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Abstract

It is shown that the viscosity is quantized in h/m quanta, where h is Planck’s constant
and m denotes the particle mass.

The chaotical motion of classical statistical ensembles consists of fluctuating times τ during which
particles move over a fluctuating distance a, such that these movements are independent of time
and of each other; consequently, one may write down the conservation of particle density

n(x, t + τ)− n(x, t) =
1

2
[n(x + a, t)− n(x, t) +

(1)

+n(x− a, t)− n(x, t)] =
1

2
[n(x + a, t) + n(x− a, t)− 2n(x, t)]

for motion in both directions; whence

∂n/∂t = (a2/2τ)∂2n/∂x2 (2)

which is the diffusion equation with the diffusion coefficient D = a2/2τ on the average. Similarly,
particles moving with velocity v in time τ are given by nvτ and by∫ a

0
dξ[n(x + ξ/2)− n(x− ξ/2)] , (3)

whence the diffusion equation nv = D(∂n/∂x) (Fick’s law, or ∂n/∂t = D∂2n/∂x2 above) with
the diffusion coefficient D = a2/2τ and a2 the mean square displacement. Even more, half of
n(x − a/2) particles move through x over an average distance a in time τ (the other half move
through x− a), and, similarly, half of n(x + a/2) move through a in opposite direction; therefore
(1/2)[n(x + a/2)− n(x− a/2)] = (a/2)∂n/∂x particles (per unit volume) move over a distance a;
it follows that (a2/2τ)∂n/∂x particles move per unit time, which equal vn; one obtains again the
difussion equation with the diffusion coefficient D = a2/2τ .

Equation (1) is Einstein’s kinetic equation.[1] It describes the approach to equilibrium over long
times and large distances, by slow processes in comparison with the rapid, short fluctuations. This
is the relaxation motion, taking place by diffusive motion. The main content of Einstein’s kinetic
equation is the introduction of the number of transition processes per unit time, and associating
each transition process with destruction and creation of a particle, or quanta. Its generality resides
in its various forms. For instance, motion with velocity v along one direction is included in (1) by
writing

dn

dt
= ∂n/∂t + v∂n/∂x = δn/τ , (4)
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where
δn/τ = (a2/2τ)(∂2n/∂x2) . (5)

Boltzmann’s kinetic equation is also straightforwardly obtained by introducing the momenta dis-
tribution; indeed, in general one obtains

dn

dt
= ∂n/∂t + v∂n/∂r + F∂n/∂p = δn/τ =

(6)

= (a2/2τ)∆n + (δp2/2τ)∆pn ,

for transport velocity v and force F, where δp is the amount of variation of the momentum p
along one direction; the isotropy of the chaotical movements is not restrictive. The density n
is Boltzmann’s distribution function over positions and momenta, and δn/τ is the number of
collisions per unit time. The classical entropy

S = − 1

(2πh̄)s

∫
drdp · n ln(n/e) , (7)

where s denotes the number of degrees of freedom, increases in time for non-equilibrium, or is
maximal in equilibrium; indeed, leaving aside the transport contributions which vanish on surface,
one obtains

∂S/∂t ∼
∫

(∂n/∂t) ln n ∼

(8)

∼
∫

(1/n)[(a2/2τ)(∂n/∂r)2 + (δp2/2τ)(∂n/∂p)2] ≥ 0 .

A similar proof holds also for other classical motions.

It is worth noting that the above proof is based on fluctuations, which dissipate motion. Close
to local equilibrium the fluctuating distance is given by a2 = −(1/9v4/3)(∂2s/∂v2)−1, where v
denotes here the atomic volume (i.e. the reciprocal of particle concentration) and s is the entropy
per particle. Similarly, δp2 = m2v2 = mT , where m is the particle mass and v is the velocity
distributed by Boltzmann (or Maxwell’s) distribution. The fluctuating time τ is given by 1/τ =
δe/nh,where δe is the energy fluctuation per particle and nh denotes the uncertainty in the
mechanical action consisting of n Planck’s quanta h of action. The fluctuating energy is given by
δe = T

√
c, where c is the heat capacity per particle (at constant volume), so that one obtains for

the diffusion coefficient D = a2/2τ = −(1/18v4/3)(∂2s/∂v2)−1(T
√

c/nh). In the molecular limit
of the hydrodynamic description one may represent the diffusion coefficient by D = T/6πv1/3η,
according to equilibrium equation nF = T (∂n/∂x) and Stokes’ law F = 6πηrv for force F acting
upon spherical particles of radius r moving in a fluid with viscosity η. Indeed, the variation

−
∫

dx · nFδx− T
∫

dx · n(∂δx/∂x) = 0 (9)

of the free energy vanishes at equilibrium for a dispersion of particles with density n along the
x-axis, where δS = NδV/V = nδx is the entropy variation per unit area of the cross section; one
obtains the local equilibrium

−nF + T (∂n/∂x) = 0 , (10)

or
−nF + ∂p/∂x = 0 , (11)
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i.e. the volume force is compensated by the variation of the osmotic pressure. Making use
of the representation given above for the diffusion coefficient D one obtains the viscosity η =
−(3/π)v(∂2s/∂v2)c−1/2nh, and the viscosity per density ν = ηv/m = −(3/π)v2(∂2s/∂v2)c−1/2nh/m.
For a classical ideal gas (∂2s/∂v2) = −1/v2 and c = 3/2, so that ν = (1/π)

√
6(h/m)n, and h/m

may be taken as quanta of viscosity. It is worth noting that interaction is assumed here (even
for the ideal gas), at least in the number n of quanta of action. Diffusion coefficients for other
classical variables are obtained similarly.

It is worth comparing the fluctuating time with the collision time in a classical gas. The number
of particles with velocity v and moving along the z-direction per unit time across the unit area of
the cross section is

dν =
N

V
(m/2πT )3/2e−mv2/2T vzdv ; (12)

the reduced mass m → m/2 must be introduced for the same motion with respect to one particle,
and, with σ denoting the cross-section of a collision process, one obtains the number of collisions
per unit time

ν =
πN

2V
(m/πT )3/2

∫
e−mv2/4T σv3dv (13)

for one particle, or ν = (4σ/v3)
√

T/πm. Therefore, the collision time is τcoll = 1/ν ∼ (d2/σ)d
√

m/T ,

where the mean inter-particle separation d = v1/3 has been introduced. The mean free path is
given by l = vτcoll ∼ (d2/σ)d. The gas is classical providing nλ3 � 1, where λ ∼ h/

√
mT is the

thermal wavelength, or d
√

mT � h, i.e. the classical action be much larger than quanta of action.
It follows that τcoll ∼ (d2/σ)(1/T )d

√
mT ∼ (d2/σ)τ(d

√
mT/nh), where τ is the fluctuating time.

The classical action d
√

mT is however much larger than the fluctuating action nh, so that τcoll � τ
( d2/σ � 1 also), i.e. the colision time is much longer that the fluctuating time, as expected.
This is to be completed with τ � h/T , i.e. the statistical fluctuating time is much longer than
the quantal fluctuating time. Similarly, the quantal elementary excitations have a much longer
lifetime than τ , and τcoll above may be viewed as the lifetime of a classical particle.

The evolution of the quantal distribution of probability ρn (diagonal elements of the density
matrix) is given by the master equation

∂ρn/∂t =
∑
m

(Tnmρm − Tmnρn) , (14)

where Tnm is the transition probability per unit time from state n to state m; Einstein’s kinetic
equation is easily recognizable here. Close to equilibrium Tnm are given by the second-order
perturbation theory as

Tnm =
2π

h̄
|Vnm|2 δ(En − Em − h̄ω) , (15)

where Vnm are the matrix elements of the perturbation V , En,m are the corresponding energies,
and h̄ω is the transferred elementary quanta. The transition probability Tnm is symmetric and
positive. The entropy S = −∑

ρn ln ρn evolves in time according to

∂S/∂t = (1/2)
∑

Tnm(ρm − ρn)(ln ρm − ln ρn) ≥ 0 , (16)

i.e. it increases with time. In the quasi-classical description the states m in (14) are close to
n, and the transition probability may be written as Tnm ∼ |V |2 /h̄δE; the minimal uncertainty
reads |V | τ = h/2, where τ is the fluctuating time, so that the transition probability becomes
Tnm = π/2ncτ , where nc from δEτ = nch is the range of m-states in the neighbourhood of n;
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in addition, the distribution of probability can be expanded as ρm = ρn + (m − n)(∂ρn/∂n) +
(1/2)(m− n)2(∂2ρn/∂n2) + ..., so that (14) becomes

∂ρ/∂t =
π

2ncτ

∫
dn · (1/2)n2(∂2ρ/∂n2) ' (n2

c/2τ)(∂2ρ/∂n2) . (17)

For states n corresponding to position for instance, one recovers the classical equation of diffusion
∂n/∂t = (a2/2τ)(∂2n/∂x2). Indeed, the distribution ρ is proportional to the particle density in
the classical limit (the matrix elements nm are the (n−m)-Fourier transforms, and the states are
described by position, momentum, and the rest of classical variables). It is worth noting here that
approaching equilibrium by fluctuations is meaningful for statistical ensembles only, as expected,
i.e. for ensembles with a large number of degrees of freedom (including wavevectors, as for fields),
where the quasiclassical description works.

It is also worth noting that the usual kinetics, i.e. transport, either classical or quantal, proceeds
over long times and large distances, being limited, first, by carriers’ lifetime (and the corresponding
mean free path), and, secondly, by fluctuations, both statistical and quantal, in principle. In such a
context, it is described by the continuity equation, which is the starting point of Einstein’s kinetic
equation too, where, however, a represents the mean free path and τ represents the lifetime, or
collision time.

The chaotical character of the statistical motion implies the ”detailed balancing principle”, by
which the number of direct transitions (”Wiedereinwands”) equals the number of reverse transi-
tions (”Umkehreinwands”), Boltzmann’s ”H-theorem” of increase of the entropy (”H-function”),
as well as the object of the ”ergodic (or quasi-ergodic) theorem”, by which the relevant states
have a non-vanishing probabilistic measure; and contains the irreversibility in addition and su-
perimposed over the reversible mechanical motion (”Loschmidt’s objection”); their compatibility
being ensured through interaction, and external, like initial and boundary, conditions.
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