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Let ∫
dk · ei(kr−ωt) (1)

be a wave packet of width |∆r|, centered on some wavevector k, over a |∆k| ∼ 1/ |∆r|range; one
may view it as a rather narrow packet, with a small |∆r| and a large |∆k|; the amplitudes of the
waves are not relevant for what follows; it is localized on r = 0, as a result of the wave interference;
if the packet is centered on k0 = 0, it may look approximately as a δ-function.

All this is valid at t = 0, or for a constant frequency ω. If the frequency depends on the wavevectors,
i.e. for a function ω = ω(k), then the packet decays, in general, because the interference affects
the origin too, and the waves propagate with distinct velocities; we say that the waves are then
dispersed. There is one exception, for ω = ck, where the packet moves as a whole with velocity
c. We say that all the waves propagate in-phase then along c, with the phase velocity c = ω/k,
and the ”lateral” waves k⊥c do not contribute.

It follows that the main contribution to (1) comes from the linear part of the phase Φ = kr− ωt,
i.e. from

∂Φ/∂k = r− (∂ω/∂k)t = 0 ; (2)

this is the principle of the stationary phase, and the basic equation of wave packets propagation.
It tells that every k-wave in the packet propagates with a velocity

vg = ∂ω/∂k (3)

called group velocity, along the gradient of ω, i.e. perpendicular to the curves ω(k) = const.
The natural trajectories of the wave propagation in a packet are given by gradω = const, and
along these trajectories the k moves freely; inded, from vg = r/t derived from (2) one gets
∂k/∂t + vg∂k/∂r = 0 along the trajectory. In addition, if a gaussian superposition is allowed in
(1) for k-waves close to that k given by (2) one obtains, by power expansion,∫

dk · e−λk2+ik(x−vgxt) (4)

for the wave packet along x-direction, say, which yields exp[−(x− vgxt)
2/4λ], i.e. a peak localized

for a while over ∼ λ, moving with vgx; hence, the term group velocity for vg; all these motions are
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free, since the wave equations are linear, but higher-order terms in the expansion of ω destroy the
packet in time; they are diffusive contributions.

The actual trajectories may differ from the natural trajectories, so that (2) must be read on these
actual trajectories, and vg is the component of the group velocity along such actual trajectories.
The group velocities are not only different for different waves, giving waves dispersion, but they
also differ in general from the phase velocity vΦ = ω/k for the same wave, where k is the component
of k along the trajectory; the latter point leads to a delay, or advance, in propagating waves.

Indeed, let s be the length along the trajectory; then, the wave transits this length in a transit
time

τt = s/vg , (5)

or, in general,

τt =
∫

ds/vg . (6)

At the same time, along the same trajectory, the wave phase does itself propagate in a time

τΦ =
∫

ds/vΦ =
∫

ds/(ω/k) , (7)

the difference
τd = τt − τΦ =

∫
ds/vg −

∫
ds/(ω/k) (8)

being the delay time; it may take positive or negative values. One can see easily that ∂Φ/∂k =
(∂Φ/∂ω)vg, so that ∂Φ/∂k in (2) vanishes together with ∂Φ/∂ω, since ∂ω/∂k = ∂ω/∂k along the
trajectory. If we write up Φ = kr − ωτΦ, i.e. Φ = 0, then ∂Φ/∂ω =

∫
ds/vg − τΦ = τd; therefore

the delay time is also given by
τd = ∂Φ/∂ω for Φ = 0 , (9)

which is analogous to the transit time being given by ∂Φ/∂ω = 0. Therefore, the transit time is
given by the extrema of the phase along the trajectory, while the delay time is given by the slope
of the vanishing phase. It is worth noting that ω(k) along the trajectory is inversable, i.e. there
exists k(ω).

Let ω =
√

ω2
c + c2k2 be the usual frequency in a waveguide, for instance; the group velocity is

vg = c2k/ω, while the phase velocity is vΦ = ω/k; the transit time is τt = sω/c2k = sω/c
√

ω2 − ω2
c ,

and the phase time is τΦ = sk/ω = s
√

ω2 − ω2
c/cω; the delay time is τd = sω2

c/cω
√

ω2 − ω2
c .

In general, the frequency increases with increasing the wavevector, so that the high-frequency
waves in a packet are propagated faster in comparison with the long-wavelengths waves. One may
take for a ”tunneling” time the longest time of transit, which corresponds to the slowest wave;
usually, it is the lower bound of the wave packet, i.e.

τtunn =
∫

ds/vg for k = k0 − |∆k| /2 . (10)

However, the so-called problem of tunneling is usually put in other terms, requiring the time
needed for a particle, or a wave, to pass through a potential barrier. There is a close analogy
between quantal tunneling of a particle through a potential barrier and the waves propagating in
the evanescent region of a waveguide. Indeed, in the latter case the waveguide may have a narrow
region which pushes the frequency below the cutoff; a similar push down is done by changing
the dielectric constant, and the wave enters thereby an evanescent region; in general, for a still
propagating wave, the wavevectors change in such situations, as the frequency rests constant; the
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passing through an evanescent region of a wave is similar with a potential barrier for a quantal
particle.[1] In any case, however, the ”tunneling time problem” is not a problem, because the
continuity of the waves ensures both their non-locality as well as their sudden tunneling through
any potential barrier, i.e. the waves pass through a potential barrier in no time. Indeed, it is easy
to see a train of waves coming, say, from the left and reaching the barrier wall at some moment of
time; then, as the wave increases abruptly at the wall, there will appear a similar increase inside the
barrier, and at the other barrier wall, so that both the reflected and the transmitted waves appear
simultaneously with the incoming wave reaching the barrier, and all this due to the continuity of
the waves. An explicit investigation of this ”phenomenon” has been suggested by Condon,[2] and
done by MacColl[3] with gaussian wave packets; gaussian wave packets have much been used in the
early days of quantal mechanics, in order to visualise the distinction betwen the quantal motion
and the classical motion.[4] In spite of all this, many authors[5] still talk nowadays about the
”delay”, ”transit”, ”dwelling”, ”flight”, ”tunneling” or all kind of whatever times in passing particles
or waves through a potential barrier; some of them associate the phase shifts at the barrier walls
with such times, which, of course, contradicts (9), to say the least.
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