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Abstract

We use the equation of the damped linear harmonic oscillator to analyze the motion
of the sites (ground motion), seimograph recordings, and structures built on the Earth’s
surface under the action of the seismic motion. The seismic motion consists of singular waves
(spherical-shell P and S primary seismic waves) and discontinuous (step-wise) seismic main
shocks. It is shown that these singularities and discontinuities are present in the ground
motion, seismographs’ recordings and the motion of the built structures. In adddition, the
motion of the oscillator exhibits oscillations with its own eigenfrequency, which represent
the response of the oscillator to external perturbations. We estimate the peak values of the
displacement, the velocity and the acceleration of the ground motion, both for the seismic
waves and the main shock, which may be used as input parameters for seismic hazard studies.
We discuss the parameters entering these formulae, like the dimension of the earthquake focus,
the width of the primary waves and the eigenfrequencies of the site. The width of the seismic
waves on the Earth’s surface, which includes the energy loss, can be identified from the Fourier
spectrum of the seismic waves. Similarly, the eigenfrequencies of the site can be identified
from the spectrum of the site response.

1 Introduction

The estimation of the local ground motion produced by earthquakes is the central theme of
the seismic hazard studies. The current procedure employs empirical ground-motion equations,
which provide the quantities of interest, like peak ground acceleration (velocity, displacement),
for a given earthquake magnitude and focal and epicentral distances.[1] The parameters of these
equations are fixed by simulating the effects of reference earthquakes. For local motion the problem
is complicated by the inhomogeneities of the Earth’s surface. Random vibration theory and
stochastic simulations are used, which have the advantage of including more realistic features
and assessing the estimation errors.[2]-[5] Although important advances have been made in this
direction,[6]-[8] a need for improvement of the techniques is always felt.[9] We give in the present
paper an approximate method of estimating the peak values of the ground motion, which could
be useful in seismic hazard studies.

Recently, we have introduced the tensorial force which acts in a localized seismic focus.[10, 11]
This force is a product of the tensor of the seismic moment, a temporal δ-function and the spatial
derivatives of a δ-function. Assuming that the Earth is a homogeneous and isotropic elastic
medium, we derived the P and S primary seismic waves. These waves are spherical shells, with
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a scissor-like shape, which propagate with the velocities of the elastic waves. Once arrived at
the Earth’s surface, the primary waves generate secondary wave sources, according to Huygens
principle, which generate secondary waves. On the Earth’s surface the secondary waves have the
shape of two superposed abrupt walls, with a long tail, propagating with the velocities of the
elastic waves, behind the spot left by the primary waves on the Earth’s surface. These two walls
form the seismic main shock. All these results are in qualitative agreement with the recorded
seismograms (a problem known sometimes as the seismological, or Lamb, problem). Apart from
these general features, the recordings exhibit oscillations, such that the results described above
look like overall characteristics of the recorded seismic motion.

The assumption of a homogeneous and isotropic elastic medium implies a spatial average of the
elastic properties. As long as we limit ourselves to overall features, this is a satisfactory assumption.
If we are interested in the local motion, we need to take into account the elastic particularities of
the site. This problem occurs for the local inhomogeneities on the Earth’s surface, or the inertial
motion of a seismograph, or the motion of a structure built on the Earth’s surface. We can view
a site as a portion of an elastic medium, connected to its surroundings by elastic forces. It may
have an oscillatory motion of its center of mass, it may exhibit coupled oscillations of its internal
structural elements, or it may display vibrations with multiple eigenfrequencies, depending on
the boundary conditions. Under the action of the seismic motion, like the P and S seismic
waves, or the main shock, the site exhibits its own seismic response. The original seismic motion
is superposed over the site response, the resulting motion being the ground motion. We may
neglect in the first approximation the coupling of the internal degrees of freedom, and view the
site as a (damped) linear harmonic oscillator (with one degree of freedom). A refined model may
include a superposition of linear harmonic oscillators. A similar problem can be formulated for a
seismograph, or a built structure, where the original motion (perturbation) is the ground motion.

We examine in this paper the motion of a harmonic oscillator under the action of the seismic
motion, or the ground motion. The resulting motion is the ground motion, or the seismograph
recordings, or the motion of a built structure, respectively. The results depend on the eigenfre-
quency of the oscillator, such that the spectral components of the motion, which imply Fourier
transforms, can give valuable information about the characteristics of the site. If we are able to
determine the resulting motion, like the ground motion, from the parameters of the earthquake,
we could have a procedure which could be useful for the seismic hazard assessment.

2 P and S seismic waves

We consider an earthquake focus localized at the origin; also, we assume that the seismic activity
in the focus during an earthquake lasts a short time T . The density of the tensorial force acting
in the focus is fi = (Mij/ρ)Tδ(t)∂jδ(R), where Mij are the cartesian components of the seismic-
moment tensor and ρ is the density of the elastic medium.[10, 11] According to these References,
the P and S seismic-wave displacement in a homogeneous and isotropic elastic medium is given
by

uP = − TM4

4πρc3lR
nδ′(t− R/cl) ,

uS = −T (M4n−M)
4πρc3tR

δ′(t− R/ct) ,

(1)

where Mi = Mijnj , M4 = Mini = Mijninj , cl,t are the (longitudinal and transverse) velocities of
the elastic waves and n = R/R is the unit vector from the focus to the observation point. The
observation point is placed at position R from the focus and the displacement is computed at
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time t. We can see that these displacements are spherical-shell waves, with a scissor-like shape,
propagating with velocities cl,t. The P wave is longitudinal, while the S wave is transverse. We
call them primary seismic waves.

The functions δ(t−R/cl,t) are viewed as having the value 1/T , localized over a range ∆t = T from
−T/2 to T/2 at the central moment of time t = R/cl,t. For local motion we prefer to consider this
moment of time as the origin, and use the lengths ll,t = cl,tT . Then, the functions δ(t − R/cl,t)
have the peak value cl,t/ll,t and extend from −ll,t/2cl,t to ll,t/2cl,t. Similarly, we might say that the
functions δ′(t − R/cl,t) entering equations (1) have the values ±2c2l,t/l

2
l,t, peaked over the ranges

−ll,t/2cl,t to 0 and 0 to ll,t/2cl,t; the functions δ′(t−R/cl,t) have a scissor-like shape.

The lengths ll,t may be viewed as a measure of the dimension of the focus, according to the
expression of the tensorial force given above. In Ref. [12, 13] it is shown that we can get the
seismic-moment tensor, the energy (and the magnitude) of an earthquake and the focal volume
from measurements of the amplitudes of the displacements uP,S made on the Earth’s surface (a
problem known as the inverse seismological problem). From the focal volume we can have an
estimate of the dimension l of the focus, which is of the same order of magnitude as ll,t. According
to these References, inside the localized focal volume of dimension l, the focus has the structure
of a shearing fault, as provided by the Kostrov representation (see Refs. [12, 13]).

For practical purposes we can use in equations (1) average values of the physical quantities. For
instance, we can use an average velocity c for cl,t; if cl = 3km/s and ct = 7km/s, we may
use c = 5km/s (which would imply an error of 40%). Also, the Earth’s density can be taken
ρ = 5g/cm3. Moreover, we can limit ourselves to the magnitudes uP,S of the displacements, and
use an average value of the seismic-moment tensor M = (M2

ij)
1/2 for M4 and M4n − M . This

magnitude of the seismic-moment tensor is related to the energy E of the earthquake through
M = 2

√
2E.[11, 12] On the other hand, we can relate the magnitude of the seismic-moment

tensor (in erg) to the moment magnitude Mw of the earthquake, through the Hanks-Kanamori
relation

lgM =
3

2
Mw + 16.1 . (2)

Under these conditions, ll,t = l and we can use

u = u0lδ
′(t− R/c) , u0 =

M

4πρc4R
(3)

for the magnitude of the displacement of a generic primary seismic wave. We can see that if
we know the earthquake magnitude and the focal distance, together with the elastic constants of
the medium and the length l, we can estimate the peak displacement (umax), velocity (vmax) and
acceleration (amax), by taking the time derivatives of the function δ(t) for t ≃ R/c.

The time derivatives of the δ-function can be computed according to the discussion given above,
where the function δ(t) has a peak value c/l and extends from −l/2c to l/2c, the function δ′(t)
has the peak values ±2c2/l2 in the intervals −l/2c to 0 and 0 to l/2c, and so on. For instance, the
maximum values of the δ-function and its derivatives are δmax = c/l, δ′max = 2c2/l2, δ′′max = 8c3/l3

and δ′′′max = 64c4/l4. However, this fine structure of the derivatives of the δ-function is uncertain,
in view of the definition of the δ-function as a function localized over a very short distance l. We
prefer to use the estimations δmax = c/l, δ′max = c2/l2, δ′′max = c3/l3 and δ′′′max = c4/l4.

In Refs. [14, 15] it is shown that the average seismic-moment tensor (which is proportional to the
released energy) can be represented as M = 4

√
2ρc2l3,[14, 15] such that u0 =

√
2l3/πc2R and

u =

√
2l3

πc2R
[lδ′(t)] , (4)
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where we choose the origin of the time at R/c. In equation (4) we may replace lδ′(t) by c2/l, such
that we get the approximate formulae

umax =
√
2l2

πR
,

vmax =
√
2cl

πR
, amax =

√
2c2

πR
.

(5)

For a given magnitude and by making use of M = 4
√
2ρc2l3 we can get from equation (2) the

parameter l, such that we have an estimate of the peak values of the seismic motion produced by
the primary waves from the above equations. By makng use of ρ = 5g/cm3 and c = 5km/s in
equation (2), we get

lg l =
1

2
Mw + 1 . (6)

For instance, for an earthquake with magnitude Mw = 7 we get M = 4 × 1026erg, l = 316m,
u0 = 57/R(cm) and umax(cm) = 4.5× 108/R(cm), vmax(cm/s) = 7× 109/R(cm), amax(cm/s2) =
1011/R(cm) for the numerical data given above (ρ = 5g/cm3, c = 5km/s).

The above formulae include the energy loss of the waves propagating through the medium, except
for the shape of the δ-fuction, which is modified as[16]

δ(t) → 1

π

α

t2 + α2
, (7)

where α is an energy-loss parameter. The spatial extension of this function is approximately
l0 = 2αc/

√
3 > l. We may assume that the product l0δ(t), where δ(t) is given by equation (7),

remains c, such that l0δ
′(t) should be replaced by c2/l0. The length l0 is related to the width

of the function given by equation (7). We call this parameter the width of the primary seismic
waves. We view l0 as an average parameter for the primary waves. By introducing the parameter
l0, the peak values given by equation (5) are diminished as

umax =
√
2l3

πl0R
,

vmax =
√
2cl3

πl2
0
R

, amax =
√
2c2l3

πl3
0
R

.

(8)

We note that the elastic energy of the seismic waves is proportional to 1/l3 (∼ u2 × l), such that
it is reduced by the energy-loss factor (l/l0)

3. This is precisely the factor entering the acceleration
in equations (8). The earthquake parameters determined from the inverse seismological problem
(where the displacement is employed) do not suffer appreciable relative changes by using the width
of the primary waves l0 instead of l, but the effect of this parameter on the peak values, especially
the maximum acceleration, is important. We shall see in the next sections how this parameter
can be determined from the Fourier spectrum of the seismograms. According to its definition, we
expect the ratio l/l0 to depend sightly on position and magnitude, though non-linear effects for
higher magnitudes may give a more appreciable dependence.

3 Ground motion produced by primary waves

Let us consider a linear harmonic oscillator with coordinate uosc, frequency ωg and damping
coefficient γg. Its equation of motion is

d2

dt2
uosc + ω2

g(uosc − u0) + 2γg
d

dt
(uosc − u0) = 0 , (9)
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where u0 is the fixed equilibrium coordinate. In the presence of the seismic motion the equilibrium
coordinate acquires a displacement u, as given, for instance, by equation (3) for primary waves,
such that equation (9) becomes

d2

dt2
uosc + ω2

g(uosc − u0 − u) + 2γg
d

dt
(uosc − u0 − u) = 0 . (10)

We are interested in the relative coordinate ur = uosc − u0 − u, for which equation (10) can be
written as

ür + ω2
gur + 2γgu̇r = −ü . (11)

We can see that an inertial force −ü occurs (per unit mass), as expected.

In general, the equation
ür + ω2

gur + 2γgu̇r = S(t) , (12)

where S(t) is a source term, defined for t > 0, can be solved by using the Green function G which
satisfies the equation

G̈+ ω2
gG+ 2γgĠ = δ(t) ; (13)

a particular solution is given by

ur(t) =

∫ ∞

0

dt′G(t− t′)S(t′) . (14)

We look for causal solutions, which are vanishing for t < 0. The Green function is obtained from
equation (13), by using a Fourier transformation, and placing the poles in the lower ω-plane of
integration (γg > 0). For γg ≪ ωg we get

G(t) = θ(t)
sinωgt

ωg
e−γgt (15)

and

ur(t) =
1

ωg

∫ t

0

dt′e−γg(t−t′) sinωg(t− t′)S(t′) (16)

(for t > 0); we can verify the vanishing initial conditions.

However, the most direct method of solving the equation

ür + ω2
gur + 2γgu̇r = −u0lδ

′′′(t) (17)

for the source term given by the primary waves is to compare it to equation (13) for the Green
function. We get immediately

ur(t) = −u0lG
′′′(t) = u0lω

2
ge

−γgt cosωgt (18)

for t > 0 and γg ≪ ωg. This is the response of the oscillator to the initial perturbation produced
by the primary waves. In addition, by integrating equation (17) over a small interval around t = 0,
we get

ur(t) = −u0lδ
′(t) , (19)

which is the initial displacement with the minus sign −u(t), as expected from ur = uosc − u0 − u.
Putting together these two contributions, we get the ground-motion displacement

ug(t) = u0l
[

−δ′(t) + θ(t)ω2
ge

−γgt cosωgt
]

(20)



6 J. Theor. Phys.

under the action of the primary waves. It is worth noting that for ωg = 0, i.e. for a site identical
with the medium, the displacement is the (singular) seismic motion with the minus sign, as
expected.

We can see that the site motion is a damped oscillation with frequency ωg (the response), super-
posed over the perturbating scissor-like seismic motion. The shape of the function ug(t) depends
on the ratio of the two characteristic frequencies c/l and ωg. If c/l ≫ ωg, we have an abrupt
scissor-like (seismic) motion, followed by damped oscillations with frequency ωg; if c/l ≪ ωg, we
have damped oscillations with a slowly-varying envelope. From equation (20) we can estimate a
maximum displacement of the ground

up
gmax = umax

(

1 + l2ω2
g/c

2
)

, (21)

where the upper label p stands for "primary". Similarly, we can estimate the peak values of the
ground-motion velocity and acceleration produced by the primary waves

vpgmax = vmax

(

1 + l3ω3
g/c

3
)

, apgmax = amax

(

1 + l4ω4
g/c

4
)

. (22)

We may assume that the eigenfrequencies of a site with dimension L are of the order ωg = cn/L,
where n = 1, 2, 3..., such that lωg/c ≃ ln/L; usually, only the lowest frequencies are excited, such
that, since l/L ≪ 1, we may view the lωg/c-terms in the above equations as small corrections. If
we take into account the energy loss, the length l should be replaced by l0 in the above equations.
We can see that the site should be defined such that its dimension L be much larger than l0
(L ≫ l0). By making use of equations (8) we get

up
gmax =

√
2l3

πl0R

(

1 + l20ω
2
g/c

2
)

,

vpgmax =
√
2cl3

πl2
0
R

(

1 + l30ω
3
g/c

3
)

,

apgmax =
√
2c2l3

πl3
0
R

(

1 + l40ω
4
g/c

4
)

.,

(23)

The ground motion acts as an external force for seismographs’ recordings. Both the eigenfrequen-
cies ωg and the width l0 of the primary waves can be determined from the spectral analysis of
these recordings, as we show in the next sections. Therefore, we need first to compute the motion
of the seismograph.

4 Seismograph recordings of the primary waves

We assume that the motion of a seismograph is governed by the equation of a linear oscillator
with frequency ωs and damping coefficient γs. The inertial force acting upon the seismograph (per
unit mass), i.e. the source term in its equation, is −üg, where ug is the displacement of the site
where the seismograph is installed. By making use of equation (20), we get

−üg = u0lδ
′′′(t)− u0l

[

δ′(t)− ω2
gθ(t)

]

ω2
ge

−γgt cosωgt (24)

(for γg ≪ ωg). The singular terms in equation (24) (∼ δ′′′(t), δ′(t)) give a displacement

u(1)
s (t) = u0l

[

δ′(t)− θ(t)
(

ω2
s + ω2

g

)

e−γst cosωst
]

. (25)
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For the second term in equation (24) we use equation (16), which leads to

u
(2)
s (t) = θ(t)u0lω

4
gA , (26)

where
A =

ω2
g−ω2

s

(ω2
g−ω2

s)
2+4ω2

g(γg−γs)2
·

·
(

e−γst cosωst− e−γgt cosωgt− γg−γs
ωs

e−γst sinωst
)

+

+ 2ωg(γg−γs)
(ω2

g−ω2
s)

2+4ω2
g(γg−γs)2

(

ωg

ωs
e−γst sinωst− e−γgt sinωgt

)

(27)

for γg,s ≪ ωg,s. We note the presence of the seismic-motion term in seismographs’ recordings (the
term ∼ δ′(t)) and the superposed seismograph’s response, which consists of damped oscillations
with frequencies ωg,s. The term A can also be obtained from the general solution of the equation
of the harmonic oscillator with vanishing initial conditions. If we take into account the change in
shape of the δ-function, the parameter l in the above formulae should be replaced by l0.

The solution given above is valid also for a structure with eigenfrequency ωs, built on a site
characterized by frequency ωg. We note the resonance for ωs = ωg in equation (27), as expected.

5 Spectral content of the primary waves

The Fourier transform of the seismograph response given by equations (25) and (26) includes
peaks at frequencies ωg,s. From these Fourier transforms we can read the characteristic frequency
of the site ωg, which is an input parameter for seismic hazard studies. The Fourier transform of
the primary waves recorded by seismographs,

us(t) = u0lδ
′(t) (28)

(equation (25)), is of particular interest. If we restore the origin of time R/c, this displacement
reads

us(t) = u0lδ
′(t− R/c) . (29)

The Fourier transform of this function is

us(ω) = u0lRe

∫

dtδ′(t−R/c)eiωt = u0lω sin
ωR

c
. (30)

We recall that δ′(t − R/c) has a value of the order c2/l2 in the small interval l/c. This amounts
to give an indeterminacy of the order ±l/2 to the position R, which produces an indeterminacy
δus(ω) ≃ πu0c cos

πR
l
sin(ωl/2c). This is in agreement with the fact that the frequencies of the

seismic waves are smaller than a maximum value of the order c/l (cutoff, corner frequency, see for
instance Ref. [17]).

This result can also be obtained by taking the Fourier transform of the function given by equation
(28),

us(ω) = u0l
∫ T/2

−T/2
dtδ′(t) sinωt =

= u0l
(

−T
2

2
T 2 sin

ωT
2
− T

2
2
T 2 sin

ωT
2

)

=

= −2cu0 sin
ωl
2c

.

(31)
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It follows that the spectrum of the displacement of the seismic motion exhibits a maximum value
for ωm = πc/l (period Tm = 2l/c). The corresponding Fourier transforms of the velocity and
acceleration are vs(ω) = ωus(ω) and as(ω) = ω2u(ω). The velocity spectrum has a maximum at
≃ 4c/l and the acceleration spectrum has a maximum at ≃ 3πc/2l (period ≃ 4l/3c). By using
these maxima values we can obtain an estimation of the dimension l of the focus, which is another
input parameter for the seismic hazard studies. In fact, if we take into account the energy loss
the length determined from the spectral maximum is l0.

The above result can be applied to the spectrum uP
s of the P wave, by using c = cl. The S wave

has a time delay δ = R/ct−R/cl with respect to the P wave. Consequently, the Fourier transform
is given by

uS
s (ω) = uS

0 l cosωδ

∫ T/2

−T/2

dtδ′(t) sinωt = −2ctu
S
0 cosωδ sinωl/2ct (32)

(where T = l/ct). This function has a maximum at ωS
m ≃ πct/l, which implies a shift

∆Tm ≃ 2l
cl − ct
clct

(33)

in its period, with respect to the P wave. Moreover, the seismographs’ recordings are local, i.e.

the components of the displacement (velocity, acceleration) are recorded along local directions (for
instance North-South, West-East and the vertical direction). In general, each of these components
is a superposition of P and S waves, such that their spectrum exhibits, in general, two maxima.
The length l0 can be determined as an average value corresponding to these two maxima (for each
direction, or as an average over directions).

Let us multiply the first row in equation (31) by sinωt′ and integrate over ω:

∫

dωus(ω) sinωt
′ = u0l

∫ T/2

−T/2

dtδ′(t)

∫

dω sinωt sinωt′ ; (34)

in this equation we use the well-known identity

∫

dω sinωt sinωt′ = π [δ(t− t′)− δ(t+ t′)] , (35)

such that we get
∫

dωus(ω) sinωt
′ = 2πu0lδ

′(t′) . (36)

It follows that the seismic displacement (of the primary waves) has Fourier components

us(ω) sinωt = −2cu0 sin
ωl

2c
sinωt ; (37)

similarly, the acceleration as(t) of the primary waves has Fourier components

as(ω) sinωt = 2cω2u0 sin
ωl

2c
sinωt . (38)

These Fourier components can be used in studying the effect of monochromatic perturbations on
the structures built on the Earth’s surface.
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Figure 1: The spot of a primary seismic wave on the Earth’s surface (focus F , epicentre E,
observation point P ).

6 Main shock

We pass now to the effects produced by the seismic main shock. On the Earth’s surface the P
and S seismic waves generate a main shock, which looks like two superposesd abrupt walls, with
a long tail, propagating with the velocities of the elastic waves. For a point placed on the Earth’s
surface at distance r from the epicentre we have for a primary seismic wave with extension l

R2 = r2 + z20 , (R + l)2 = (r +∆r)2 + z20 , (39)

where z0 is the depth of the focus and

∆r =
2Rl + l2

r +
√
r2 + 2Rl + l2

(40)

resulting from these equations is the spread of the seismic spot left on the Earth’s surface by the
wave (Fig. 1). Near the epicentre (r → 0) the width of the seismic spot ∆r ≃

√
2z0l is much

larger than l (l ≪ z0). The distance
√
2z0l defines an epicentral region. From equations (39) we

get the velocities vl,t = dr/dt = cl,t
R
r

of the seismic spot on Earth’s surface. We can see that these
velocities are greater than the velocities of the elastic waves.

The displacement produced by the main shock on the Earth’s surface is given by[10, 13]

ur = θ(clτ − r)χ0r
4cl

τ
(c2l τ

2−r2)3/2
,

uϕ = −θ(ctτ − r)h0zr
4ct

τ
(c2t τ

2−r2)3/2
,

uz = θ(ctτ − r) h0ϕ

4ctr

c2t τ
3

(c2t τ
2−r2)3/2

,

(41)

where r is the distance from the epicentre to the observation point on the Earth’s surface, τ =
t(1 − ε), ε = R/r − 1 and the potentials χ0 and h0ϕ,z are of the order M/ρR, where M is the
magnitude of the seismic moment. The coordinates r, ϕ, z are cylindrical coordinates. The time
t in equations (41) is measured from the moment each wave reaches the epicentre. We note that
the main shock moves with velocities cl,t, which are smaller than the velocities vl,t = cl,tR/r of
the intersections of the P and S waves with the Earth’s surface. The main shock moves behind
the P and S waves. Equations (41) are valid for a constant ε < 1 and within a limited range of
the order z0 for distances r, centered on a distance of the order z0, where z0 is the depth of the
focus. We take the lower bound r = z0/

√
3 corresponding to ε = 1. For smaller r the main shock

is not yet well formed. For large epicentral distances the main shock is gradually diminishing. We
may take r = 2z0 as an upper bound. The boundaries of the region z0/

√
3 < r < 2z0 where the
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main shock exists are approximate.[15] The singularity at cl,tτ = r is smoothed out according to
the replacement c2l,tτ

2 − r2 |cl,tτ=r→ r2ε, arising from the approximation vl,t = constant.

For our practical purposes we may use the simplified formulae

ur = −uϕ =
Mr

4ρcR
g(τ) , uz =

M

4ρrR
h(τ) , (42)

where

g(τ) =
θ(cτ − r)τ

(c2τ 2 − r2)3/2
, h(τ) =

θ(cτ − r)cτ 3

(c2τ 2 − r2)3/2
. (43)

In deriving the above formulae it is assumed that the sources of the secondary waves are sharply
distributed over the surface; they are represented by spatial δ-functions.[11, 14] Therefore, besides
the cutoff length r

√
ε given above, we have another cutoff length l, as arising from the spatial

δ-function. The combined effect of the two cutoff lengths is given by lr
√
ε/(l + r

√
ε), which is

approximately l, since l ≪ r
√
ε. Therefore, we should use the cutoff length l in smoothing out

the singularities occurring in the functions g(τ) and h(τ). By doing so, we get the peak values for
the main shock displacement, velocity and acceleration

ums
max ≃ l3/2r1/2

2R
, vms

max ≃ 3cl1/2r1/2

4R
,

ams
max ≃ 15c2r1/2

8l1/2R

(44)

(for all components), where the focal volume l3 is used (M = 4
√
2ρc2l3). These values are larger

by a factor (r/l)1/2 than the correspondig values of the primary waves (equations (5)). If we take
into account the energy loss, the factor l3/2 in the displacement given above should be replaced by
l3/l

3/2
0 , and the peak velocity and the peak acceleration are obtained from the peak displacement

by using the factor c/l0. We get

ums
max ≃ l3r1/2

2l
3/2
0

R
, vms

max ≃ 3cl3r1/2

4l
5/2
0

R
,

ams
max ≃ 15c2l3r1/2

8l
7/2
0

R
.

(45)

7 Response to the main shock

If we take the origin of the time at r/c and neglect the (irrelevant) scale factor 1− ε, the displace-
ment produced by the main shock has the general from

ums = θ(t)f(t) , (46)

where the function f(t) is given by equations (42) and (43). According to our discussion above,
the ground motion, under the action of the seismic main shock, is given by the equation

üg + ω2
gug + 2γgu̇g = −üms = −ḟ(0)δ(t)− f(0)δ′(t)− θ(t)f̈(t) . (47)

Therefore, the ground-motion displacement will include −ḟ(0)G(t) and −f(0)Ġ(t), where G(t) is
the Green function given by equation (15); f(0) and ḟ(0) stand for the maximum dispacement
and the maximum velocity ums

max and vms
max given by equations (44). We can see that the factor θ(t)

is present in the ground-motion displacement. The long tail of the main shock is now replaced by
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the effect of the damping coefficient. The solution ug generates inertial forces for a seismograph,
which will record the displacement step-function, specific to the main shock, with superposed
oscillations.

Let us denote by u
(1)
g the solution of equation (47) corresponding to the first two (singular) terms

(∼ δ(t), δ′(t)). It is easy to see that this solution leads to the peak values

u
(1)
gmax = ums

max (1 + 3c/2l0ωg) ,

v
(1)
gmax = vms

max (1 + 2l0ωg/3c) ,

a
(1)
gmax = ams

max
2l0ωg

5c
(1 + 2l0ωg/3c) .

(48)

For the last term in equation (47) a particular solution is −ẅ, where w satisfies the equation

ẅ + ω2
gw + 2γgw = f(t) (49)

for t > 0. For the general solution u
(2)
g we add a solution of the free equation and impose vanishing

initial conditions. This procedure is equivalent with the Green function procedure described
previously. A particular solution of equation (49) is obtained by Fourier transformation. We find
easily that it is given by

w = − 1

ωg
Im

[

f(ωg)e
−iωgt

]

e−γgt , (50)

such that
u(2) = −ωgIm

[

f(ωg)e
−iωgt

]

e−γgt . (51)

Therefore, in order to find out the response to the seismic main shock, we need the Fourier
transform of the displacement of the main shock. This amounts to the Fourier transforms of the
functions g(t) and h(t) given by equation (43).

For the Fourier transform of the function g(t) we have

g(ω) =
∫∞
r/c

dt t
(c2t2−r2)3/2

eiωt =

= 1√
2c2l1/2r1/2

eiωr/c − πω
2c3

H
(1)
0 (ωr/c) ,

(52)

where H
(1)
0 is the Hankel function of the first kind and zeroth order.[18] For all epicentral distances

of interest we may use the asymptotic form of the Hankel function H
(1)
0 (ωr/c) ≃

√

2c
πωr

ei(ωr/c−π/4).

It follows that the response u(2) (equation (51)) is a superposition of (damped) waves sinωg(t−r/c)
and cosωg(t − r/c). A similar estimation is valid for h(ω). Also, from equation (52) we can see
that the amplitude of a component wave in the ground motion has a maximum for a frequency of
the order ωg . c/l, which would indicate a (pseudo-) resonance for the characteristic frequency of
the seismic motion, a rather improbable situation.

By making use of equations (42), (51) and (52) it is easy to find the peak values corresponding to
this contribution:

u
(2)
gmax = 2ums

max
l0ωg

c

(

1 +
√

πl0ωg/2c
)

,

v
(2)
gmax = 4

3
vms
max

(

l0ωg

c

)2 (

1 +
√

πl0ωg/2c
)

,

a
(2)
gmax = 8

15
ams
max

(

l0ωg

c

)3 (

1 +
√

πl0ωg/2c
)

.

(53)
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These quantities are approximately the corresponding quantities given by equations (48) multiplied
by a factor (l0ωg/c)

2. As discussed above, we consider the parameter l0ωg/c of the order of unity
at most. Therefore, these contributions are at most of the same order as the corresponding
contributions given by equations (48). It follows that for seismic hazard studies we may use
equations (48). From equations (45) and (48) we get the peak values of the ground motion caused
by the mainshock

ums
gmax = 3cl3r1/2

4ωg l
5/2
0

R
(1 + 2l0ωg/3c) ,

vms
gmax = 3cl3r1/2

4l
5/2
0

R
(1 + 2l0ωg/3c) ,

ams
gmax = 3cωgl3r1/2

4l
5/2
0

R
(1 + 2l0ωg/3c) .

(54)

It is worth noting that the ground-motion peak acceleration is smaller than the peak acceleration
of the main shock which caused that ground motion. These equations should be applied over the
validity region of the main shock, i.e. from approximately r = z0/

√
3 to r = 2z0, according to the

above discussion, where z0 is the depth of the earthquake focus. The results given by equations
(54) should be compared to the peak values of the ground motion caused by the primary waves
(equations (23)). It is easy to see that ums

gmax and vms
max are dominant values, while for acceleration

we need to take the maximum between ams
gmax and apmax given by equation (23). This maximum

value depends on the ratio of the quantities l0ωg/c and (l0/r)
1/2 (both smaller than unity). Outside

the region where the main shock is present the ground-motion peak values are those corresponding
to the primary waves, as given by equations (23). All these results can be written as follows:

For z0/
√
3 < r < 2z0

ugmax = 3cl3r1/2

4ωg l
5/2
0

R
(1 + 2l0ωg/3c) ,

vgmax = 3cl3r1/2

4l
5/2
0

R
(1 + 2l0ωg/3c) ,

agmax = max
{

ams
gmax , apgmax

}

,

(55)

where

ams
gmax = 3cωgl3r1/2

4l
5/2
0

R
(1 + 2l0ωg/3c) ,

apgmax =
√
2c2l3

πl3
0
R

(

1 + l40ω
4
g/c

4
)

;

(56)

outside this region (except for the epicentral region of radius
√
2z0l0)

ugmax =
√
2l3

πl0R

(

1 + l20ω
2
g/c

2
)

,

vgmax =
√
2cl3

πl2
0
R

(

1 + l30ω
3
g/c

3
)

,

agmax =
√
2c2l3

πl3
0
R

(

1 + l40ω
4
g/c

4
)

.,

(57)

Such equations can be used for estimating the peak values of the ground motion.



J. Theor. Phys. 13

8 Response to a monochromatic oscillation

Besides the discontinuous, or singular components of the seismic ground-motion, seismographs
or structures built on the Earth’s surface, viewed as linear harmonic oscillators with frequency
ωs and damping coefficient γs, are subjected to monchromatic oscillations with frequency ωg

(and damping coefficient γg). We include here the well-known response of the oscillator to a
monochromatic external force. The equation which governs the oscillator’s displacement can be
written as

ü+ ω2
su+ 2γsu̇ = ag(t) , (58)

where u is the displacement and ag(t) is the (minus) acceleration generated by the ground motion
(a coupling impedance can also be introduced). We adopt an external acceleration corresponding
to the function ag(t) = a0(ωg) sinωgt, given by the site response calculated above (leaving aside the
damping coefficient γg). The above equation is viewed as being defined for t > 0, with vanishing
initial conditions. The solution is obtained by adding the free solution to a particular solution.
By doing so, we get

u(t) = a0(ωg)
ω2
g−ω2

s

(ω2
g−ω2

s)
2+4ω2

gγ
2
s

(

ωg

ωs
e−γst sinωst− sinωgt

)

+

+a0(ωg)
2ωgγs

(ω2
g−ω2

s)
2+4ω2

gγ
2
s
(e−γst cosωst− cosωgt) .

(59)

We can see that the solution given by equation (59) exhibits a resonance for ωg = ωs, attenuated

by the damping. At resonance, u(t) = −a0(ωs)
2ωgγs

(1− e−γst) cosωst. The ratio | u(ωs)/a0(ωs) |, where

u(ωs) is the Fourier transform of u(t) for large values of t, leads to an amplification factor of the
order 1/ωgγs for displacement and ωg/γs for acceleration.

The energy conservation resulted from equation (58) is

d

dt

(

1

2
u̇2 +

1

2
ω2
su

2

)

+ 2γsu̇
2 = F u̇ , (60)

where E = 1
2
u̇2 + 1

2
ω2
su

2 is the energy of the oscillator, W = 2γsu̇
2 is the energy dissipated per

unit time and F u̇ is the work done by the force F (t) = ag(t) per unit time (all quantities per unit
mass). The oscillator receives energy from the external source and dissipates it. For large values
of t the displacement of the oscillator is

u(t) = −a0(ωg)

[

ω2
g − ω2

s

(ω2
g − ω2

s)
2 + 4ω2

gγ
2
s

sinωgt +
2ωgγs

(ω2
g − ω2

s)
2 + 4ω2

gγ
2
s

cosωgt

]

. (61)

The average energy of the oscillator is

E =
1

4
a20

ω2
g + ω2

s

(ω2
g − ω2

s)
2 + 4ω2

gγ
2
s

, (62)

the average energy dissipated per unit time is

W = 2γsu̇2 = a20
γsω

2
g

(ω2
g − ω2

s)
2 + 4ω2

gγ
2
s

(63)
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and the average work done by the external force per unit time is equal to the dissipated energy per
unit time (F u̇ = W ); indeed, the rate of the average energy of the oscillator is zero. At resonance
E = a20/8γ

2
s , W = F u̇ = a20/4γs. We ca see that for low damping at resonance the amplification

and the energy is high, while the dissipation is lower than the energy.

Finally, we note that the acceleration of the primary waves has monochromatic components of the
form a0(ω) sinωt, where

a0(ω) = 2cu0ω
2 sinωl/2c , (64)

according to equation (38). Therefore, under the action of this acceleration, the displacement of
the oscillator is given by the above formulae. Far from resonance the response of the oscillator does
not differ appreciably from the seismic spectrum (equation (59)); the frequency of the maximum
amplitude remains at ωm≃ πc/l (for displacement). On the contrary, close to resonance the
response is given approximately by

u(t) ≃ −cu0
ω2
sγs

(ω − ωs)2 + γ2
s

sinωsl/2c cosωst , (65)

whence we can see that the response is maximal for the resonance frequency ωs.

For an elastic, vertical bar, with length L, the lower end embedded in the ground and the upper
end free, we may take as eigenfrequencies ωn = (2n+1)π

2
c
L
, where c is the velocity of the elastic

waves in the bar and n = 0, 1, 2....[14] The seismic acceleration of the primary waves has a narrow
peak for, approximately, ωm ≃ 3π

2

cl,t
l

. It follows that the resonance is avoided for L 6= (2n+1) c
3cl,t

l.

A similar conclusion is valid for a site in resonance with the main shock, where ωg is of the order
of the characteristic frequency c/l of the seismic motion, a rather improbable case.

9 Concluding remarks

The seismic motion produced by an earthquake (in a homogeneous and isotropic medium) consists
of the primary P and S seismic waves and two abrupt walls with a long tail, which form the
seismic main shock. The primary waves are spherical-shell waves with a scissor-like shape. The
local effects of this motion on the Earth’s surface depend on the elastic particularities of the site.
The resulting motion of the site is the ground motion. The estimation of the peak values of
the displacement, velocity and acceleration of the ground motion is the central target of seismic
hazard studies. We use a model of linear harmonic oscillator for the site, with an eigenfrequency
and a damping coefficient, subject to the seismic motion. The resulting ground motion consists
of damped oscillations with the site frequency (the response of the site), superposed over the
original seismic motion. The peak values of the displacement, the velocity and the acceleration
of the ground motion are estimated in this paper. These values depend on the focal distance R,
the epicentral distance r, the eigenfrequency ωg of the site and two parameters l and l0. The
parameter l is of the order of the dimension of the focus, while the parameter l0, larger than l, is
the average width of the spot the primary waves leave on the Earth’s surface.

The ground motion acts like an external force upon seismographs and structures built on the
Earth’s surface, viewed as linear harmonic oscillators. The motion of these oscillators consists of
damped oscillations with their own eigenfrequencies, damped oscillations with the ground-motion
frequency (the response), superposed over the original seismic motion (contained in the ground
motion). The seismograms preserve the scissor-like shape of the primary waves, possibly deformed
by the interplay of the intervening frequencies, as well as the abrupt wall-like shape of the main
shock, with damped oscillations. From the Fourier transforms of the seismograms we can read the
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parameters ωg and l0. We note that ωg characterizes the site. Also, we expect a small dependence
on site and magnitudes of the ratio l/l0. For strong seismic motion the non-linearities may cause
an appreciable dependence on magnitudes both of l0 and ωg. The parameter l is determined from
the magnitude of the expected earthquake.

The peak values of the ground motion are given by equations (55) and (57). As discussed in the
main text we assume l0ωg/c < 1, where c is the average velocity of the elastic seismic waves (for
instance, c = 5km/s ). The parameter l (the dimension of the focus in cm) is provided by equation
(6),

lg l =
1

2
Mw + 1 , (66)

where Mw is the moment magnitude of the earthquake (for ρ = 5g/cm3 and c = 5km/s). The
eigenfrequency ωg, which characterizes the site, can be determined from the spectral analysis of
the ground-motion response (seismograms, e.g. equation (27) for the primary waves, or equations
(47), (51) for the main shock). The parameter l0 is given by the frequency ωm = πc/l0 of the
maximum of the Fourier transform of the primary wave displacement recorded by seismograms,
according to equation (31) (or the maximum of the velocity, or the acceleration). For consistency,
the inequality l0 > l should be satisfied, i.e.

Tm >
20

c
10Mw/2 , (67)

where Tm is the period corresponding to the frequency ωm.

A survey of a few tens of moderate Vrancea earthquakes (magnitude Mw = 3.5 − 5, average
focal depth ≃ 100km) shows l/l0 ≃ 1/10. Let us supose that we are interested in an earthquake
with magnitude Mw = 7. According to equation (66) the focus dimension is l = 316m and,
consequently, l0 = 3.16km. For ωg = 1s−1 we get l0ωg/c ≃ 0.63 (c = 5km/s). Let us assume
that the focal depth is z0 = 100km and we are interested in the ground motion produced by this
earthquake at the epicentral distance r = 100km (R = 100

√
2km). Therefore, we use equations

(55), which give ams
gmax = 67cm/s2 and apgmax = 9cm/s2. It follows the peak values of the ground

motion ugmax = 67cm, vgmax = 67cm/s and agmax = 67cm/s2 ≃ 0.07g (where g = 980cm/s2is the
gravitational acceleration).
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