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Abstract

In fairly general conditions we give explicit (smooth) solutions for the potential flow. We
show that, rigorously speaking, the equations of the fluid mechanics have not rotational solu-
tions. However, within the usual approximations of an incompressible fluid and an isentropic
flow, the remaining Navier-Stokes equation has approximate vorticial (rotational) solutions,
generated by viscosity. In general, the vortices are unstable, and a discrete distribution of
vorticial solutions is not in mechanical equilibrium; it forms an unstable vorticial liquid. On
the other hand, these solutions may exhibit turbulent, fluctuating instabilities for large vari-
ations of the velocity over short distances. We represent a fully developed turbulence as a
homogeneous, isotropic and highly-fluctuating distribution of singular centres of turbulence.
A regular mean flow can be included. In these circumstances the Navier-Stokes equation
exhibits three time scales. The equations of the mean flow can be disentangled from the
equations of the fluctuating part, which is reduced to a vanishing inertial term. This latter
equation is not satisfied after averaging out the temporal fluctuations. However, for a ho-
mogeneous and isotropic distribution of non-singular turbulence centres the equation for the
inertial term is satisfied trivially, i.e. both the average fluctuating velocity and the average
fluctuating inertial term are zero. If the velocity is singular at the turbulence centres, we
are left with a quasi-ideal classical gas of singularities, or a solution of singularities in quasi
thermal equilibrium in the background fluid. This is an example of an emergent dynamics.
We give three examples of vorticial liquids.

1 Introduction

In fairly general conditions we give explicit (smooth) solutions for the potential flow. As it is well
known, the fluids may develop turbulence. In its extreme manifestation the turbulent flow displays
very irregular, disordered velocities, fluctuating in time at each point in space. This is known as
a fully developed turbulence. By using such fluctuating velocities, besides a steady mean velocity,
the Navier-Stokes equation becomes an infinite hierarchy of equations for velocity mean correlation
functions, known as Reynolds’s equations,[1] which need closure assumptions. According to the
experimental observations, it was realized that such irregular movements of the fluid exhibit
distributions of swirls (eddies, vortices), of various magnitude and vorticities; it is likely that the
large eddies transfer energy to the small eddies, which dissipate it.[2]-[4] Statistical concepts like
correlations, homogeneity and isotropy have been introduced in the theory of turbulence,[5, 6] and
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dimensional analysis and similarity arguments allowed the derivation of the energy spectrum of
the turbulent eddies.[7]-[9]

Meanwhile, the relation of this statistical turbulence with the Navier-Stokes equation remained
unclear.[10]-[13] Could the Navier-Stokes equation describe a turbulent motion? To what extent
and in what sense? Has the Navier-Stokes equation smooth and stable solutions? What is the
appropriate representation of a turbulent field of velocities?[14]

The dynamics of the vorticity has enjoyed much interest (see Refs. [15, 16] and References therein).
The results depend on model assumptions. Dynamical-system concepts and statistical models have
been invoked in studies of turbulence, with chaotic behaviour, intermittency and coherent struc-
tures (see, for instance, Refs. [17]-[21]). In particular, by analogy with the quantum turbulence,
"Turbulent flows may be regarded as an intricate collection of mutually-interacting vortices", and
"Vortex filaments may thus be seen as the fundamental structure of turbulence,... ".[17]

The difficulties exhibited by the Navier-Stokes equation are related to the viscosity, which governs
the vorticity, and the inertial term, which is quadratic in velocity. We show in this paper that
the viscosity term in the Navier-Stokes equation may produce vorticity, provided the fluid is
incompressible and the flow is isentropic. Although such an approximate treatment may look
reasonable, we can see that, rigorously speaking, the fluids cannot exhibit vorticity. Moreover, we
give arguments that the vortices are unstable.

Further, we show in this paper that large variations of the velocity over short distances lead
to highly fluctuating, swirling instabilities, controlled by viscosity. This is characteristic for the
phenomenon of a fully developed turbulence. In this case, the inertial term acquires a major role
in describing the flow. We represent a fully developed turbulence as a superposition of fluctuating
velocities, associated to a discrete set of turbulence centres. A mean flow may be included. In
general, the Navier-Stokes equation, averaged over fluctuations, is not satisfied. On the other hand,
a homogeneous and isotropic distribution of (non-singular) turbulence centres leads to vanishing
averages of velocity and inertial term, such that the Navier-Stokes equation is satisfied trivially.
If the turbulence centres are singular, we are left with a gas of singularities (or a solution of
singularities in the background fluid), which is in quasi thermal equilibrium. The corresponding
Navier-Stokes equation for the fluid of singularities is reduced to Newton’s equation of motion,
with a small friction.

We illustrate the above descripton with three examples of vorticial liquids (filamentary liquid,
coulombian and dipolar liquid).

2 Potential flow. Incompressible fluid

Let us consider a potential flow of an incompressible fluid. The velocity v = gradΦ is given by
the gradient of a potential Φ, which satisfies the Laplace equation

∆Φ = 0 (1)

(incompressiblity condition divv = 0). The viscosity term ∼ ∆v is zero, such that we are left
with Euler’s equation

∂v

∂t
+ (vgrad)v = −

1

ρ
gradp , (2)

where ρ is the density and p denotes the pressure. By using the well-known identity

(vgrad)v = −v × curlv + grad(v2/2) , (3)



J. Theor. Phys. 3

equation (2) becomes
∂v

∂t
+ grad(v2/2 + p/ρ) = 0 , (4)

where curlv = 0. As it is well known, by using equation (1), this equation leads to

∂Φ

∂t
+

1

2
(gradΦ)2 +

p

ρ
= 0 . (5)

In this equation p should be viewed as the variation of the pressure with respect to equilibrium.
We assume that p does not depend on Φ and the time.

In equations (1) and (5) the variables may be separated. Let g(r) be a solution of equation (1)
(satisfying the boundary conditions); the potential can be written as Φ = f(t)g(r), where the
function f(t) satisfies equation (5),

df

dt
+

1

2g
f 2(gradg)2 +

p

ρg
= 0 . (6)

The acceptable solution of this equation (for f(0) = 0) is

f(t) =

√

2 | p | /ρ

| gradg |
tanh

√

| p | /2ρ | gradg |

g
t (7)

for p < 0. It may happen that the boundary conditions for the equation ∆Φ = 0 depend on time,
thus providing the time derivative Φ̇; in that case equation (5) gives the pressure.

3 Potential flow. Compressible fluid

Let us write down the equations of the fluid mechanics

∂ρ
∂t

+ ρdivv + vgradρ = 0 ,

ρ∂v
∂t

+ ρ(vgrad)v = −gradp− ρgradϕ+

+η∆v +
(

1
3
η + ζ

)

grad divv ,

ρT
(

∂s
∂t

+ vgrads
)

= κ∆T + σ
′

ij∂jvi ,

(8)

where p is the internal pressure, ϕ is an external potential, η and ζ are the viscosity coefficients,
T is the temperature, s is the entropy per unit masss, κ is the thermoconductivity and

σ
′

ij = η
(

∂ivj + ∂jvi −
2

3
δijdivv

)

+ ζδijdivv . (9)

is the viscosity tensor. In the Navier-Stokes equation (the second equation (8)) the forces which
determine the velocity are gradp and ρgradϕ, where p = p(ρ, T ) is a function of density and
temperature. For all the usual flows the relative variations δρ/ρ0 of the density, δT/T0 of the
temperature, δp/p0 of the pressure, δs/s0 of the entropy as well as the variation δϕ/ϕ0 of the
external potential are small, in comparison with their equilibrium values, labelled by the suffix 0,
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when the fluid is at rest. Consequently, we may view the velocity v as a first-order quantity, and
linearize the above equations as

∂ρ
∂t

+ ρ0divv = 0 ,

ρ0
∂v
∂t

= −gradp− ρ0gradϕ+

+η∆v +
(

1
3
η + ζ

)

grad divv ,

ρ0T0
∂s
∂t

= κ∆T .

(10)

We note that within this approximation there is no heat source, and the first-order equation of
energy conservation is reduced to an identity.

The density and entropy variations can be written as

δρ = ρ0
K
δp− βρ0δT ,

δs = − β
ρ0
δp+ cp

T0

δT ,
(11)

where K is the isothermal modulus of compressibility (1/K = − 1
V
(∂V/∂p)T , V = 1/ρ), β =

1
V
(∂V/∂T )p is the dilatation coefficient and cp is the specific heat per unit mass at constant

pressure, all at equilibrium. In deriving equations (11) the Gibbs free energy dΦ = V dp− sdT is
used.

Part of the temperature variation in equation (11) is compensated by pressure variation, as in
an adiabatic process; we denote this contribution by δT1. The remaining part, denoted by δT ,
corresponds to the conducted heat. Therefore, we write

δρ = ρ0
K
δp− βρ0δT1 − βρ0δT ,

δs = − β
ρ0
δp+ cp

T0

δT1 +
cp
T0

δT = cp
T0

δT ,
(12)

whence
β

ρ0
δp =

cp
T0

δT1 (13)

and

δρ =
ρ0
K

(

1−
β2T0K

ρ0cp

)

δp− βρ0δT . (14)

In this equation we use the thermodynamic relation

β2T0K

ρ0
= cp − cv , (15)

where cv is the specific heat per unit mass at constant volume.[22] Therefore, equation (14) becomes

δρ =
ρ0cv
Kcp

δp− βρ0δT , (16)

or

δp =
Kcp
ρ0cv

δρ+
βKcp
cv

δT . (17)
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Now we use two other thermodynamic relations
cp
cv
K = Kad , βK = α , (18)

where Kad is the adiabatic modulus of compressibility and α = (∂p/∂T )V is the thermal pressure
coefficient.[22] Finally, we get

δp =
Kad

ρ0
δρ+

cp
cv
αδT , (19)

which is used in the Navier-Stokes equation. Equations (10) become
∂ρ
∂t

+ ρ0divv = 0 ,

ρ0
∂v
∂t

= −Kad

ρ0
gradρ− ρ0gradϕ− cp

cv
αgradT+

+η∆v +
(

1
3
η + ζ

)

grad divv ,

ρ0cp
∂T
∂t

= κ∆T ,

(20)

where the second equation (12) is used. We can see that the temperature equation (20) is inde-
pendent; it describes the transport of an external temperature, which may provide a source for
the velocity in the Navier-Stokes equation. We may leave aside this external temperature.

Let us seek a potential-flow solution of the above equations, where the velocity is derived from a
potential Φ, by

v = gradΦ . (21)

We notice that curlv = 0 and curl curlv = 0, i.e. ∆v = grad divv. Therefore, the Navier-Stokes
equation can be written as

ρ0
∂v
∂t

= −Kad

ρ0
gradρ− ρ0gradϕ+

+
(

4
3
η + ζ

)

grad divv .

(22)

By using equation (21), we obtain
∂ρ
∂t

+ ρ0∆Φ = 0 ,

∂Φ
∂t

+ Kad

ρ2
0

ρ+ ϕ− 1
ρ0

(

4
3
η + ζ

)

∆Φ = 0 ,
(23)

up to a function of time, where ρ and ϕ should be viewed as their corresponding variations. By
an additional time differentiation we obtain

∂2Φ

∂t2
−

Kad

ρ0
∆Φ+ ϕ̇−

1

ρ0

(

4

3
η + ζ

)

∆Φ̇ = 0 . (24)

This equation provides the potential Φ, therefore the velocity v through equation (21) and the
density ρ through the first equation (23).

Equation (24) is the wave equation with friction (the term ∼ ∆Φ̇) and sources (−ϕ̇). The ratio

Kad/ρ0 is the square of the sound velocity c =
√

Kad/ρ0. The elementary solutions e−iωteikr of

this (homogeneous) equation are damped plane waves

e∓ickteikre−
σk2

c
t , (25)

for σk ≪ c, where σ = (4η/3 + ζ)/2ρ0. The relaxation time is much longer than the wave
period. A wave propagating along the x-direction is proportional to ∼ e−γx, with the attenuation
coefficient γ = σk2/c = σω2/c3. This is the well-known absorption coefficient for sound (without
the κ-contribution).
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4 Vorticity

Euler’s equation for an ideal fluid can be written as

dv

dt
= −gradw , (26)

where w is the enthalpy (dw = 1
ρ
dp); the pressure p is a function of density ρ. By taking the curl,

we get

curl
dv

dt
= 0 . (27)

On the other hand,
dv

dt
=

∂v

∂t
+ (vgrad)v =

∂v

∂t
+

(

∂v

∂t

)

f

, (28)

where the suffix f indicates that the derivative is taken along the flow. Equation (27) becomes

∂

∂t
curlv +

(

∂

∂t
curlv

)

f

= 0 ; (29)

since the two variations of the curlv are independent, we get

curlv = 0 , (30)

i.e. the vorticity curlv is conserved along the flow. Therefore, we cannot create, or destroy,
vorticity curlv in the flow of an ideal fluid. Equation (30) is valid in the absence of special
external force, which do not derive from a gradient. This is Helmholtz’s circulation law. As it
is well known, an ideal fluid supports only an irrotational (potential) flow, where the velocity is
derived from a scalar potential (v = gradΦ). By knowing the equation of state of the fluid, the
Euler equation and the continuity equation are fully determined.

For a real, viscid, fluid the Navier-Stokes equation is

ρ
dv

dt
= −gradp+ η∆v +

(

1

3
η + ζ

)

grad divv , (31)

where η, ζ are the viscosity coefficients. By taking the curl, we get

curl
(

ρdv
dt

)

= gradρ× dv
dt

+ ρcurl dv
dt

=

= η∆curlv ;

(32)

we can see that the viscosity η can generate vorticity (curlv 6= 0). In general, the velocity v

rotates about the vorticity curlv. This is a vortex.

Equation (32) is in conflict with the continuity equation

dρ

dt
+ ρdivv = 0 . (33)

Indeed, if curlv 6= 0, the velocity should be derived from a curl (not from a grad!), i.e. we should
have v = curlA, where A is a vector potential. Consequently, the fluid should be incompressible
(divv = div curlA = 0). The density should be constant, both in time and space (along the flow).
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This indicates that in a compressible fluid we cannot have vortices. Usually, the variations of the
density are small, such that they may be neglected for the present purpose.

Therefore, we may limit to an incompressible fluid (divv = 0), for which equation (32) becomes

curl
dv

dt
= ν∆curlv , (34)

or
∂

∂t
curlv − curl (v × curlv) = ν∆curlv , (35)

where ν = η/ρ is the kinematical viscosity and we have used the identity (vgrad)v = −v×curlv+
grad(v2/2). This is the equation of vorticity; it can also be written as

∂

∂t
curlv + curl [(vgrad)v] = ν∆curlv . (36)

This equation gives the velocity. The pressure is obtained from the Navier-Stokes equation. If we
write the Navier-Stokes equation as

∂

∂t
curlA+ (vgrad)v = −

1

ρ
gradp+ ν∆curlA , (37)

we get
div

[

(vgrad)v + 1
ρ
gradp

]

= 0 (38)

and

div

(

∂v

∂t
− ν∆v

)

= 0 , (39)

which is an identity (divv = 0, v = curlA). In some cases a particular solution of these equations
is provided by

(vgrad)v = −grad(p/ρ) ,

∂v
∂t

= ν∆v .
(40)

We can see that the Navier-Stokes equation is split into (the derivatives of) a diffusion (heat)
equation and an equilibrium equation; the first equation (40) indicates an equilibrium between
the pressure force −grad(p/ρ) and Euler’s force (vgrad)v. The diffusion equation (40) holds also
for the vorticity, because the above equations are valid for a non-vanishing vorticity. It is easy to
see that these equations generalize the equations for the Couette flow.

However, we have also the heat-transfer equation. For an incompressible fluid it reads

ρcp
dT

dt
= κ∆T +

1

2
η (∂ivj + ∂jvi)

2 , (41)

or
dT

dt
= χ∆T +

1

2

ν

cp
(∂ivj + ∂jvi)

2 , (42)

where cp is the specific heat per unit mass at constant pressure, κ is the thermoconductivity, and
χ = κ/ρcp is the thermometric conductivity. For an incompressible fluid this equation can be
transformed into an equation for the derivatives of the pressure,

dp

dt
= χ∆p+

1

2

αν

cp
(∂ivj + ∂jvi)

2 , (43)
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where α = (∂p/∂T )v is the thermal pressure coefficient. In general, equation (43) is not compatible
with the Navier-Stokes equation. Therefore, rigorously speaking, we cannot have vorticity in an
incompressible fluid either. Usually, the coefficient ν/cp is very small (of the order 10−24−10−25g ·
cm2/s), such that, for small gradients of velocity, we have a low rate of entropy production (though,
a factor of the order 1023K/erg should be taken into account). Under these conditions, we may
assume that the flow is isentropic and the heat-transfer equation may be neglected.

In order to get an idea of how large the variations of the density and the temperature can be,
we may estimate a change δp in pressure from δp ≃ ρv2. A velocity v = 100km/h, which is
fairly large, produces a change δp ≃ 104dyn/cm2 in air (ρ = 10−3g/cm3), whose normal pressure
is 106dyn/cm2; therefore, δp/p ≃ 10−2. Such a velocity (≃ 3 × 103cm/s) is close to the mean
thermal velocity ≃ 104cm/s (for normal air), and close to the sound velocity in normal air c ≃
3.5×104cm/s. For this velocity we still expect local thermal equilibrium. The change in density is
given by δp = K(δρ/ρ), where K = −V (∂p/∂V ) is the (say, isothermal) modulus of compression.
For air K ≃ 106dyn/cm2, for water K ≃ 1010dyn/cm2, such that we get δρ/ρ ≃ 10−2, 10−6. The
change in temperature is obtained from δp = αT (δT/T ), where α = (∂p/∂T )V is the thermal
pressure coefficient (at constant volume V ). For water α ≃ 1022/cm3, for gases it is much higher;
for normal temperature T = 300K we get δT/T ≃ 10−4, or much lower. Consequently, we may
expect an almost ideal, incompressible flow. We note that, although we neglect the viscosity in
the heat-transfer equation, we keep it in the Navier-Stokes equation.

Therefore, within these approximations (incompressibility and constant entropy), we are left with
equation (36) and the Navier-Stokes equation for a vorticial flow. In general, an external pressure
which satisfies the Navier-Stokes equation (or equation (38)) is very special, such that, if they
exist, the vortices might be, in fact, unstable. They develop an Euler’s force, which is difficult to
be compensated by an external force.

We note that, under the conditions stated above, the viscosity may generate (unstable) vortices.
In the next section we show that the viscosity may generate another type of instabilities.

For small variations of the velocity we may neglect the inertial term in the vorticity equation (36),
which becomes

∂

∂t
curlv = ν∆curlv . (44)

By making use of v = curlA, we get

(∆− grad div)

(

∂A

∂t
− ν∆A

)

= 0 . (45)

A solution of this equation is provided by

∂A

∂t
− ν∆A = 0 , (46)

which leads to

A = A0e
−λνte±i

√
λr/r , (47)

where A0 and λ are two constants. The velocity acquires the form

v = −A0 × grad
(

e−λνte±i
√
λr/r

)

, (48)

and the pressure is uniform within this approximation. We note that, although the spatial depen-
dence of the solution does not depend on viscosity, it is generated by the viscosity term ν∆v.
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5 Instabilities

The equation of energy conservation for an incompressible fluid is

∂
∂t

(

1
2
ρv2

)

+ div
[

v
(

1
2
ρv2 + p

)

− 1
2
ηgrad(v2)

]

+

+η (∂jvi)
2 = 0 ;

(49)

it is obtained by multiplying by v the Navier Stokes equation (31) for an incompressible fluid
(divv = 0). The div-term represents a transport of energy and mechanical work of the pressure,
and an energy flux associated with collisions (viscosity); the term η (∂jvi)

2 represents the heat
produced by viscosity. We integrate this equation over a volume V enclosed by a surface S,

∂
∂t

∫

dV
(

1
2
ρv2

)

+
∮

dS
[

vn
(

1
2
ρv2 + p

)

− 1
2
η∂n(v

2)
]

+

+η
∫

dV (∂jvi)
2 = 0 ,

(50)

where vn is the velocity component normal to the surface and ∂n is the derivative along the normal
to the surface.

We compare the orders of magnitude of the surface terms and the η-volume term, and get ratios of
the form Sl

V
R, Sl

V
(p/ρv2)R, Sl

V
, where l is the distance over which the velocity varies and R = vl/ν

is the Reynolds number. For moderate Reynolds numbers and Sl/V ≪ 1 we can neglect the
surface contributions in comparison with the heat term. By writing

v = f(t)u(r) , (51)

the above equation becomes

∂

∂t
f 2 ·

∫

dV
(

1

2
ρu2

)

+ ηf 2
∫

dV (∂jui)
2 = 0 . (52)

We can see that the time dependence of the velocity is a damped exponential. The flow is stable,
as a consequence of the dissipated heat. The η-term in equation (52) gives, in fact, the increase
of entropy.

Let us assume that the integration domains are sufficiently small, such that Sl/V is of the order
of unity; the velocity varies over a distance l inside the domains, but we assume that it suffers a
large discontinuity across the surface, over a small distance δ ≪ l. Then, it is easy to see that the
dominant term in equation (50) is the collision term, such that equation (50) becomes

∂

∂t
f 2 ·

∫

dV
(

1

2
ρu2

)

−
1

2
ηf 2

∮

dS∂n(u
2) = 0 . (53)

We can see that for a positive normal derivative the flow is unstable. The viscosity is insufficient
to disipate the energy as heat, and the energy is transferred by molecular collisions (viscosity)
through surfaces of discontinuities. The process occurs in small domains, with large discontinuities
of velocity across their surface, and the instabilities imply returning, swirling and fluctuating,
velocities. This is the turbulence phenomenon. We note that the instabilities are governed by
viscosity, which gives also vorticity (when the entropy production is neglected). Moreover, we
note that the inertial term does not appear in instabilities, though it plays an important role in
turbulence.
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The above arguments can be extended to compressible fluids, including the variations of the
temperature. Indeed, the energy conservation in this case reads

∂

∂t

(

1

2
ρv2 + ρε

)

= −∂j

[

ρvj

(

1

2
v2 + w

)

− viσ
′

ij − κ∂jT
]

, (54)

where ε is the internal energy per unit mass, w is the enthalpy per unit mass and

σ
′

ij = η
(

∂ivj + ∂jvi −
2

3
δijdivv

)

+ ζδijdivv (55)

is the viscosity tensor. For a smooth flow and a sufficiently large volume the surface term in
equation (54) can be neglected, and the energy is conserved, as it is well known. However, in the
surface integral we have terms of the form

∮

dS
[

ηvi (∂ivn + ∂nvi)−
(

2

3
η − ζ

)

vndivv + κ∂nT
]

, (56)

which imply normal derivatives to the surface, both of velocity and temperature. By collecting
these contributions, we get

∮

dS
[

η∂n(v
2/2) +

(

1

3
η + ζ

)

∂n(v
2
n/2) + κ∂nT

]

. (57)

We can see that for large normal derivatives across the surface, both for velocity and temperature,
these terms may lead to instabilities.

6 Turbulence

As it is well known, for a moderate turbulence, i.e. for slowly varying fluctuations, we may
decompose the velocity field into a mean velocity and a fluctuating part, and limit ourselves to
the time averaged Navier-Stokes equation. This way we get the Reynolds equations, for which
the mean energy is coupled to the fluctuating energy, via model assumptions. A fully developed
turbulence exhibits highly-varying fluctuations, such that we need to consider the time-dependent
Navier-Stokes equation.

The turbulent instabilities ocurring in a fully developed turbulence exhibit large variations of
the velocity over small distances. In this case we may assume that the velocity is split into a
mean-flow velocity v0 and a fluctuating part v, where the mean-flow velocity v0 may have a
slight time variation, while the fluctuating velocity v is a rapidly varying velocity. By using this
decomposition for an incompressible fluid, the Navier-Stokes equation reads

∂v0

∂t
+ ∂v

∂t
+ (v0grad)v0 + (v0grad)v + (vgrad)v0+

+ (vgrad)v = −1
ρ
gradp0 −

1
ρ
gradp+ ν∆v0 + ν∆v ,

(58)

where p0 is the pressure corresponding to the main flow and p is the fluctuating part of the
pressure. In this equation we have three distinct types of time variations, such that it should be
viewed as three equations

∂v0

∂t
+ (v0grad)v0 = −1

ρ
gradp0 + ν∆v0 ,

∂v
∂t

+ (v0grad)v + (vgrad)v0 = −1
ρ
gradp+ ν∆v ,

(vgrad)v = 0 ;

(59)
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similarly, the continuity equation should be split into

divv0 = 0 , divv = 0 . (60)

The first equation (59) is an independent equation, which gives the main flow velocity v0. Since
the main part of the velocity is taken by the fluctuating velocity, we may neglect the quadratic
term in this equation. The energy conservation and the heat transfer for this equation are given
by

∂
∂t
(v20/2) = −∂i [v0i (p0/ρ+ v20/2)− ν∂i(v

2
0/2)]−

−ν(∂iv0j)
2 ,

T0
ds0
dt

= χ∆T0 + ν(∂iv0j)
2 ,

(61)

where T0 is the temperature of the main flow, s0 is the entropy per unit mass of the main flow
and χ is the thermometric conductivity.

Having solved the mean-flow equation we can pass to solve the second equation (59) for the
fluctuating velocity v, with v0 as a parameter. This equation has its own energy-conservation
and heat-transfer equations. We note that the temperature and the entropy of the mean flow are
different from the temperature and the entropy of the fluctuating part of the flow, which means
that the two components of the flow (the mean flow and the fluctuating flow) are not in thermal
equilbrium. Indeed, if we multiply the first equation (59) by v and the second equation (59) by
v0, we get cross-terms of the form T0

ds
dt
+ T ds0

dt
in the heat-transfer equation, where T and s are

the temperature and the entropy of the fluctuating flow. This indicates a heat exchange between
the two components of the flow.

We are left with the third equation (59), which, in general, is not satisfied. We conclude that the
fully developed turbulence does not satisfy the Navier-Stokes equation. The quadratic term of the
third equation (59) is equivalent to a rapidly varying internal force (Euler’s force), which cannot
be compensated by any physical external force. The fully developed turbulence is unstable.

Under these conditions it is reasonable to be interested in time averaged quantities. Then, the
fluctuating part of the flow is reduced to

(vgrad)v = 0 . (62)

Since divv = 0, the components of the velocity v are not independent. In general, equation (62) is
not satisfied, which means that the turbulent motion is unstable even on average. We note that a
similar decomposition is valid for a compressible fluid, as long as the velocity, density and entropy
fluctuations are independent of one another.

Since a fully developed turbulence originates in large variations of the velocity across small dis-
tances, it is reasonable to associate these variations with a discrete distribution of positions
ri,which we call centres of turbulence. Further on, we assume that this is a homogeneous and
isotropic distribution, such that we may write the velocity field as

v =
∑

i

vi(t, Ri) , (63)

where Ri = r−ri. If curlvi 6= 0, this velocity field represents a vorticial liquid, which is unstable.
We assume that the fluctuating velocities are independent at distinct positions, i.e. vi = 0 and
vivj ∼ δij . Equation (62) becomes

(vgrad)v =
∑

i

(viRi/Ri) (dvi/dRi) . (64)
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The conditions of homogeneity and isotropy imply that vi in the above equation may be replaced
by the same velociy u. For a sufficiently dense set of positions ri we can define a density ρv of
such points, which is a constant. Then, equation (64) can be transformed into the integral

(vgrad)v = ρv

∫

dR ·R2
∫

do(uR/R) (du/dR) . (65)

If the radial integral is finite, the result of integration in the above equation is zero, due to the
integration over the solid angle o, such that the term (vgrad)v is zero. In this case we can say
that the Navier-Stokes equation is trivially satisfied on average, being reduced to the mean-flow
equation (first equation (59)).

If the radial integral in equation (65) is singular for R = 0, as it may often happen for vortices,
we are left with a discrete set of singularities, extending over a small characteristic distance a,
where the singularity is

u ∼ (a/R)n , n > 1 . (66)

In each of these regions there exists a mass M of fluid, which can be carried by the background
fluid and, at the same time, they may have their own motion.

The averaged energy-conservation equation derived from the second equation (59),

1

2
v0gradv2 + ∂j (vivjv0i)−

1

2
ν∆v2 = −ν(∂jvi)

2 , (67)

shows that the fluctuating motion produces heat which is partly transported by the mean flow (the
div-terms integrated over a volume are irrelevant). This dissipated heat should be compensated
from the outside. Therefore, we are left with a quasi ideal classical gas of singular vortices, or a
solution of vortices in the background fluid, in thermal quasi equilibrium. This is an example of
emergent dynamics.[23]

7 Gas of singularities

Let us assume a homogeneous, isotropic, fluctuating distribution of singular centres of turbulence
localized at ri with mass M , as described above. Their density is

ρ = M
∑

i

δ(r − ri) (68)

and
∂ρ

∂t
= −M

∑

i

uigradδ(r − ri) , (69)

where ui = dri/dt is their velocity. The velocity field of the singularities is

u = v
∑

i

uiδ(r − ri) , (70)

where v is the small volume over which the δ-function is localized, such that v = a3 and M = ρv.
Let us compute

div(ρu) = vMdiv
∑

ij δ(r − ri)ujδ(r − rj) =

= Mdiv
∑

i uiδ(r − ri) =

= M
∑

i uigradδ(r − ri) = −∂ρ
∂t

;

(71)
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we can see that the continuity equation is satisfied.

Now, let us focus on the Navier-Stokes equation

ρ
∂u

∂t
+ ρ(ugrad)u = −gradp+ η∆u , (72)

and let us compute each term in this equation for our fluid of singularities. We have

∂u
∂t

= v
∑

i u̇iδ(r − ri)− v
∑

i ui(uigrad)δ(r − ri) . (73)

The inertial term is

(ugrad)u = v2
∑

ij ujδ(r − ri)(uigrad)δ(r − rj) =

= v
∑

i ui(uigrad)δ(r − ri) .
(74)

On comparing equations (73) and (74), we can see that the inertial (Euler’s) term disappears from
equation. This is expected, since the δ-function equals the variable r to the function ri(t), which
amounts to Lagrange’s approach. The term on the left in equation (72) becomes

ρ∂u
∂t

+ ρ(ugrad)u = M
∑

i u̇iδ(r − ri) , (75)

and equation (72) reads now

M
∑

i u̇iδ(r − ri) = −v
∑

i pigradδ(r − ri)+

+ηv
∑

i ui∆δ(r − ri) ,
(76)

where pi is the pressure at the position ri. The pressure term in equation (76) is a force per
unit volume acting upon the vortex placed at ri; it may arise from the pressure exerted by the
background fluid particles. This term may be written as

∑

i

f iδ(r − ri) , (77)

where f i is the force acting at ri. The factor ∆δ(r − ri) is of the order − 1
a2
δ(r − ri), where a is

of the order of the dimension of the vortex (v = a3); consequently, we may replace the viscosity
terms in equation (76) by

−
ηv

a2
∑

i

uiδ(r − ri) . (78)

A similar contribution brings the ζ-term. The equation of motion (76) describes a set of indepen-
dent particles with mass M , subjected to an external force f i and a friction force; the equation
of motion of each such particle can be written as

Mu̇i = f i − ηaui , (79)

which is Newton’s law of motion. The damping coefficient caused by the friction force is very
small, such that we can consider the ensemble of singularities as a (quasi) ideal classical gas of
independent, identical, pointlike particles. Therefore, a (singular) fully developed turbulence may
be viewed as the (quasi) thermodynamic equilibrium of such a gas (or a solution of singularities
in the background fluid). We can define a temperature of turbulence, which is approximately the
mean kinetic energy of the translational motion of a singularity. Also, we can estimate a chemical
potential by evaluating v2/2. We note that the density ρv and the dimension a of the singularities
remain undetermined; these parameters can be estimated from experiment.

Also, it is worth noting that we may consider the equations of the fluid mechanics for this new
gas of singularities, viewed as a continuous medium, at a higher scale.
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8 Vorticial liquids

8.1 Vortex

For an incompressible fluid with an isentropic flow we consider a velocity field given by

v = ω × gradf(r) , (80)

where ω is a vector which may depend only on the time and the function f(r) is smooth every-
where, except, possibly, at the origin r 6= 0, and vanishing rapidly at infinity. The velocity v

rotates about ω; such a velocity field defines a vortex.

We can ckeck that divv = 0 and
v = −curl [ωf(r)] , (81)

such that we can define a vector potential A = −ωf(r) (v = curlA). We note that divA 6= 0
and the vorticity differs from ∆A, in general,

curlv = ∆ [ωf(r)]− grad div [ωf(r)] 6= −∆A . (82)

If the velocity given by equation (81) satisfies the second equation (40), we should have ω ∼ e−νλt

and ∆f + λf = 0, i.e. f ∼ e±i
√
λr/r, where λ is, in general, complex. In two dimensions f is a

Bessel function. The Navier-Stokes equation gives the pressure.

The most common example of a velocity field given by equation (80) is the filamentary vortex
(the "cyclon"), with ω = const, (λ = 0), f(r) = − ln r and the two-dimensional position vector r

perpendicular to ω. In this case v = r × ω/r2, A = ω ln r and curlv = −2πωδ(r). The velocity
is singular at r = 0. For the filamentary vortex the Navier-Stokes equation can be satisfied for
p = −ρω2/2r2, i.e. for an external potential ϕ = p/ρ = −ω2/2r2. This can be provided by the
gravitational field for a fluid with a free surface.

For convenience, we give the expression of the various terms in the Navier-Stokes equation for the
vortex given by equation (80),

∂v
∂t

= (ω̇ × r) f
′

r
,

(vgrad)v = [ω(ωr)− ω2r] f
′
2

r2
,

∆v = (ω × r) (f
′′
+2f ′/r)

′

r
,

(83)

where the primes denote the derivatives of the function f ; the second equation (83) is derived by
using the identity

(vgrad)v = −v × curlv + grad(v2/2) . (84)

For a filamentary vortex the above expressions become

(vgrad)v = −ω2r f
′
2

r2
,

∆v = (ω × r) (f
′′
+f ′/r)

′

r
.

(85)

In general, the vortex given by equation (80) does not satisfy the Navier-Stokes equation; it
develops internal (Euler’s) forces which cannot be compensated; the vortex is unstable. Such
vortices are examples of singular velocities.
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8.2 Vorticial liquid

A set of vectors ωi placed at ri form a vorticial liquid. The velocity field is

v =
∑

i

ωi × gradfi(Ri) , (86)

where Ri = r − ri. This velocity field is a superpositon of independent vortices. Each i-th
vortex develops an internal force, while the inertial term generates an interaction which brings an
additional force; this additional force depends on all the other j-th vortices, j 6= i. Therefore, the
Navier-Stokes equation is not satisfied by the velocity field given by equation (86), in the sense
that there is no physical external pressure to compensate the Euler force.

We assume randomly fluctuating vectors ωi, as a distinctive feature of a fully developed vorticial
turbulence. It is likely that the fluid develops fluctuations as a reaction to its uncompensated

internal forces. Specifically, we assume ωi = 0 and ωα
i ω

β
j = 1

3
ω2
i δijδ

αβ , where α, β = 1, 2, 3 are the
cartesian labels of the components of the vectors ωi, and the overbar indicates the average over
time. Then, the average velocity is zero (v = 0) and we are left with the inertial term

(vgrad)v = vj∂jvi . (87)

The calculation of this term is straightforward; we get

(vgrad)v = 1
3

∑

i ω
2
i [

1
2
grad (gradfi(Ri))

2−

−gradfi(Ri) ·∆fi(Ri)] .
(88)

The averaged Euler forces are

−v × curlv = −1
3

∑

i ω
2
i [

1
2
grad (gradfi(Ri))

2+

+gradfi(Ri) ·∆fi(Ri)] ,

grad(v2/2) = 1
3

∑

i ω
2
i grad (gradfi(Ri))

2 .

(89)

By using the spherical symmetry of the function fi(Ri), these expressions can be cast in the form

(vgrad)v = −2
3

∑

i ω
2
i f

′2
i

Ri

R2

i

,

−v × curlv = −2
3

∑

i ω
2
i f

′

i

(

f
′′

i + 1
Ri
f

′

i

)

Ri

Ri
,

grad(v2/2) = 2
3

∑

i ω
2
i f

′

if
′′

i
Ri

Ri
.

(90)

We can see that even on average the Navier-Stokes equation is not satisfied, in the sense discussed
above. Even on average the vorticial liquid develops internal forces which are not equilibrated; it
is unstable. We shall give specific examples of such an instability below.

Now, let us assume that the vorticial liquid is sufficiently dense, i.e. if we can define a density
ρv of points ri; further, we assume that the liquid is homogeneous and isotropic, i.e. this density
is constant and the ωi and the functions fi can be replaced in the above equations by uniform
functions ωi = ω and fi = f . We assume that this is another distinctive feature of a fully developed
turbulence. Then, we may transform the summation over i in equations (90) into an integral, like
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in equation (65). By choosing the origin at r = ri for a fixed ri, and using the notation R = r−ri,
we get

(vgrad)v = −
2

3
ρvω

2
∫ ∞

0
dR · Rf

′2(R)
∫

do(R/R) ; (91)

the result of integration in this equation is zero, due to the integration over the solid angle o,
providing the radial integration is finite. In this case the Navier-Stokes equation is satisfied
trivially.

Let us assume that the integral over R is singular at R = 0, as another distinctive feature of a
fully developed turbulence (the function f is assumed to decrease sufficiently rapid at infinity to
have a finite integral in this limit). The integration outside a small region around the i-th point
is zero, while the integration over such a small region is indefinite. This singularity implies

f(R) ∼ (a/R)n , n > 0 (92)

for R ≪ a, where a is a small characteristic distance (compare with equation (66)). Therefore, we
are left with a discrete set of points ri, where the function f(Ri) and the velocity (v ∼ 1/Rn+1

i )
are singular. We have now a small region of dimension a, around each point ri, which includes
a mass of fluid, say, M , where the inertial term given by equation (91) is not defined. Since the
positions ri may change in time, we are left with a classical gas of particle-like vortices (or a
solution of vortices in the background fluid), as discussed above. Of course, we may have also a
mixture of vorticial gases, each characterized by a dimension a and a mass M .

The equation of energy conservation (equation (67))

∂

∂t

(

1

2
v2
)

+ v · (vgrad)v = νv∆v , (93)

averaged over the fluctuating vectors ωi, is reduced to the viscosity term

νv∆v =
2ν

3

∑

i

ω2
i f

′

i

(

f
′′

i + 2f
′

i/Ri

)′

. (94)

This term should be computed outside the regions with dimension a, where the motion is defined.
The non-vanishing value of this term indicates an energy loss, which should be compensated from
the outside. The vorticial gas is in quasi equilibrium.

The above considerations are valid for spherical-symmetric functions fi(Ri); if the vortices have a
lower (internal) symmetry, the unit vector R/R in equation (91) is replaced by functions which do
not have a spherical symmetry, and the inertial term is not vanishing, in general. The vortices are
unstable, and, likely, they could tend to acquire a spherical symmetry, which ensures a (quasi)-
equilibrium.

8.3 Filamentary liquid

Let us consider a set of rectilinear, parallel filaments, directed along the z-axis, placed at positions
ri in the (x, y)-plane, with vorticities ωi. This is a two-dimensional vorticial liquid of "cyclons".
The velocity field is given by

v = −
∑

i

ωi × grad lnRi =
∑

i

Ri × ωi

R2
i

, (95)

where Ri = r − ri.
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Equation (95) shows that the velocity is derived from a vector potential A, through v = curlA.
By taking the curl in this equation, we get

∆A = −2ω (96)

(providing divA = 0 and divω = 0), where we introduce the notation curlv = 2ω; ω is called
vorticity. The vorticity distribution corresponding to equation (95)

ω(r) =
1

2
curlv = −π

∑

i

ωiδ(Ri) , (97)

gives the vector potential
A =

∑

i

ωi lnRi . (98)

According to equation (84), the inertial term has the components

f = −v × curlv = −2π
∑

i 6=j

ωiωjgradi lnRij · δ(Ri) , (99)

where Rij = ri − rj, and grade, where

e =
1

2
v2 =

∑

i 6=j

ωiωj
RiRj

2R2
iR

2
j

(100)

is a density of kinetic energy (per unit mass). Apart from the force f , which acts at the positions
of the vortices, there exist internal forces given by grade, which make the liquid unstable. The
motion and the statistics of parallel, rectilinear filaments have been extensively investigated,[24]-
[31] the instability being associated with a negative temperature in an attempt of a statistical
theory.[25, 27]

The total force given by equation (99)

F =
∫

drf = −2π
∑

i 6=j

ωiωjgradi lnRij (101)

is zero. We can see that a force

f ij = −f ji = −2πωiωjgradi lnRij (102)

acts between any pair (ij) of vortices. This force derives from a potential

Uij = 2πωiωj lnRij , (103)

such that
F = −

∑

i 6=j

gradiUij (104)

The density of kinetic energy e can be written as

e =
1

2
v2 =

1

2
vcurlA = −

1

2
div(v ×A) +Aω . (105)

The first term in equation (105) is singular at r = ri; we integrate this term over the whole space,
transform it into surface integrals, both at infinity and over small circles around each filament,
and neglect their contributions. The result of such integrations is a self-energy (or a self-force),
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which may be left aside. We call this procedure a "renormalization".[32] By doing so, we are left
with a total kinetic energy

E =
∫

dre =
∫

drAω = −π
∑

i 6=j ωiωj lnRij =

= −1
2

∑

i 6=j Uij = −U ,
(106)

where U is the total potential energy. We can see that the total energy is conserved, i.e. E+U =
const. Also, the total force F = 0, such that the total momentum is conserved. The total angular
momentum is −2

∫

drA; it is proportional to
∑

i ωi. The total torque

2π
∑

i 6=j

ωiωj
ri × rj

R2
ij

(107)

is zero. By this "renormalization" procedure the points ri are completely decoupled from the
fluid, and they may have their own motion.

The average over fluctuating vorticities can be computed straightforwardly, by using ω2
i =

1
2
ω2
i ; it

is given by

(vgrad)v = −
∑

i

ω2
i

Ri

2R4
i

. (108)

We can see that for a sufficiently dense, homogeneous and isotropic liquid we get a gas of (singular)
vortices, as discussed above.

8.4 Coulombian liquid

For fi(Ri) = −1/Ri in equation (86) we get a coulombian vorticial liquid with the velocity field

v = −
∑

i

ωi × grad(1/Ri) =
∑

i

ωi ×Ri

R3
i

(109)

and the vector potential

A =
∑

i

ωi

Ri

. (110)

The equation ∆A = −2ω is satisfied for

ω(r) = 2π
∑

i

ωiδ(Ri) , (111)

but this vorticity differs from

1

2
curlv = 2π

∑

i

ωiδ(Ri)−
1

2
grad div

∑

i

(ωi/Ri) . (112)

By applying the "renormalization" procedure we get the force

F =
∫

drf = −
∫

drv × curlv = 4π
∑

i 6=j

gradi
ωiωj

Rij
(113)

and the energy

E =
∫

dre =
1

2

∫

drv2 = 2π
∑

i 6=j

ωiωj

Rij
, (114)
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where, in both cases v = curlA is used. The potential from equation (103) is now Uij = −4π
ωiωj

Rij
.

The total energy is conserved, the total force is zero, the total angular momentum is proportional
to
∑

i ωi and the total torque (zero) is

4π
∑

i 6=j

ωiωj
ri × rj

R3
ij

. (115)

The average of the inertial term over fluctuating vortices is obtained from equation (90)

(vgrad)v = −
2

3

∑

i

ω2
i

Ri

R6
i

, (116)

such that we may get a gas of singular vortices.

8.5 Dipolar liquid

A dipolar liquid is defined by the vorticity

ω = −2π
∑

i

mi × gradδ(r − ri) , (117)

where the vectors mi may depend on the time, at most. We get the vector potential

A =
∑

i

mi ×Ri

R3
i

= −
∑

i

mi × grad(1/Ri) (118)

and the velocity field
v(r) =

∑

i [−mi/R
3
i + 3Ri(miRi)/R

5
i ] =

=
∑

i grad [migrad(1/Ri)] .
(119)

We recognize in these equations magnetic (dipole) moments mi, a dipolar vector potential A and
a magnetic field v.

The inertial term has the components

f = −v × curlv = 2ω × v =

= 4π
∑

i 6=j grad [mjgrad(1/Rj)]× [mi × gradδ(Ri)]
(120)

and grade, where

e = 1
2
v2 = 1

2

∑

i 6=j[
mimj

R3

i
R3

j

−
3(miRj)(mjRj)

R3

i
R5

j

−

−
3(mjRi)(miRi)

R5

i
R3

j

+

+
9(RiRj)(miRi)(mjRj)

R5

i
R5

j

] .

(121)

We can see that the dipolar liquid is unstable.

The total force and the total kinetic energy are

F =
∫

drf = 2
∫

drω × v = −
∑

i 6=j gradiUij ,

E =
∫

dre =
∫

drωA = −1
2

∑

i 6=j Uij ,
(122)
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where

Uij = −4πmigradi [mjgradi(1/Rij)] . (123)

By this "renormalization" procedure, the liquid is reduced to a set of interacting particle-like
vortices. We can see that the energy is conserved, the total force is zero, the total angular
momentum and the total torque are zero.

The time average over vorticities in equation (121) leads to

e =
1

2

∑

i

[

m2
i

R6
i

+
3(miRi)2

R8
i

]

=
∑

i

m2
i

R6
i

, (124)

which gives a force

grade = −6
∑

i

m2
iRi

R8
i

. (125)

For a dense, homogeneous and isotropic liquid the force given by equation (125) is zero (for
Ri 6= 0); also, the force f is zero for Ri 6= 0, and the Navier-Stokes equation is satisfied trivially
(on average). We note that ∆v is zero for Ri 6= 0 (equation (119)), such that the viscosity
contribution is zero. We are left with a set of positions ri, each surrounded by a small region,
where the motion is not defined. According to the above discussion, such a structure may be
viewed as a (quasi) ideal classical gas of vortices (or a solution of vortices in the background
fluid).

9 Concluding remarks

In fairly general conditions we have given in this paper an explicit (smooth) solution for the
potential flow. We have shown that, rigorously speaking, the equations of the fluid mechanics
have not rotational solutions. However, usually we may neglect the variations of the density
and the temperature, such that, in these conditions, the Navier-Stokes equation may exhibit
(approximate) vorticial solutions, governed by the viscosity. We give arguments that the vortices
are unstable. On the other hand, for large variations of the velocity over small distances, the fluid
velocity exhibits turbulent, highly fluctuating instabilities, controlled by viscosity. Such a fully
developed turbulence occurs as a consequence of the insufficiency of the viscosity to dissipate heat.
We represent the fully developed turbulence as a superposition of highly fluctuating velocities,
associated to a discrete distrbution of turbulence centres, and are interested in the temporal
average of this velocity field. A regular mean flow may be added. It is shown that the Navier-
Stokes equation is not satisfied on average. However, for a homogeneous and isotropic distribution
of (non-singular) turbulence centres (as another distinctive feature of a fully developed turbulence),
the temporal average of both the fluctuating velocity and the inertial term is zero, such that the
Navier-Stokes equation is satisfied trivially. If the velocity is singular at the turbulence centres
we are left with a quasi ideal classical gas of singularities (or a solution of singularities in the
background fluid), in thermal quasi equilibrium, as an example of emergent dynamics. The Navier-
Stokes equation for this fluid of singularities is reduced to Newton’s law of motion (with a small
friction). At a higher scale, equations of fluid mechanics can be considerd for this gas, as a
continuous medium. We have illustrated all the above considerations with three examples of
(singular) vorticial liquids.
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