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Abstract

It is shown that in certain conditions a macroscopic quantum-mechanical scattering may

occur, which may lead to a coherent cross-section on a macroscopic scale in a monocrys-

tal. The conditions are satisfied by neutrinos, but not satisfied by other projectiles, with

a higher cross-section. This may explain Weber-type experiments of neutrino detection by

a perfect, stiff sapphire monocrystal. The occurrence of coherence domains for quantum-

mecahical scattering and the formation of domains for classical diffraction are analyzed, and

the force exerted upon a macroscopic target is estimated. It is concluded that neutrinos have

a distinctive feature in this respect, due precisely to their very small cross-section.

Introduction. In two papers published in 1985 and 1988 Weber claimed that neutrinos (an-
tineutrinos), from various sources like tritium, nuclear reactors and the Sun, could be detected by
their coherent scattering by a perfect, stiff, sapphire monocrystal with a high Debye temperature
(mounted on a torsion balance and equilibrated by a lead dummy).[1, 2] The coherent cross-section
would be σ = N2σ0, where N is the number of unit cells in the target and σ0 is the cross-section
of a single unit cell (particle, e.g., atomic nucleus). Such a highly enhanced cross-section ∼ N2

would give rise to a measurable force upon a torsion balance. Weber’s claims have been criticized
both on theoretical and experimental grounds, the main objection being that the form factor
would reduce appreciably the cross-section, and, on the other hand, such a coherence effect is not
observed in X−, gamma rays or neutron scattering[3]-[12] (see also Refs. [13, 14]). A discussion
of the theoretical objections and negative experiments was given by Nicolescu, who presented
a positive experiment;[15] indeed, there exists an experiment by Cruceru et al, which confimed
Weber’s prediction for solar neutrinos.[15]-[17] The problem is still controversial. We show in this
paper that a coherent scattering of neutrinos may appear in the conditions formulated by Weber
and company, as a consequence of a quantum-mechanical treatment of the crystal as a whole
(a macroscopic quantum-mechanical scattering). This is a distinctive condition of the neutrino
scattering, which is not fulfilled by other projectiles, with a higher cross-section. The main reason
for such a behaviour is precisely the extremely small cross-section σ0 (10−44cm2) of the neutrinos.

For σ0 = 10−44cm2 and N = 1022 (less than 0.1mol) the coherent cross-section is σ = 1cm2. For a
neutrino flux density Φ = 1012/cm2 · s the time between two collisions is τ = 1/Φσ = 10−12s. On
the other hand, an atom in thermal equilibrium at room temperature has a velocity of the order
104cm/s. In an elementary act of collision the atom is perturbed from its equilibrium state and
receives a momentum of the order p = E/c, on the average, where E is the energy of the neutrino
projectile (and c = 3 × 1010cm/s is the speed of light). For E = 1MeV the momentum transfer
is of the order p = 5 × 10−17g · cm/s. Consequently, the energy perturbation of the atom is of
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the order ∆E = vp = 5 × 10−13erg. The time needed for this atom to recover its equilibrium is
of the order ∆teq = ~/∆E = 2 × 10−15s (where ~ ≃ 10−27erg · s is Planck’s constant). We can
see that τ ≫ ∆teq. We can say that the atoms recover quickly their equilibrium state between
two sucessive collisions, and the incident neutrino beam sees the crystal as a whole. Therefore,
we need to adopt a quantum-mechanical treatment for the entire crystal. It is worth noting that
if the cross-section increases to, say, σ0 = 10−24cm2, as for X-, gamma rays or neutrons, the
"collision" time decreases to τ = 10−32s, which is much shorter than the equilibrium time ∆teq, all
the other conditions remaining the same. In that case the incident projectile beam sees the crystal
as consisting of distinct, independent atoms, such that a coherent scattering (σ = N2σ0) for the
entire crystal is not possible. The particularity of a coherent scattering suffered by neutrinos in
the whole crystal resides precisely in their extremely small cross-section σ0. On the other hand,
a single-particle cross-section σ0 = 10−24cm2 increases considerably the total cross-section, such
that we need to re-consider the scattering in this case.

Macroscopic quantum-mechanical scattering. Let us assume a macroscopic target consisting
of N ≫ 1 identical "atoms" (atomic nuclei, molecules, unit cells in a crystal). The interaction
with an incident beam of particles can be written as

H = a3h(ξ)
N
∑

i=1

δ(r − ri) , (1)

where a is the range of the single-particle interaction h(ξ), ξ denotes the internal coordinates of the
atoms and ri are the atomic positions. The time between two successive collisions is τ = 1/Φσ,
where Φ is the incident flux density and σ is the total cross-section. In an elementary act of
collision an atom receives a momentum of the order of the momentum p of the incident particle.
The atom has a thermal velocity v ≃

√

T/M , where T is the temperature and M is the mass of
the atom. The atomic motion is perturbed by an energy of the order ∆E = vp, so it needs a time
∆teq ≃ ~/∆E = ~/

√

T/Mp to recover its equilibrium. Let us assume

τ > ∆teq ; (2)

then, the incident particles see the macroscopic target as a whole, and we need to work with the
wavefunction of the whole, macroscopic target.

A perfect monocrystal suffers two kinds of motion. One kind is the motion of the crystal as a
whole, where all the laticial positions of the atoms r0

i move by the same distance. The wavefunction
corresponding to this motion is

ΦK(ξ; r) =
N
∑

i=1

eiKr0

iϕ(ξ; r − r0
i ) , (3)

where K is the quasi-wavevector of the crystal (quasi-momentum ~K) and ϕ(ξ; r − r0
i ) are

(orthonormal) wavefuctions localized on the positions r0
i . We can see that the wavefunction ΦK

has the translational symmetry of the crystal. We call ΦK a coherent wavefunction. The other
type of motion of the crystal is the thermal motion with atomic displacements vi (ri = r0

i + vi);
the corresponding wavefunction is

ψ(ξ; r) =
N
∑

i=1

eiχiϕ(ξ; r − r0
i − vi) , (4)
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where eiχi are random phase factors; we call ψ an incoherent wavefunction. Both these wavefunc-
tions are normalized to N ; they are orthogonal to each other. The wavefunction of the crystal
is

ΨK =
√

1− g2ΦK + gψ , (5)

where g is a weight coefficient. This coefficient is proportional to the square root of the relative
number of vibration states of the crystal, properly normalized. This relative number of phonon
states is proportional to

I =
1

ω3
D

∫ ωD

0

dω
ω2

e~ω/T − 1
, (6)

where ωD is the Debye frequency and ω is the phonon frequency; the Debye temperature is
Θ = ~ωD. For T/Θ ≪ 1 the integral is I ≃ 2.4(T/Θ)3, while for T/Θ ≫ 1 the integral is
I ≃ 1

2
T/Θ. A normalized expression for the relative number of states is 4.8(T/Θ)2 for T/Θ ≪ 1

and 1 for T/Θ ≫ 1. An interpolation formula is I ≃ 4.8(T/ωD)
2/ [1 + 4.8(T/ωD)

2], such that we
can take for the weight coefficient

g ≃ 2.2(T/Θ)

[1 + 4.8(T/Θ)2]1/2
. (7)

We can see that for high Debye temperatures the main contribution to ΨK comes from the coherent
wavefunction (g ≪ 1), while for low Debye temperatures the main contribution comes from the
incoherent field (g → 1).

Let us assume a wavefunction 1√
V
eikr for an incident particle, and an initial (i) wavefunction

1√
V
eikrΨK , where V denotes the volume. The normalization to unity of this wavefunction requires

a factor
√
a3 in the wavefuctions ϕ, such that the scalar product is 〈ϕ(ξ; rj − ri), ϕ(ξ; rj − ri)〉2 =

δij . The matrix elements of the interaction between the wavefunctions ΦK and ψ are zero. The
matrix elements of the interaction between two wavefunctions ΦK and ΦK′ (coherent scattering)
lead to the momentum conservation

Hfi ∼
N
∑

i=1

ei(K−K′)r0

i ei(k−k′)r0

i = NδK′+k′,K+k , (8)

where k′, K ′ are the wavevectors of the final state (f). We can see that the difference in momentum
of the incident particle is taken by the crystal, which moves as a whole. According to equation
(8) the coherent cross-section is

σcoh = N2σ0 , (9)

where σ0 is the single-particle cross-section. A similar calculation for the incoherent matrix ele-
ments (wavefunctions ψ) leads to

Hfi ∼
N
∑

i=1

ei(k−k′)r0

i (1 + i(k − k′)vi + ...) , (10)

where

vi =
1√
N

∑

q

eiqr
0

i vq (11)

is the phonon field. The first term in equation (10) corresponds to a displacement of the crystal
as a whole, so it is already included in the coherent scattering. We are left with

Hfi ∼
√
N (qvq) δk′,k+q . (12)
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We can see that the difference in momentum of the incident particle is taken by phonons; the
incoherent scattering excites phonons. In addition, the incoherent cross-section is proportional
to N . For the cross-section we need to average (qvq)

2 over the thermal states. The maximum
value of this average is of the order T/Mc2s (at room temperature), where cs is the mean phonon
velocity. This thermal factor is reminiscent of the Debye-Waller factor (and the diffuse scattering).
The total incoherent scattering can be written as

σincoh = Nσph
0 , (13)

where the single-particle cross-section σph
0 , arising from phonons, is smaller than σ0 by the thermal

factor.

The total cross-section of the crystal is

σ =
√

1− g2σcoh + g2σincoh . (14)

For atoms placed randomly (like in amorphous solids, liquids, etc) the coherent wavefunction ΦK

is missing and the weight coefficient is g = 1.

Neutrino scattering. We adopt N ≃ 1022 for the number of unit cells in the sapphire monocrys-
tal (≃ 24g, density 4g/cm3) used in Weber’s experiments,[1, 2] and other similar experiments[15]-
[17](the volume of the unit cell of sapphire is large). Making use of σ0 = 10−44cm2 we get a
coherent cross-section σcoh ≃ 1cm2. For a Debye temperature Θ = 103K the weight factor at
room temperature is

√

1− g2 ≃ 0.7. The total coherent cross-section is σ ≃ 0.7cm2. We note
that this cross-section is smaller than the area of the crystal. For a flux density Φ = 1012/cm2 · s
the collision time is τ = 1/Φσcoh ≃ 10−12s. At room temperature the thermal velocity of an atom
is ≃ 104cm/s. For a neutrino energy E = 1MeV the momentum is p = E/c ≃ 5 ·10−17g ·cm/s and
the equilibrium time is of the order ∆teq = ~/vp ≃ 2 × 10−15s. Since τ ≫ ∆teq the macroscopic
quantum-scattering described above applies.

The force acting upon the target in the forward direction is F = Φσcohp ≃ 3.5 × 10−5 dyn. This
is a measurable force. We note that it is sensitive to the values of the input parameters. For
instance, a Debye temperature Θ = 100K leads to a weight coefficient

√

1− g2 ≃ 0.15 and a
weaker force by a factor ≃ 5. Also, for an amorphous solid, although the conditions of a quantum-
mechanical scattering may be fulfilled, the force is extremely weak, as a consequence of the very
small incoherent cross-section.

For solar neutrinos the single-particle cross-section may have the same order of magnitude (σ0 =
10−44cm2), but the energy and the flux density are lower (E ≃ 300keV , Φ ≃ 1011/cm2 · s). The
conditions of a coherent scattering are preserved, but the force is diminished by a factor 1/30
(≃ 10−6dyn). For tritium neutrinos the decrease is appreciable, though a higher σ0 or a slightly
greater number of unit cells N may compensate the decrease (while preserving the conditions of
coherent scattering). We conclude that Weber-type experiments could exhibit a measurable force
acting upon a sapphire crystal, at least for nuclear reactor neutrinos, or solar neutrinos.

Other projectiles. Coherence domains. We adopt the value σ0 = 10−24cm2 for other types of
projectiles (like X-, gamma rays or neutrons). A coherent cross-section would be much larger than
the area of the crystal. The crystal responds to this unphysical situation by developing coherence
domains. Let us assume that nd uncorrelated domains exist in the crystal, each with Nd unit cells
(as a mean size), such that nd = N/Nd. By a formal analogy with the high-purity crystals we use
the fraction f = 1/Nd. This fraction varies between f = 1/N , when we have only one domain,
i.e. the whole target, and f = 1, when the whole target is fragmented in "atomic" domains.
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The scattering amplitude can be written as

S =

nd
∑

a=1

eiχa (Hfi)a , (15)

where eiχa are random phase factors. By averaging the squared scattering amplitude over the

phase factors, we get | S |2=
∑

a

∣

∣(Hfi)a
∣

∣

2
, such that the cross-section becomes

σ = ndσd , (16)

where σd is the cross-section of a domain.

According to this equation, the coherent cross-section σcoh = σ0N
2 is reduced by the coherence

domains to

σ = σ0ndN
2
d =

σ0N

f
; (17)

we can see that this formula gives the total coherent cross-section (σ0N
2) for f = 1/N and the

incoherent cross-section (σ0N) for f = 1. In this latter case σ0 should be replaced by σph
0 (a

similar procedure leaves the incoherent cross-section arising from phonons unchanged, σincoh =
ndNdσ

ph
0 = Nσph

0 = σincoh).

In order to have a quantum-mechanical scattering the conditions τ > ∆teq and σ < A should be
satisfied, where A is the area of the target; they lead to

f >
~Φ

vp
σ0N , f >

σ0N

A
(18)

and a number of unit cells Nd = 1/f < A/σ0N in each domain. For σ0 = 10−24cm2 this number
is too small for any macroscopic target (Nd < 102A, N = 1022); the domains are not well defined,
such that f approaches unity and the scattering tends to an incoherent scattering. We conclude
that the quantum-mechanical scattering cannot appear for large single-particle cross-sections, like
σ0 = 10−24cm2. We note that for neutrinos (σ0 = 10−44cm2) f > 10−22/A, Nd < 1022A and
we may have one domain in the whole target. The coherent scattering occurs for neutrinos in a
crystal precisely due to the small neutrino cross-sectionσ0. The above considerations apply also
to a polycrystalline target, where f is limited, in addition, by the size of the crystallites and,
consequently, the cross-section is much diminished.

Classical scattering. If inequation (2) is not satisfied (i.e., if τ < ∆teq), the incident particles
see the target "atoms" (atomic nuclei, molecules, unit cells) as independent scatterers. We call
this scattering a classical scattering. We can see that this condition implies low energies. The
initial wavefunction is 1√

V
eikR 1√

V
eiKRc (up to wavefunctions corresponding to the internal degrees

of freedom), where k is the wavevector of the incident particle, K is the wavevector of the center
of mass, Rc is the position of the center of mass and R = r + Rc. The matrix elements of the
interaction given by equation (1),

Hfi ∼
N
∑

i=1

ei(k−k′)riδK′+k′,K+k , (19)

includes the form-factor

F (k − k′) =
N
∑

i=1

ei(k−k′)ri , (20)
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where k′ is the wavevector of the scattered particle and K ′ is the final wavevector of the center
of mass. We can see that the total momentum, including the momentum of the center of mass, is
conserved. For a crystal F (k − k′) = Nδk′,k+g, where g is a reciprocal vector of the lattice. For
an amorphous target g = 0. It follows that we have diffraction peaks. For the cross-section of a
peak we get dσg ∼ N2dog, where the solid angle og extends to the range ∆og ≃ N−2/3(2π/dk′)2,
where d is the mean distance between unit cells (scatterers). It follows σg ∼ N4/3/(dk′)2. On the
other hand the number of peaks is ≃ (dk′)2 ≫ 1, such that the total cross-section is

σ = N4/3σ0 , (21)

where σ0 is the single-particle cross-section. For one peak σ should be divided by the number of
peaks. As it is well known, this cross-section is affected by the Debye-Waller factor and diffuse
scattering. According to equation (15) for nd = N/Nd = fN domains the cross-section is

σ = ndN
4/3
d σ0 =

σ0N

f 1/3
. (22)

For f = 1/N we recover the total cross-section N4/3σ0 of one domain, while for f = 1 the
cross-section reduces to Nσ0 of an incoherent scattering.

The conditions τ = 1/Φσ < ∆teq and σ < A lead to

σ0N

A
< f 1/3 <

~Φ

vp
σ0N , (23)

which implies Nd = 1/f < (A/σ0N)3 (σ < A). For σ = 10−24cm2 and N = 1022 the number
of unit cells Nd < 106A3 in a domain may indicate well-defined domains for macroscopic targets.
The force is bounded by above according to the inequaliy F < ΦAp. Since p < ~Φ

v
A (from

equations (23)), this upper bound is given by F < ~

v
(ΦA)2 ≃ 10−7A2dyn (Φ = 1012/cm2 · s,

v = 104cm/s). For any reasonably large area A and flux density Φ it is difficult to satisfy these
conditions (p < ~ΦA/v) and to measure such a force in current experimental situations.

Concluding remarks. A quantum-mechanical scattering is identified in certain conditions in
macroscopic targets, which may lead to a coherent cross-section in high-purity, stiff monocrystals.
This coherent scattering may explain the Weber-type experiments of neutrino detection by using
sapphire monocrystals. The coherent-scattering conditions are not fulfilled by other types of
projectiles, with a higher single-particle cross-sections (like X-, gamma or neutrons). In these
cases a classical diffraction may occur in crystals, which generates a weak force, at the limit of
detection.
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