v2)

2 , (16)

such that the screening length given by equation (15) becomes

Λ =
1√
4πvll

m1v1 +m2v2
M

=
1√
3

m1r
3
1 +m2r

3
2

Ml2
, (17)

where r1,2 are the radii of the volumes v1,2. According to our assumption of a hard-core interaction,
r1,2 should be replaced by twice the ion diameters 2r01,2; also, we replace the radius l by twice the
Debye length, l = 2λD. It follows that in equation (17) we get an additional factor 2; equation
(17) becomes

Λ = 1.15
m1r

3
01 +m2r

3
02

Mλ2
D

(18)

(2/
√
3 = 1.15). For ionic diameters close to each other, r01 ≃ r02 ≃ r0, we may approximate the

fraction in equation (18) by r30/λ
2
D. Equation (18) gets the form Λ ≃ 1.15r30/λ

2
D, which is the

scaling law derived in Ref. [4] (where the numerical coefficient is 1.12, see Ref. [4], Supplemental
Material). The dielectric constant enters this formula through the Debye length.
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Also, we note that under these conditions the frequency of the sound mode given by equation (10),
ω2
2 ∼ χ1 + χ2 + 2χ ∼ (v1 − v2)

2 ≃ 0, is vanishing (v1 ≃ v2). The interplay between the Coulomb
interaction q2/d at distance d and the short-range interaction χ0 = q2v/vll gives d = vll/v, or,
from equation (17), d ≃ 8r30/3Λ

2 ≃ 2λ4
D/r

3
0, which, at high concentrations may be smaller than

2r0. In the range from d to 2r0 we have a superposition of Coulomb interaction and short-range
interaction.

It is worth giving a numerical estimation of typical values of the quantities discussed above. We
take a = 3Å, r0 = 2Å and m corresponding to the atomic mass number 35; we get the plasma
frequency ωp ≃ 4.4× 1012s−1 (electron charge q = −4.8× 10−17esu), the Debye length λD ≃ 0.4Å
at room temperature (ε = 80) and the screening length Λ ≃ 62Å. The velocity vs = ωpΛ is
vs ≃ 2.7 × 106cm/s. Also, the thermal velocity of the ions is vt =

√

T/m ≃ 2.4 × 104cm/s,
such that we may estimate a collision frequency τ−1 ≃ 1012s−1. We can see that ωpτ > 1, i.e.

the plasmon is relatively well defined, in a collisionless regime, which means that the screening
described above is effective. We expect a much smaller dielectric constant for small distances a,
such that the plasma frequency is higher.

The plasma excitations derived above govern the thermodynamic properties at high concentra-
tions. According to the hamiltonian given by equations (2)-(4) and the second equation of motion
(7), we may restrict ourselves to the motion of the relative coordinate v in the long-wavelength
limit. This is the motion of V k3

0/6π
2 independent harmonic oscillators with frequency ωp, where

V denotes the volume. The corresponding free energy is

F = −
V k3

0T

6π2

[

~ωp

2T
− ln

(

e~ωp/T − 1
)

]

; (19)

this formula is valid at thigh concentrations; it leads to a chemical potential

µc ≃ −
7k3

0~ωp

48π2n
. (20)

The high-concentration is defined by q2/T & a (or q2/εT & a) , i.e. ~ωp/T ≫
√

4π~2/ma2T ,
where the quantum-mechanical localization energy ~

2/ma2 is much smaller than the tempera-
ture T . The chemical potential given by equation (20) increases with concentration like µc ∼
−1/n1/2Λ3 ∼ −1/n7/2, which is faster than the dependence µc ∼ −1/n suggested in Ref. [4]. It is
worth noting that the thermodynamics of these oscillators is in the quantum-mechanical regime
(~ωp/T > ln 2).

The chemical potential given by equation (20) can be compared to the well-known chemical po-
tential of the dilute gas of charges µd ≃ −q2κ, κ = 1/λD (the logaritmic term may be neglected) in
order to get a (very approximate) estimate of the critical temperature Tc and the critical density
nc = 1/a3c of the transition to a liquid (at constant volume); the resulting relationship between
these two quantities is, approximately, T 7/2

c (ac/r0)
12 ≃ 2.3 × 106

√

mr20/~
2(q2/εr0)

4 (at constant
pressure the chemical potential of the dilute gas is µd ≃ −2

3
q2κ, which produces a very minor dif-

ference). Making use of the numerical data given above (r0 = 2Å, m = 35) we get ac/r0 ≃ 29/ε1/3

at T = 300K and λD,c ≃ 3.3Å, such that r0/λD,c ≃ 0.6. A direct comparison of these formulae
with the experimental data would imply the little known concentration dependence of the dielec-
tric constant.[15] The quantities 1012µd ≃ −2

3
q2κ (curve a) and 1012µc given by equation (20)

(curve b) are shown vs concentration x = 104(r0/a)
3 for r0 = 2Å, m = 35, T = 300K and ε = 1

in Fig. ...; the critical concentration is xc = 0.41. We can see that the curves (a) and (b) in Fig.
... agree qualitatively with the experimental data and the theoretical curve given in Ref. [4] (for
aqueous NaCl solutions).
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In conclusion, the long screening length appearing in highly-concentrated electrolytes is due to the
screening produced by dispersive plasmons, arising from the Coulomb interaction and the short-
range interaction of the screened ionic charges, the latter being effective at high concentrations.
By using this short-range interations, the scaling law of the long screening length reported in Ref.
[4] is derived.
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