Journal of Theoretical Physics

Covalent-bond fluctuations measure the direction of the magnetic field
 M. Apostol
 Department of Theoretical Physics, Institute of Atomic Physics, Magurele-Bucharest MG-6, POBox MG-35, Romania
 email: apoma@theory.nipne.ro

Abstract

The fluctuations of a covalent bond implies transitions between singlet and triplet spin states. In the presence of a magnetic field the spin states are mixed and the singlet-triplet transitions induce oscillations of the populations of these two types of states. The amplitude of these "spin-rotation" (or "spin-flip") oscillations depends on the direction of the magnetic field, while their frequency is governed by the Zeeman splitting energy. Since the covalent-bond fluctuations imply variations of the distance between the molecular partners, the oscillating transitions generate local polarization currents.

Fluctuations. Covalent-bond electron pair may fluctuate between their singlet (s) and triplet (t) states. The kinetics of the populations $N_{s, t}$ is described by the equations

$$
\begin{align*}
& \frac{d N}{d t}=w N_{t}-w N_{s}, \\
& \frac{d N_{t}}{d t}=w N_{s}-w N_{t}, \tag{1}
\end{align*}
$$

where w is the number of transitions per unit time. The solution of this system of equations is

$$
\begin{align*}
& N_{s}=\frac{1}{2}\left(N+D e^{-\int_{0}^{t} w d t^{\prime}}\right), \tag{2}\\
& N_{t}=\frac{1}{2}\left(N-D e^{-\int_{0}^{t} w d t^{\prime}}\right),
\end{align*}
$$

where $N=N_{s}+N_{t}$ is the initial number of molecules and $D=N_{s}^{0}-N_{t}^{0}$ is the initial difference between the two populations.

The spin states of the electron pair are

$$
\begin{gather*}
\chi_{s}=\frac{1}{\sqrt{2}}\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right), \\
\chi_{t}^{0}=\frac{1}{\sqrt{2}}\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right), \tag{3}\\
\chi_{t}^{1}=\alpha_{1} \alpha_{2}, \chi_{t}^{-1}=\beta_{1} \beta_{2},
\end{gather*}
$$

where α, β are the spin-up, spin-down states along the z-direction for the electron 1 and electron 2. The upper labels indicate the magnetic number. We assume the triplet states degenerate, with energy W, and measure the energies from the singlet-state energy; i.e.,

$$
\begin{equation*}
H_{0} \chi_{s}=0, H_{0} \chi_{t}^{0, \pm 1}=W \chi_{t}^{0, \pm 1} \tag{4}
\end{equation*}
$$

where H_{0} is the spin hamiltonian. The difference W in energy may arise from an exchange energy (usually of the order of 10 meV), or a spin-spin coupling, induced by a spin-orbital coupling (fine structure); in this latter case W is a fraction of the atomic energy term, the fraction being of the order of the fine structure constant squared. This gives a value $W \simeq 10^{-4} \mathrm{eV}$.

A magnetic field \boldsymbol{H} generates an interaction

$$
\begin{equation*}
U=\mu \boldsymbol{\sigma} \boldsymbol{H} \tag{5}
\end{equation*}
$$

where μ is the Bohr magneton, $\boldsymbol{\sigma}=\boldsymbol{\sigma}_{1}+\boldsymbol{\sigma}_{2}$ and $\boldsymbol{\sigma}_{1,2}$ are the Pauli matrices. This interaction conserves the spin, such that the singlet state and the energy E_{s} are unchanged,

$$
\begin{equation*}
\tilde{\chi}_{s}=\chi_{s}, E_{s}=0 \tag{6}
\end{equation*}
$$

but it splits up the triplet state, which becomes

$$
\begin{equation*}
\widetilde{\chi}_{t}^{0}=\cos \theta \chi_{t}^{0}-\frac{1}{\sqrt{2}} \sin \theta\left(e^{i \varphi} \chi_{t}^{1}-e^{-i \varphi} \chi_{t}^{-1}\right), E_{t}^{0}=W \tag{7}
\end{equation*}
$$

and

$$
\begin{gather*}
\widetilde{\chi}_{t}^{1}=\cos ^{2} \frac{\theta}{2} e^{i \varphi} \chi_{t}^{1}+\sin ^{2} \frac{\theta}{2} e^{-i \varphi} \chi_{t}^{-1}+\frac{1}{\sqrt{2}} \sin \theta \chi_{t}^{0} \tag{8}\\
E_{t}^{1}=W+2 \mu H \\
\widetilde{\chi}_{t}^{-1}=-\cos ^{2} \frac{\theta}{2} e^{-i \varphi} \chi_{t}^{-1}-\sin ^{2} \frac{\theta}{2} e^{i \varphi} \chi_{t}^{1}+\frac{1}{\sqrt{2}} \sin \theta \chi_{t}^{0} \tag{9}\\
E_{t}^{-1}=W-2 \mu H
\end{gather*}
$$

where the angles θ, φ define the direction of the magnetic field; we assume $W \gg 2 \mu H$. This is the well-known Zeeman splitting.
Density matrix. Let us denote by $A_{n} e^{\frac{i}{\hbar} E_{n} t}$ the transition amplitudes from the triplet state $n=0, \pm 1$ to the singlet state, where $E_{n}=E_{t}^{n}$ given above. The number of transitions per unit time to the singlet state is given by

$$
\begin{equation*}
w_{t s}=\sum_{n m} \rho_{n m} A_{n}^{*} A_{m} e^{\frac{i}{\hbar}\left(E_{m}-E_{n}\right) t} \tag{10}
\end{equation*}
$$

where $\rho_{n m}$ is the density matrix.
The density matrix of the electron pair is $\rho=\rho_{1} \rho_{2}$. For an unpolarized electron $\rho_{i}, i=1,2$, is a diagonal matrix with elements $1 / 2$, both for the spin up and the spin down. In magnetic field the Zeeman splitting $\pm \mu H$ generates a Boltzmann distribution $e^{ \pm \mu H / T} /\left(e^{\mu H / T}+e^{-\mu H / T}\right)$, where T is the temperature, such that the density matrix becomes a statistical matrix. Since $\mu H \ll T$, the statistical matrix can be written as

$$
\rho_{i}=\frac{1}{2}\left(\begin{array}{cc}
1-p & 0 \tag{11}\\
0 & 1+p
\end{array}\right), p=\mu H / T, i=1,2
$$

where p is the polarization parameter $(H>0)$. This is valid for spin states along the direction of the field. For our reference frame we need to rotate the polarization by angles $-\theta$ and $-\varphi$, such that the matrix becomes

$$
\rho_{i}=\frac{1}{2}\left(\begin{array}{cc}
1-p \cos \theta & p \sin \theta e^{i \varphi} \tag{12}\\
p \sin \theta e^{i \varphi} & 1+p \cos \theta
\end{array}\right) .
$$

Also, we note that the spin states in our reference frame are changed in the presence of the interaction $\mu \boldsymbol{\sigma}_{i} \boldsymbol{H}$.
Since $p \ll 1$ we use the approximation

$$
\rho=\rho_{1} \rho_{2} \simeq \frac{1}{4}\left(\begin{array}{cc}
1-2 p \cos \theta & 2 p \sin \theta e^{i \varphi} \tag{13}\\
2 p \sin \theta e^{i \varphi} & 1+2 p \cos \theta
\end{array}\right)
$$

i.e. we limit ourselves to the first order in the parameter p.

For $\rho_{n m}$ we need the matrix elements of the matrix ρ given above between the states $\widetilde{\chi}_{t}^{0, \pm 1}$ given by equation (7) to (9). In order to do this we need the matrix elements of the matrix ρ for the states $\chi_{t}^{0, \pm 1}$ given by equations (3). We get

$$
\begin{gather*}
\rho \chi_{t}^{0}=\frac{1}{2} p \cos \theta \chi_{s}+\frac{1}{4} \chi_{t}^{0}+\frac{1}{2 \sqrt{2}} p \sin \theta\left(e^{i \varphi} \chi_{t}^{1}+e^{-i \varphi} \chi_{t}^{-1}\right), \\
\rho \chi_{t}^{1}=\frac{1}{4}(1-2 p \cos \theta) \chi_{t}^{1}+\frac{1}{2 \sqrt{2}} p \sin \theta e^{-i \varphi}\left(\chi_{t}^{0}+\chi_{s}\right), \tag{14}\\
\rho \chi_{t}^{-1}=\frac{1}{4}(1+2 p \cos \theta) \chi_{t}^{-1}+\frac{1}{2 \sqrt{2}} p \sin \theta e^{i \varphi}\left(\chi_{t}^{0}-\chi_{s}\right)
\end{gather*}
$$

it is noteworthy that the singlet state occurs in the action of the statistical matrix, as expected. Now it is easy to get the action of the statistical matrix upon the states $\widetilde{\chi}_{t}^{0, \pm 1}$, and, finally, the matrix elements

$$
\begin{gather*}
\rho_{00}=1 / 4, \rho_{0 \pm 1}= \pm \frac{1}{2 \sqrt{2}} p \sin 2 \theta, \\
\rho_{11}=\frac{1}{4}(1-2 p \cos 2 \theta), \rho_{-1-1}=\frac{1}{4}(1+2 p \cos 2 \theta), \tag{15}\\
\rho_{1,-1}=0 .
\end{gather*}
$$

Transition rate. By making use of the matrix elements of the statistical matrix in equation (10), the transition rate from the triplet states to the singlet state becomes

$$
\begin{gather*}
w_{t s}=\frac{1}{4}\left[\left|A_{0}\right|^{2}+(1-2 p \cos 2 \theta)\left|A_{1}\right|^{2}+(1+2 p \cos 2 \theta)\left|A_{-1}\right|^{2}\right]+ \\
+\frac{1}{\sqrt{2}} p \sin 2 \theta\left|A_{0}\right|\left[\left|A_{1}\right| \cos \left(\frac{2 \mu H}{\hbar} t+\alpha_{1}\right)-\left|A_{-1}\right| \cos \left(\frac{2 \mu H}{\hbar} t+\alpha_{-1}\right)\right] \tag{16}
\end{gather*}
$$

where the phases $\alpha_{ \pm 1}$ are defined by $A_{ \pm 1}=\left|A_{ \pm 1}\right| e^{i \alpha_{ \pm 1}}$ (and $A_{0}=\left|A_{0}\right|$). A similar transition rate exists from the singlet state to the triplet states, the only difference being the change of sign of the phases $\alpha_{ \pm 1}$,

$$
\begin{gather*}
w_{s t}=\frac{1}{4}\left[\left|A_{0}\right|^{2}+(1-2 p \cos 2 \theta)\left|A_{1}\right|^{2}+(1+2 p \cos 2 \theta)\left|A_{-1}\right|^{2}\right]+ \\
+\frac{1}{\sqrt{2}} p \sin 2 \theta\left|A_{0}\right|\left[\left|A_{1}\right| \cos \left(\frac{2 \mu H}{\hbar} t-\alpha_{1}\right)-\left|A_{-1}\right| \cos \left(\frac{2 \mu H}{\hbar} t-\alpha_{-1}\right)\right] . \tag{17}
\end{gather*}
$$

The net transition rate between the singlet state and the triplet states, i.e. the w which enters equation (1), is the difference

$$
\begin{gather*}
w=w_{t s}-w_{s t}= \\
=-\sqrt{2} p\left|A_{0}\right|\left(\left|A_{1}\right| \sin \alpha_{1}-\left|A_{-1}\right| \sin \alpha_{-1}\right) \sin 2 \theta \cos \frac{2 \mu H}{\hbar} t . \tag{18}
\end{gather*}
$$

The states ± 1 differ by the spin orientation: very likely, $\left|A_{1}\right|=\left|A_{-1}\right|$. Also, when changing the spin orientation the singlet wavefunction changes the sign. Consequently we may assume that the two phases differ by π. By using these assumptions, we get

$$
\begin{equation*}
w=-2 \sqrt{2} p\left|A_{0} A_{1}\right| \sin \alpha_{1} \sin 2 \theta \cos \frac{2 \mu H}{\hbar} t \tag{19}
\end{equation*}
$$

The time dependence of the populations given by equations (2) is

$$
\begin{equation*}
N_{s, t}=\frac{1}{2}\left(N \pm D e^{\frac{\sqrt{2} \hbar}{T}\left|A_{0} A_{1}\right| \sin \alpha_{1} \sin 2 \theta \cos \frac{2 \mu H}{\hbar} t}\right) ; \tag{20}
\end{equation*}
$$

it is worth noting that the small parameter p is replaced by $\hbar\left|A_{0} A_{1}\right| / T$, which may attain relatively high values. For instance, at room temperature and for an electronic energy of a few meV we get $\hbar\left|A_{0} A_{1}\right| / T$ of the order of 10^{-2}.

However, it is likely that the exponent in equation (20) is sufficiently small to warrant the approximations

$$
\begin{align*}
& N_{s}=N_{s}^{0}+\frac{1}{2}\left(N_{s}^{0}-N_{t}^{0}\right) \cdot \frac{\sqrt{2} \hbar}{T}\left|A_{0} A_{1}\right| \sin \alpha_{1} \sin 2 \theta \cos \frac{2 \mu H}{\hbar} t, \tag{21}\\
& N_{t}=N_{t}^{0}-\frac{1}{2}\left(N_{s}^{0}-N_{t}^{0}\right) \cdot \frac{\sqrt{2} \hbar}{T}\left|A_{0} A_{1}\right| \sin \alpha_{1} \sin 2 \theta \cos \frac{2 \mu H}{\hbar} t .
\end{align*}
$$

The populations of the two states oscillate in antiphase; these oscillations may generate local polarization currents. The oscillation amplitude depends on the direction of the magnetic field (angle θ); its maximum value is attained for $\theta= \pm \pi / 4$. For a mean magnetic field $0.5 G s$ of the Earth the oscillation frequency is approximately 10 MHz .

An excited state may be generated by photoexcitation, followed by a singlet state, which, in turn, decays to a triplet state. The transition rate is then given by equation (17); its general form is

$$
\begin{equation*}
w_{s t}=a+p b \sin 2 \theta \cos (2 \mu H t / \hbar), \tag{22}
\end{equation*}
$$

where a, b are some coefficients and the phase α_{1} is put equal to zero. The kinetic equation is $d N_{s} / d t=-w_{s t} N_{s}$, with the solution

$$
\begin{equation*}
N_{s}=N_{s}^{0} e^{-a t} e^{-\frac{b \hbar}{T} \sin 2 \theta \sin (2 \mu H t / \hbar)} \simeq N_{s}^{0} e^{-a t}\left(1-\frac{b \hbar}{T} \sin 2 \theta \sin (2 \mu H t / \hbar)\right) . \tag{23}
\end{equation*}
$$

The singlet state may generate a chemical reaction, with some reaction constant, such that the total reaction yield includes a term

$$
\begin{equation*}
-\frac{b \hbar}{T} \sin 2 \theta \int_{0}^{\infty} e^{-a t} \sin (2 \mu H t / \hbar)=-\frac{b \hbar}{T} \sin 2 \theta \frac{2 \mu H / \hbar}{a^{2}+(2 \mu H / \hbar)^{2}} . \tag{24}
\end{equation*}
$$

This term has a minimum value for $\mu H / \hbar \simeq a($ compare with Ref. 1).

References

[1] T. Ritz, S. Adem and K. Schulten, "A model for photoreceptor-based magnetoreception in birds", Biophys. J. 78 707-718 (2000).

