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tomic clusters are the smallest bits of solids, the tiniest parts of our atomic world. I prefer to call
them the nuclei of the condensed matter. Here are a few examples of atomic clusters.One can see a
13-atoms cluster with an icosahedral symmetry, which is characteristic of such atomic structures.
It consists of two rotated pentagons, one atom at the bottom, one on the top and another in the
centre. On increasing the size of the clusters one gets more and more complex aggregates, like the
45-atoms cluster which is highly symmetric, or the 80-atoms cluster with an intricate symmetry.
These are homo-atomic clusters, but here is a hetero-atomic cluster consisting of a 13-Fe core
covered with 6 C2H2 radicals, synthesized recently by dr. Huisken in Gottingen; we helped in
assessing its wonderful, highly-symmetric structure. One can also see an unstable hexagonal two-
dimensional atomic sheet, as well as a metallic nanowire, made out of intertwined icosahedra.
This nanowire is unstable, but its diameter fits perfectly the inner diameter of a carbon nanotube,
which is stable; so, we may think of introducing it into a carbon nanotube, leaving outside just one
metallic atom protruding from the end icosahedron, making thus a perfect, ideal tip for electron
microscopy. Here are two atomic fragments, in a metastable state. attracting each other with
an extremely weak force; after 4 days of running our computer we found the two fragments got
together in one, stable aggregate. Finally, we have here a large atomic structure of 855 atoms,
obtained by relaxing a bcc-structure; its surface is quite disordered and goes pretty farther in
depth, but the core still preserves the bcc structue over cca 4− 5 unit cells; we hope this way to
understand the way the translational symmetry grows up.

We posed to ourselves the following problem. Suppose we take a number n1 of atoms of one kind, n2

atoms of another, n3 of another, and so on, in a finite sequence; do these atoms bind together, and
how does the aggregate looks like, and what are its physical and chemical properties? We found the
answer by means of the so-called quasi-classical theory of atomic binding, and we are able to know
everything about such clusters: their cohesion, or binding, energy, their geometric forms, their
ground-states and excited states, the inter-atomic distances, vibration spectra, the one-electron
energy levels, ionization potentials, chemical affinities, plasmons, electron-phonon interaction,
electric polarizabilities, diamgnetic susceptibilities, response to external perturbations, magnetic
momenta, etc. For the time being our calculations are restricted to homo-atomic clusters made out
of metallic ions with s-, d- and f-valence shells, whose ionic cores can be approximated by point-
like charges; and our scheme of computation involves a two-, three-steps of iterations, the first
one being the main quasi-classical contribution, the latter involving the quantal corrections, which
amount to cca 15 − 17% of the main contribution; and we are at the quasi-classical contribution
at this moment, the quantal corrections being under way. The way we perform the computations
is based on the fact that we know, from first principle, the effective inter-atomic potentials, which
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Figure 1: A wind shop of atomic clusters
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of course is attractive at long distances and repulsive at short distances. One can see it depicted
here, in the wind show of clusters. For point-like ionic charges it looks like a screened Coulomb
potential multiplied by a polynomial of the first rank, the only input parameter it contains being
the effective charge z∗i of the i-th ion. Actually, we can derive, in some cases, this parameter from
the atomic screening theory, as depending on the atomic number Zi and the nominal valence zi

(for instance z∗i = 0.57 for Fe). In fact, our more general theory of chemical bond allows also the
derivation of the nominal valence, while the charge density of the ionic cores look more complicate,
like

ρ(r) =
∑

αia |χia(r −Ri)|2 ,

where χ is the a-th valence atomic orbital of the i-th ion, Ri is the psoition of this ion, and
z∗i =

∑
αia ; or, even more, it is given by a pair-wise

ρ(r) =
∑

αia;jbχ
∗
ia(r −Ri)χjb(r −Rj)

distribution of charges. The coefficients αia;jb are determined both by linear combination of atomic
orbitals and by variational minimizing of the whole energy functional with respect to the (frac-
tional) occupancy of the chemical bond orbitals. However, here we restrict ourselves to point-like
ionic cores with the charge density

ρ(r) =
∑

z∗i δ(r −Ri) .

We start with a random space distribution of ionic cores, and, knowing the effective inter-atomic
forces, we let these ions to move step by step toward their equilibrium positions; we repeat this
computer experiment many times, and thus we are able to get both the ground-state and the shape
isomers states. these isomers differ slightly in energy with respect to the ground state, for larger
sizes they are very numerous, for smaller sizes there are ”white islands”of isomers corresponding to
magic clusters. The isomers have the surface atoms in a rather disordered state, their statistical
ensemble being much alike to a liquid; while the cluster cores are solid, so that we are in the
presence of a new state of matter, where the cores are solid and the surface is liquid, whose
properties we do not know yet. In the wind shop we can see the isomer table for Fe-clusters, as
well as some magic numbers in the sequence from vanishing size to 80-atoms clusters, together
with the corresponding mass spectrum of the ground states, where one can see sharp peaks at 13
atoms and 45 atoms. Here, a nice coincidence occurrs, consisting in that one of the most stable
cluster is made of 13 atoms, while the magic clusters are also in number of 13, up to very large
cluster size, where they approach the bulk behaviour. The geometric shapes obtained for various
clusters are additionally tested for stability by computing the frequency spectra, and here one can
see such vibration spectra for magic clusters of Fe, where the multiplicity of the vibrational modes
are plotted vs frequency, and one can see the vibration frequencies getting denser toward long
wavelengths on increasing the cluster size, as expected. The numerical values of the ground-state
energies are also given here for various clusters of Fe, Ba and Na, and they agree well with other
calculations, where the latter are available, up to the 15 − 17% accuracy of the quasi-classical
description, as mentioned above.

Now, here are a few magnified pictures of the ground-state energiesthe corresponding mass spec-
trum of the geometric ground-statesmagic homo-atomic metalic clusters with wonderful symme-
triesvibration spectra for magic Fe-clustersisomer table for Fe-clustersa hexagonal atomic sheet
(unstable)an unstable atomic chaintwo atomic fragments in quasi-equilibriuma 855-atoms piece of
solid with a bcc-corethe Fe13(C2H2)6 clustera ”popcorn” metallic wire (unstable)as well as many
other curios atomic aggregates.

Now, in closing this talk I give a few technical details of the theory we use to get all this aggregates.
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Figure 2: Ground-state energy of Ba (z = 2, z∗ = 0.34), Na (z = 1, z∗ = 0.44) and Fe (z = 2 , z∗ =
0.57) clusters.
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Figure 3: Geometric magic numbers for homo-atomic metallic clusters
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Figure 4: Magic homo-atomic metallic clusters
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Figure 5: Vibration spectra for magic Fe-clusters
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Figure 6: Isomer table for Fe-clusters
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Figure 7: An unstable hexagonal atomic sheet

Figure 8: An unstable atomic chain
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Figure 9: Two atomic fragments in quasi-equilibrium
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Figure 10: A bcc-core solid of 855-atoms
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Figure 11: Fe13(C2H2)6 cluster
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Figure 12: A ”popcorn” metallic wire (unstable), single-wall nanotube, made of intertwined icosa-
hedra
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***************************************************************************************************************

First, we need both Z (atomic number) and N (number of atoms) very lage in order to apply the
quasi-classical decsription. Then, we employ a superposition of atomic-like orbitals, localized, and
a chemical-bond orbitals (Mullikan), extended; then, we use the kinetic hamiltonian of the valence
electrons, their Coulomb attraction to the ionic cores, their Coulomb repulsion, and the Coulomb
repulsion between the ionic cores.

Z � 1 , N � 1 , one-electron states, valence atomic shells, atomic-like vs extended (chemical
bond) orbitals

ψ = αϕ+ βΦ , α2 + β2 = 1

Ionic density
ρ =

∑
(1− α2)ϕ2 =

∑
β2ϕ2

Effective valence
z∗ =

∑ ∫
(1− α2)ϕ2 ⇒ β2z

Point-like approximation
ρ = z∗i δ(r−Ri)

H =
∑

α p2
α/2m− e2

∑
iα

z∗i
|Ri−rα|+

+1
2
e2

∑
αβ

1

|rα−rβ| + 1
2
e2

∑
ij

z∗i z∗j
|Ri−Rj |

n(r) =
∑

Φ∗(r)Φ(r) , n(r, r′) =
∑

Φ∗(r)Φ(r′)

*********************************************************************************************************

Next, we write down the Hartree-Fock energy functional, the Hartree-Fock equations, and solve
them by using the quasi-classical description. To this end we note the ”rigidity” character of
the exchange energy, the free variational parameter which is the local Fermi vawevector (electron
density), the variational equation of equilibrium which is the Thomas-Fermi equation; together
with the Poisson equation satisfied by the Hartree self-consistent potential we get the usual 3/2-
Thomas-Fermi model, which, however, is valid in the limit of infinite charges (and gives no bind-
ing). Applying again the quasi-classical description, we linearize this model, leading to a linear
Poisson equation, whose solution is a superposition of screened Coulomb potentials.

EHF =
∫
dr ·∑ Φ∗(p2/2m)Φ−

−e2 ∑
i

∫
dr · z∗i

|Ri−r|n(r) + 1
2
e2

∫
drdr′ · 1

|r−r′|n(r)n(r′)−

−1
2
e2

∫
drdr′ · 1

|r−r′|n(r, r′)n(r′, r) + 1
2
e2

∑
ij

z∗i z∗j
|Ri−Rj |

Hartree-Fock equation
(p2/2m)Φ− eϕ · Φ + εex(Φ) = εΦ

Hartree field
ϕ = e

∑
i

z∗i / |r−Ri| − e
∫
dr · n(r′)/ |r− r′|
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Poisson equation
∆ϕ = −4πe

∑
i

z∗i δ(r−Ri) + 4πen

Exchange energy

εex(Φ) = −e2
∫
dr′ · n(r′, r)/ |r− r′| · Φ(r′) =

= −e2
∫
dr′ · 1/ |r− r′| ·

∑
Φ∗(r′)Φ(r) · Φ(r′)

**********************************************************************************************************

Quasi-Classical Description

-εex(Φ) admits plane waves as eigenfunctions

-”rigidity” of the εex(Φ) under local variations of electron density (non-locality); a new parameter
kF (r)

-use this parameter to screen off the Coulomb interaction, and to get Hartree equation

(p2/2m)Φ− eϕ · Φ = εΦ

admit quasi-plane waves solutions; therefore, the Hartree-Fock equation admits (quasi-) plane
waves as solutions, to the first approximation

-variation with respect to kF (r)
h̄2k2

F/2m− eϕ = 0

-n = k3
F/3π

2 , n ∼ ϕ3/2, classical 3/2-Thomas-Fermi model in Poisson equation; valid for z∗i →∞,
”no-binding” theorem (”quasi-classical approximation”)

****************************************************************************************************************

Linearized Thomas-Fermi theory

k2
F/2 → kFkF/2 = ϕ

n = k
2

FkF/3π
2 = (2/3π2)kFϕ = (q2/4π)ϕ

∆ϕ = −4π
∑

i

z∗i δ(r−Ri) + q2ϕ

→binding; kF (q) , variational parameter

ϕ =
∑

i

z∗i
|r−Ri|

e−q|r−Ri|

Epot =
∫
dr · (−ϕn+ 1

2
ϕen) + Eion−ion =

= −1
2

∫
dr · (ϕ+ ϕi)n+ Eion−ion =

= − q2

8π

∫
dr · (ϕ+ ϕi)ϕ+ Eion−ion
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ϕi =
∑

i

z∗i
|r−Ri|

, Eion−ion =
1

2

∑
ij

z∗i z
∗
j

|Ri −Rj|

Epot = −q
4
{3

∑
i

z∗2i +
∑
i6=j

z∗i z
∗
j (1−

2

qrij

)e−qrij}

Φij = −1

2
qz∗i z

∗
j (1−

2

qrij

)e−qrij , rij = |Ri −Rj|

**************************************************************************************************************

We are able this way to compute the potential energy, which points out effective inter-atomic
potentials, solve for the equilibrium geometric shapes, and, thereafter, add the kinetic energy
(linearized) in order to get the full quasiclassical energy; the latter is minimized with respect to
the screening wavevector q, thus solving completely the first-stage of the problem.

Epot = −Bq , rij ∼ a ∼ 2.73/q

T = V
10π2k

5
F →

k
4
F

10π2

∫
dr · kF = 27π

40·64q
6

∫
dr · ϕ

= 27π2

640
z0q

4 = Aq4/4 , z0 =
∑

i z
∗
i

Eq = T + Epot = Aq4/4−Bq

→ q = (B/A)1/3 = 0.77z∗1/3 , a ∼ 3.5/z∗1/3

Eq = −0.43Nz∗7/3

Eb = Eq + Eex

Eex = −V k4
F

4π3 → − k
3
F

4π3

∫
dr · kF =

− 9
128
q4

∫
dr · ϕ = − 9

32
q2Nz∗ =

= −0.17Nz∗5/3

****************************************************************************************************



J. Theor. Phys. 17

Here, we point out that, within this approximation, the solid looks like a Sommerfeld metal, while
the potential energy above points out to a well-known Wigner metal, too.

Plane-waves, Average field

ϕ0 = ϕ =
∑

i

z∗i
|r−Ri|

e−q|r−Ri| =

= 4πz∗/a3q2 = 0.48z∗4/3

Quantal corrections
(−h̄2/2m)∆Φ− eϕ · Φ = εΦ

perturbation (off-diagonal exchange):
εex(Φ)

kF =
3π

8
q2
av =

1

z0

∫
dr · kFn =

16

3πz0

∫
dr · r2ϕ2

qav = 0.9z∗1/3 ⇔ qvar = 0.77z∗1/3 , 17%

Lifetime effects; δε ∼ δϕ , (δϕ)2 ⇒ 0.17 · 17% = 3%

********************************************************************************************************

Now, we may estimate the quantal corrections, indicate the way of computing them, and point
out the principle of ”inaccuracy”, which tells that the maximum accuracy which can be reached
with one-electron wavefunctions is 0.17 · 17% = 3%.

Atom
ϕ = Ze−qr/r

Quasi-classical energy −11.78Z7/3eV (exchange −4.6Z5/3eV), qvar = 0.77Z1/3, qav = 0.9Z1/3;
q = 0.84Z1/3; Quantal corrections (Hartree) −4.56Z7/3eV ⇒ E = −16Z7/3eV

Nout =
∫

r>R
dr · n = Z(1 + qR)e−qR

z∗ = z(1 + qR)e−qR = z(1 + 0.84Z1/3)e−0.84Z1/3

(R = 1); ⇒ z∗Fe = 0.57 (Z = 26, z = 2)

*******************************************************************************************************

-Magic forms, magic numbers (ground state)

N = 6, 11, 13, 15, 19, 23, 26, 29, 34, 45, 53, 57, 61, ...

-Isomers, statistical magic numbers; quadrupole potential, electronic magic numbers

-Ionization potential (I = (1− β2)Ia + β2Ib), electron affinity

-plasma frequency (fractional occupancy)

-quasi-classical quasiparticles, Fermi liquid, f = (4πNz∗/q2)((2πh̄)3/V )δ(p − p′); m∗ = m(1 +
0.39z∗1/3); no 0-sound, no renormalized spin paramagnetism
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-phonons, electron-phonon interaction, sound velocity vs = [(0.43z∗7/3 + 0.68z∗5/3)/A]1/2m/s

-response, polarizability, diamagnetic susceptibility

-magnetic moment, Hund’s rule; e.g., 6d, Fe⇒ 4µB; 0.57, 0.43⇒ 4.57µB

****************************************************************************************************************

-quantal corrections

-spatial structure of the ionic cores

-hetero-atomic clusters

-solids

****************************************************************************************************************
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