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M. Apostol
Department of Theoretical Physics, Institute of Atomic Physics,

Magurele-Bucharest MG-6, POBox MG-35, Romania
email: apoma@theory.nipne.ro

Abstract

The fluctuations of a covalent bond implies transitions between singlet and triplet spin
states. In the presence of a magnetic field the spin states are mixed and the singlet-triplet
transitions induce oscillations of the populations of these two types of states. The ampli-
tude of these "spin-rotation" (or "spin-flip") oscillations depends on the direction of the
magnetic field, while their frequency is governed by the Zeeman splitting energy. Since the
covalent-bond fluctuations imply variations of the distance between the molecular partners,
the oscillating transitions generate local polarization currents.

Fluctuations. Covalent-bond electron pair may fluctuate between their singlet (s) and triplet
(t) states. The kinetics of the populations Ns,t is described by the equations

dN
dt

= wNt − wNs ,

dNt

dt
= wNs − wNt ,

(1)

where w is the number of transitions per unit time. The solution of this system of equations is

Ns =
1
2

(
N +De−

∫ t

0
wdt′

)
,

Nt =
1
2

(
N −De−

∫ t

0
wdt′

)
,

(2)

where N = Ns +Nt is the initial number of molecules and D = N0
s −N0

t is the initial difference
between the two populations.

The spin states of the electron pair are

χs =
1√
2
(α1β2 − α2β1) ,

χ0
t =

1√
2
(α1β2 + α2β1) ,

χ1
t = α1α2 , χ−1

t = β1β2 ,

(3)

where α, β are the spin-up, spin-down states along the z-direction for the electron 1 and electron
2. The upper labels indicate the magnetic number. We assume the triplet states degenerate, with
energy W , and measure the energies from the singlet-state energy; i.e.,

H0χs = 0 , H0χ
0,±1
t = Wχ0,±1

t , (4)
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where H0 is the spin hamiltonian. The difference W in energy may arise from an exchange energy
(usually of the order of 10meV ), or a spin-spin coupling, induced by a spin-orbital coupling (fine
structure); in this latter case W is a fraction of the atomic energy term, the fraction being of the
order of the fine structure constant squared. This gives a value W ≃ 10−4eV .

A magnetic field H generates an interaction

U = µσH , (5)

where µ is the Bohr magneton, σ = σ1 + σ2 and σ1,2 are the Pauli matrices. This interaction
conserves the spin, such that the singlet state and the energy Es are unchanged,

χ̃s = χs , Es = 0 , (6)

but it splits up the triplet state, which becomes

χ̃0
t = cos θχ0

t −
1√
2
sin θ

(
eiϕχ1

t − e−iϕχ−1
t

)
, E0

t = W (7)

and
χ̃1
t = cos2 θ

2
eiϕχ1

t + sin2 θ
2
e−iϕχ−1

t + 1√
2
sin θχ0

t ,

E1
t = W + 2µH ,

(8)

χ̃−1
t = − cos2 θ

2
e−iϕχ−1

t − sin2 θ
2
eiϕχ1

t +
1√
2
sin θχ0

t ,

E−1
t = W − 2µH ,

(9)

where the angles θ, ϕ define the direction of the magnetic field; we assume W ≫ 2µH . This is
the well-known Zeeman splitting.

Density matrix. Let us denote by Ane
i
~
Ent the transition amplitudes from the triplet state

n = 0,±1 to the singlet state, where En = En
t given above. The number of transitions per unit

time to the singlet state is given by

wts =
∑

nm

ρnmA
∗
nAme

i
~
(Em−En)t , (10)

where ρnm is the density matrix.

The density matrix of the electron pair is ρ = ρ1ρ2. For an unpolarized electron ρi, i = 1, 2, is a
diagonal matrix with elements 1/2, both for the spin up and the spin down. In magnetic field the
Zeeman splitting ±µH generates a Boltzmann distribution e±µH/T /

(
eµH/T + e−µH/T

)
, where T is

the temperature, such that the density matrix becomes a statistical matrix. Since µH ≪ T , the
statistical matrix can be written as

ρi =
1

2

(
1− p 0
0 1 + p

)
, p = µH/T , i = 1, 2 , (11)

where p is the polarization parameter (H > 0). This is valid for spin states along the direction of
the field. For our reference frame we need to rotate the polarization by angles −θ and −ϕ, such
that the matrix becomes

ρi =
1

2

(
1− p cos θ p sin θeiϕ

p sin θeiϕ 1 + p cos θ

)
. (12)
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Also, we note that the spin states in our reference frame are changed in the presence of the
interaction µσiH .

Since p ≪ 1 we use the approximation

ρ = ρ1ρ2 ≃
1

4

(
1− 2p cos θ 2p sin θeiϕ

2p sin θeiϕ 1 + 2p cos θ

)
, (13)

i.e. we limit ourselves to the first order in the parameter p.

For ρnm we need the matrix elements of the matrix ρ given above between the states χ̃0,±1
t given

by equation (7) to (9). In order to do this we need the matrix elements of the matrix ρ for the
states χ0,±1

t given by equations (3). We get

ρχ0
t =

1
2
p cos θχs +

1
4
χ0
t +

1
2
√
2
p sin θ

(
eiϕχ1

t + e−iϕχ−1
t

)
,

ρχ1
t =

1
4
(1− 2p cos θ)χ1

t +
1

2
√
2
p sin θe−iϕ (χ0

t + χs) ,

ρχ−1
t = 1

4
(1 + 2p cos θ)χ−1

t + 1
2
√
2
p sin θeiϕ (χ0

t − χs) ;

(14)

it is noteworthy that the singlet state occurs in the action of the statistical matrix, as expected.
Now it is easy to get the action of the statistical matrix upon the states χ̃0,±1

t , and, finally, the
matrix elements

ρ00 = 1/4 , ρ0±1 = ± 1
2
√
2
p sin 2θ ,

ρ11 =
1
4
(1− 2p cos 2θ) , ρ−1−1 =

1
4
(1 + 2p cos 2θ) ,

ρ1,−1 = 0 .

(15)

Transition rate. By making use of the matrix elements of the statistical matrix in equation (10),
the transition rate from the triplet states to the singlet state becomes

wts =
1
4

[
|A0|2 + (1− 2p cos 2θ) |A1|2 + (1 + 2p cos 2θ) |A−1|2

]
+

+ 1√
2
p sin 2θ |A0|

[
|A1| cos

(
2µH
~
t+ α1

)
− |A−1| cos

(
2µH
~
t + α−1

)]
,

(16)

where the phases α±1 are defined by A±1 = |A±1| eiα±1 (and A0 = |A0|). A similar transition rate
exists from the singlet state to the triplet states, the only difference being the change of sign of
the phases α±1,

wst =
1
4

[
|A0|2 + (1− 2p cos 2θ) |A1|2 + (1 + 2p cos 2θ) |A−1|2

]
+

+ 1√
2
p sin 2θ |A0|

[
|A1| cos

(
2µH
~
t− α1

)
− |A−1| cos

(
2µH
~
t− α−1

)]
.

(17)

The net transition rate between the singlet state and the triplet states, i.e. the w which enters
equation (1), is the difference

w = wts − wst =

= −
√
2p |A0| (|A1| sinα1 − |A−1| sinα−1) sin 2θ cos

2µH
~
t .

(18)

The states ±1 differ by the spin orientation: very likely, |A1| = |A−1|. Also, when changing the
spin orientation the singlet wavefunction changes the sign. Consequently we may assume that the
two phases differ by π. By using these assumptions, we get

w = −2
√
2p |A0A1| sinα1 sin 2θ cos

2µH

~
t . (19)
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The time dependence of the populations given by equations (2) is

Ns,t =
1

2

(
N ±De

√
2~

T
|A0A1| sinα1 sin 2θ cos 2µH

~
t
)

; (20)

it is worth noting that the small parameter p is replaced by ~ |A0A1| /T , which may attain relatively
high values. For instance, at room temperature and for an electronic energy of a few meV we get
~ |A0A1| /T of the order of 10−2.

However, it is likely that the exponent in equation (20) is sufficiently small to warrant the approx-
imations

Ns = N0
s + 1

2
(N0

s −N0
t ) ·

√
2~
T

|A0A1| sinα1 sin 2θ cos
2µH
~
t ,

Nt = N0
t − 1

2
(N0

s −N0
t ) ·

√
2~
T

|A0A1| sinα1 sin 2θ cos
2µH
~
t .

(21)

The populations of the two states oscillate in antiphase; these oscillations may generate local
polarization currents. The oscillation amplitude depends on the direction of the magnetic field
(angle θ ); its maximum value is attained for θ = ±π/4. For a mean magnetic field 0.5Gs of the
Earth the oscillation frequency is approximately 10MHz.

An excited state may be generated by photoexcitation, followed by a singlet state, which, in turn,
decays to a triplet state. The transition rate is then given by equation (17); its general form is

wst = a+ pb sin 2θ cos(2µHt/~) , (22)

where a, b are some coefficients and the phase α1 is put equal to zero. The kinetic equation is
dNs/dt = −wstNs, with the solution

Ns = N0
s e

−ate−
b~
T

sin 2θ sin(2µHt/~) ≃ N0
s e

−at

(
1− b~

T
sin 2θ sin(2µHt/~)

)
. (23)

The singlet state may generate a chemical reaction, with some reaction constant, such that the
total reaction yield includes a term

−b~

T
sin 2θ

∫ ∞

0

e−at sin(2µHt/~) = −b~

T
sin 2θ

2µH/~

a2 + (2µH/~)2
. (24)

This term has a minimum value for µH/~ ≃ a(compare with Ref. 1).
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