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Abstract

The basic elements of the theory of the superfluidity are reviewed. The quantal hydrody-
namics is discussed, and the quantal nature of the vortices is emphasized. It is stressed the
essential role played by the cristalinely-ordered superfluid ground state, and the vortex and
roton spectrum of a superfluid is derived. It is shown that quanta of vorticity it is also the
quanta of viscosity, and the turbulence originates in quantal vortices. The vortex and roton
spectrum is also derived by using a typical hard-core atomic potential, or a screened Coulomb
potential with an oscillating tail. The condensate wavefunction is introduced allowing for the
sound waves, vortices and rotons, and the quanta of these elementary excitations are thereby
derived once more.

The 2001 Nobel Prize in Physics has been awarded for the ”Bose-Einstein condensation in dilute
gases of alkali atoms”.[1]

In these experiments atomic beams of 87Rb or 23Na, which have an integral spin, and therefore
we call them bosons, are slowed down by photons in laser beams, taking advantage of the frontal
Doppler shift (for such techniques another Nobel Prize in Physics has been awarded in 1997).
Optical and magnetic fields provide then magneto-optical traps for such cold atoms, while another
laser beam or a rotating magnetic field polarize the atomic spins in the traps. Dilute alkali gases
of several thousands of atoms in a space region of cca 1µm a scale length are thus obtained at a
very low temperature of tens of nK = 10−9K. In fact, such a temperature is sufficiently low for
the average inter-atomic separation (several hundred of Å) to make these atomic ensembles very
dilute quantal liquids of bosons undergoing Bose-Einstein condensation and superfluidity. Indeed,
light scattering pictures the small, condensed liquid drop, spliting such a drop and thereafter
bringing together the two fragments gives interference, as for a coherent atomic state, and many
vortices are also observed in these superfluid droplets. All these are signatures of a Bose-Einstein
condensation and superfluidity.

All this may be interesting laboratory techniques, experimental methods and procedures. However,
they are not relevant for science. Bose-Einstein condensation and supefluidity are well-established
and well-known, and He4 superfluidity is known since 1911.[2]

If we are to consider an elementary particle and still care about its internal structure, then its
internal coordinates vanish, its internal momenta go to infinite, so that, beside the internal energy,
we may have, at most, a finite internal angular momentum, as an internal prime integral. This is
h̄s, where h̄ is Planck’s constant and s is called the spin of the particle. A spinning electron was
suggested originally in connection with the Zeeman effect,[3] especially that a magnetic momentum
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is often associated with spinning particles (through the gyromagnetic factor), and assigned a
quantal number of one half.[4] Indeed, as an angular momentum, its projection along one axis has
2s + 1 states, and 2s must be an integer; therefore, spin s may be an integer or half an integer.
2s+ 1 states are described by a symmetric tensor of rank 2s whose labels take two values; this is
called a spinor; it rotates under a rotation about one axis. It is worth noting that spin vanishes in
the quasiclassical description. Particles with an integral spin are described by Klein-Gordon-type
equations; the energy in this case is a quadratic form in particle fields plus a quadratic form in hole
fields; it is positive defined providing the fields commute; if the fields commute the wavefunctions of
identical particles are symmetric under particle permutations; if the wavefunctions are symmetric
the occupation number of one-particle states may take any positive, integral value; consequently,
particles of integral spins obey the Bose-Einstein statistics and are called bosons. Particles with
a half-integral spin are described by Dirac-type equations; the energy in this case is a quadratic
form in particle fields minus a quadratic form in hole fields; it is positive defined providing the
fields anticommute; the wavefunctions of identical particles are then antisymmetric under particle
permutations, and the occupation number of one-particle states may only take two values, zero
and one. Consequently, such particles obey the Fermi statistics and are called fermions. This is
the spin-statistics theorem.[5]

The constituents of a composite particle have both a total orbital momentum L and a total spin
S. The particle is invariant under rotations, so that its total angular momentum J = L + S is
conserved; consequently, it is described by a symmetric spinor of rank 2J , which have 2J +1 com-
ponents; therefore, J is its spin. The hamiltonian of the particle may contain additional terms like
∼ J2, and the ground state corresponds to the lowest value |L− S| of J , or to the highest |L+ S|,
depending on the sign of such terms (as the energy has a lower bound, the internal structure of
composite particles being non-relativist, with relativist corrections; such an additional term comes
usually from the spin-orbit interaction). The constituents of composite particles are frequently
identical particles, like electrons in atoms, or nucleons in atomic nuclei. The energy levels of
identical particles are labelled by the irreducible representations of the permutations group. For
identical particles with spin one half these representations correspond to a well-determined total
spin S, and the dependence of the energy levels of two identical fermions of spin one half on
their spin is the exchange interaction. The interacting particles building up a composite particle
move in a self-consistent field, so that one-particle states are appropriate. The one-particle levels
group themselves in energy shells, and the total spin and total orbital momentum in each shell
is such as to minimize the energy, for the ground state of the composite particles. Consequently,
for electrons, a shell has the highest possible spin and the highest possible orbital momentum
(which is known as Hund’s rule[6]), the corresponding symmetry of the wavefunction under per-
mutations ensuring thereby as lowest an energy as possible, for the ground state. Closed shells
have vanishing L and S, while open shells have J = |L− S| if they are less than half filled, and
J = L + S if they are more than half filled, according to the spin-orbit interaction. This way,
having determined the energy shells, one may know the spin, the orbital momentum and the total
angular momentum. For instance, 87

37Rb has a ...3d104s24p65s1 succession of shells, labelled by
the principal quantal number n, orbital quantal number l (0, 1, 2... correspond to s, p, d...), the
superscript indicating the total number of electrons in the shell; consequently, the total spin of the
electrons is S = 1/2, the total orbital momentum is L = 0 (S) and the total angular momentum
is J = |L− S| = 1/2, as given by the open upper shell (the ground state is therefore labelled by
the electronic term 2S1/2, i.e. 2S+1(L)J). Similarly, 23

11Na has a 2S1/2 ground state, with a ...2p63s1

upper shell. For nucleons the difference is made by the fact that the nuclear forces depend on
spin, so that the self-consistent field gives rise to a stronger ”spin-orbit” interaction, which, ac-
cordingly, classifies the energy bands by the angular momentum j of the nucleon. The nucleon
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states are labelled by nlj, where the principal quantal number n = 1, 2, ... and the orbital quantal
number l = j ± 1/2 is well-defined, as the nucleon states have a well-defined parity. The nucleon
shells are [7] (1s1/2), (1p3/2, 1p1/2), (1d5/2, 1d3/2, 2s1/2, 1f7/2), (2p3/2, 1f5/2, 2p1/2, 1g9/2), etc. The
band filling is dictated by the nuclear pairing which couples nucleon pairs at a vanishing angular
momentum, so that the even-even nuclei (i.e. an even number Z of protons and an even number
A−Z of neutrons) have a vanishing total angular momentum J = 0, odd-even nuclei have a total
angular momentum J = j of the upper unpaired nucleon, and the odd-odd nuclei have a total
angular momentum J = 2j; indeed, in the later case the isotopic spin (T = 0) corresponds to an
antisymmetric wavefunction, and the rest of the wavefunction (spin and coordinate parts) must
be symmetric. For instance, the 37 protons of 87

37Rb are arranged in a closed shell of 28 and an
open shell ...2p3/2 1f5/2 2p1/2 (1g9/2) with one unpaired proton on 1f5/2; consequently, the nuclear
spin of 87

37Rb is I = 5/2. Similarly, 23
11Na should have a nuclear spin I = 5/2; however, it is an

exception and has I = 3/2 a nuclear spin. The spin of the atom is therefore F = J + I, which
is conserved, and the hamiltonian contains the electron-nucleus hyperfine interaction ∼ F2; this
interaction always tends to anti-allign the spins, by the effect of the magnetic field, so that the
atomic spin in the ground-state is F = |J + I|; for 87

37Rb and 23
11Na the atomic spins are therefore

F = 2 and F = 1, respectively.

The statistical distibution for identical particles with integral spin has been introduced by Bose.[8]
Einstein noticed that at low temperatures such particles occupy the lowest energy level, such as
to accommodate the macroscopic number of particles.[9] This is the Bose-Einstein condensation.
Its connection with the superfluidity of He4 has been suggested by London.[10] However, the
Bose-Einstein condensation is a third-order phase transition, while the supefluidity is a second-
order one. The superfluid transition is described by the Ginsburg-Landau theory,[11] while the
superfluidity by Landau.[12] It is the excitation spectrum of the condensate which is relevant for
superfluid properties; it consists of sound-like phonons for long wavelengths and vortices and rotons
for shorter wavelengths.[12] The sound-like phonons were derived as long-wavelengths elementary
excitations of an interacting Bose-Einstein condensate,[13] while vortices and rotons are suggested,
in a certain sense, by Gross-Pitaevskii equation.[14] The interaction of the Bose quantal liquid is
repulsive, and the Bose-Einstein condensation is preserved for an interacting liquid of bosons.[15]

The attractive part of the interaction of some kinds of atoms may not be strong enough to solidify
them under normal pressure even at vanishing temperatures, especially for lighter atoms; conse-
quently they form quantal liquids; the typical examples are He4 below ∼ 2.17K and He3 below
∼ 3.2K; the former is a Bose quantal liquid, while the latter is a Fermi quantal liquid. While the
atoms in a quantal liquid move quasi-freely over most part of their paths, they may experience
strong collisions with each other, due to the repulsive part of the interaction. Apart from such
collisions the atoms are otherwise weakly interacting, which explains why the Bose-Einstein con-
densation is possible in an interacting quantal liquid of bosons, and why the interaction effects are
perturbation-like in a quantal liquid of fermions. However, the effects of the interaction are quite
distinct for bosons and for fermions, as a consequence of their distinct statistics.

Let such a quantal liquid of bosons be in its ground state, at vanishing temperature, where
all the atoms are on the zero energy levels (actually, on the same one-particle state with zero
energy). Any interaction takes such a quantal liquid from its ground state to its excited states;
the later are characterized by an energy, and, sometimes, by a momentum; their quanta are called
elementary excitations.[12] Small, long-wavelengths, longitudinal disturbances of the liquid density
may propagate above the ground state, governed by the repulsive interaction; they are quanta of
sound, and are the basic excitations of the Bose-Einstein condensate; they have a momentum. For
a given momentum there are no other excitations below the sound quanta in the Bose-Einstein
condensate, and this is the basic point explaining the superfluidity. Indeed, a slightly excited
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atom would soon fall down in the condensate, as a consequence of the Bose-Einstein statistics, in
contrast to the Fermi statistics where the fermions may assume individually excited states (or in
contrast also with a classical liquid); in this latter case the excitations are quasiparticles, and they
may have vanishing energies. Therefore, an excited Bose-Einstein condensate may only take an
energy and a momentum corresponding to the dispersion relation of the sound quanta, i.e. internal
motion with velocities smaller than the sound velocity are allowed without viscosity within the
liquid; this is the superfluid phenomenon. Indeed, a mass M of a fluid moving with v velocity has
an energy Mv2/2, and a small change δv in the velocity means an energy change ε = Mvδv = vp,
where p is the momentum; to excite a sound quanta ε must be as large as the sound quanta of
energy up at least, where u is the sound velocity; i.e. vp > up; for v < u the motion proceeds
without loss, i.e. without viscosity, i.e. the liquid is superfluid. It is easy to see that heat also is
not propagated into a superfluid. However, for velocities v finitely smaller than sound velocity u
the superfluidity is nevertheless destroyed, which suggests another kind of elementary excitations,
lying close to a finite momentum and having a quadratic dispersion around an energy gap; such
excitations were called rotons and the energy gap assigned to localized vortices.[12]

Indeed, the average inter-atomic separation a in a Bose liquid plays a relevant role. Since the
bosons may assume identical states, the effect of their interaction is local, in contrast with fermions,
where the interaction acts globally, in accordance with their assuming individual states only. A
localized effect of the interaction may lead to localized excitations for bosons, over distances of
the order of a, obviously corresponding to a momentum of the order of 1/a, and having a finite
energy gap; the energy gap is of the order of h̄2/ma2, where m is the atomic mass (and h̄ denotes
Planck’s constant). Such excitations lie below the sound quanta in energy at that 1/a momentum,
for obvious reasons, too (as for a liquid); such excitations are called vortices, for reasons to be seen
shortly. Moreover, the excitations of such vortices, to say so, are called rotons and, obviously, they
are particle-like excitations, i.e. their spectrum is p2/2µ with respect to the vortices, where µ is
an effective mass. Everything happens as if an atom is caught in a cage made of the surrounding
atoms, where it moves around, together with its surounding. It is also worth noting that the
interaction is ”removed” in such a picture, as if its effects were solved out.

The local effects of the interaction being important for a Bose liquid, it is then appropriate to
view it as a quantal fluid, described by local quantities. Indeed, Landau [12] quantized the motion
of a fluid starting with a particle (mass) density ρ =

∑
mδ(r−R) and a (mass) flow of particles

j = (1/2)[
∑

pδ(r − R) + δ(r − R)p], where the particles are placed at R. Obviously, this is a
ψ(r) field theory, the particle density being ψ+(r)ψ(r) (mass density being ρ(r) = mψ+(r)ψ(r))
and the mass flow being j(r) = (1/2)[ψ+(r) · pψ(r) − pψ+(r) · ψ(r)]. A velocity field v(r) =
(1/2m)[ψ+(r) · pψ(r)− pψ+(r) · ψ(r)] is also introduced,[16] and commutation relations

vi(r)vk(r
′)− vk(r

′)vi(r) = −(ih̄/2m)δ(r− r′)(curlv)ik (1)

are found, where i, k denote the components of the velocities and (curlv)ik = ∂vk/∂xi − ∂vi/∂xk.
These are the basic equations which led Landau to substantiate the idea of vortices and rotons;
their main characteristics is their inhomogeneity in velocities, i.e. the lhs of (1) is of second-order
in velocities while the rhs of (1) is of first order in velocities; and, of course, the non-vanishing
commutator in (1).

Before analyzing equation (1) with respect to vortices and rotons it is worth making some remarks.
First, such a quantal hydrodynamics, i.e. a local field theory, is generally valid for any quantal
liquid ((1) including). However, it is superfluos to a great deal of extent for fermions, because the
excited states therein are delocalized, and the curl of a velocity near the (large) Fermi velocity is
vanishing, as the change in such a velocity proceeds by vanishing changes in momenta. This is
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why one prefers to work with global quantities in the second quantization for fermions, i.e. with
integrating densities of the type above over the whole volume of the liquid. The two formalisms,
by the way, i.e. the local quantal hydrodynamics on one side, and the global second-quantized
field theory on the other, already contain in themselves the solution of the interaction problem
for bosons and for fermions, respectively, which sounds remarkably. Secondly, it is worth noting
that the field ψ(r) is analyzed in plane waves, as usually, making the understanding of (1) much
more available. Further on, it is worth stressing that the velocity v(r) introduced above is a
field operator, i.e. an operator in the occupation number of plane waves. In particular, the
average velocity v = (−ih̄/2m)[ψ∗(∂ψ/∂r) − (∂ψ∗/∂r)ψ], where ψ ∼ eiΦ is a wavefunction is
v = h̄gradΦ/m, and its curl is always vanishing, of course (and curlv is off-diagonal). Also, the
velocity as defined above can be written as

v(r) = (h̄/2m)
∑

(2k + q)a+
k ak+qe

iqr , (2)

where a+
k , ak are creation and destruction operators, respectively, of plane waves; now, one can

see easily that a longitudinal wave has a vanishing curl of velocity, so that the sound waves are
not affected by (1), and the velocity of a quasiparticle excitation close to the Fermi surface has
a vanishing curl too. Moreover, the curl of velocities is the highest for both k and q close to
the highest relevant wavevectors, i.e. wavevectors of the order of 1/a; it follows that (1) involves
motion localized over the average inter-atomic separation a and interaction processes that exchange
∼ h̄/a momenta; and such a movement is relevant for bosons, and it may be called a vortex as
the curl of its velocity is non-vanishing. It is also worth noting that such atomic movements are
spatially disentangled from each other, as (1) is effective only at the same location. It follows also
that any motion in the superfluid state, i.e. a motion with a velocity v low enough as not to
excite vortices is potential, i.e. irrotational, i.e. curlv = 0. Indeed, if curlv is zero everywhere it
commutes with everything, with the hamiltonian too, and is conserved.

Indeed, the hamiltonian of an interacting ensemble of particles reads

H =
∑

p2/2m+
1

2

∑
v(R−R′) (3)

(spin neglected), or

H =
∑

(p2/2m)a+
pap + (1/2V )

∑
v(q)a+p1

a+p2
ap2−h̄qap1+h̄q , (4)

where v(q) =
∫
dr · v(r)eiqr and V is the volume of the ensemble; and one can easily recognize

the density n(r) in the interacting term in (3) and (4), and a displacement field u(r) produces
a change δn = −ndivu in density; for bosons one gets straightforwardly the frequency ω =
[nv(q = 0)/m]1/2q of longitudinal sound waves; similarly, one may obtain sound for fermions
too (where the contribution of kinetic energy must be included), but it is unstable against the
quasiparticle excitations.[17] Further on, curlv does not commute with the kinetic hamiltonian
(though it commutes with density; and with itself too!), so that it has no defined values for the
elementary excitations, except for those which are longitudinal (when it vanishes); therefore, a
vortex (with defined energy) has no well-defined curl, and, conversely, a well-defined curl has no
well-defined energy. Moreover, curlv 6= 0 requires a non-vanishing velocity in order to satisfy the
inhomogeneous (1), so that such a vortex must have a finite energy, i.e. a gap in the excitations
energy. (In addition, it is worth noting that the quantal hydrodynamics obeys the continuity
equation and Euler’s equation of motion for fluids). Obviously, a local non-vanishing velocity
may only arise from interaction processes exchanging momenta of the order of h̄/a. For such
interaction processes one obtains an average velocity v ∼ (h̄/m)(sin r/a)/r from (2), whose curl
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is curlv ∼ (h̄/ma)(cos r/a)/r (having no definite orientation v does not come from a grad). The
integral

∫
ds · curlv over any surface around the point is then the circulation

∮
dl ·v of the velocity

around that point, and equals ∼ h̄/m.[18] It is called vorticity, and its quanta is h/m (h̄ = h/2π;) it
is the same as quanta of viscosity,[19] for obvious reasons; indeed, the origin of viscosity is quantal
(it is worth noting in this connection that the quantal uncertainty in the fermion quasiparticle
energy originates in a vortex too), and the classical turbulence is made of quantal vortices. In
particular, one can notice that curlv ∼ p× v, which is a purely quantal quantity.

The ground-state of a liquid consisting of identical interacting bosons is a crystalinely-ordered
state, characterized by a set of three reciprocal vectors G, the atoms being placed at Ri. Atoms,
however, may oscillate within their atomic cages, with very low energies, and h̄g momenta, where
g is a multiple nG of G. The average of the structure factor

∑
eiqRi gives g-peaks decreasing like

1/q3, as for a genuine liquid with short-range order. Delocalized states, like an atom travelling
with momentum h̄k, are therefore identical with ”umklapp” scaterred states, in particular an atom
travelling with a momentum h̄(k + g); therefore, ak+g can be replaced by ak. Only G-scattering
processes may be kept in collisions, in view of the ”short-range” character of the interaction, so
that the velocity (2) becomes

v(r) = (h̄/mk)a+
k ak

∑
eiGr , (5)

for one particle, where the summation extends over G’s; correspondingly, its curl is

curlv = i(h̄/m)
∑

(k×G)a+
k ake

iGr , (6)

and one can see they are diagonal now in the particle occupancy; but, of course, they do not
commute anymore with the hamiltonian now, in particular with the G-interaction processes in
(4). For a vortex, the particle momentum is g in principle (actually of the order of G in fact), and
its energy (minimal) is of the order of ∆ = h̄2/ma2 (for He4 ∼ 9K from neutron scattering,[20] while
a ∼ 3.7Å). A particle may escape a vortex after at least one planar loop involving 4 G-collisions;
its energy is then h̄2(k2 + 4G2)/2m, and for k ∼ G, it involves an effective mass µ ∼ m/5 = 0.2m
(the experimental value from neutron scattering is 0.16m for He4). In addition, it is worth noting
the position of the vortex gap at G ∼ 1/a, actually at 2π/a = 1.7Å−1; the experimental location
is 1.9Å−1; and the roton energy p2/2µ which is quadratic in momenta. From (5) and (6) one can
see again that the vorticity is ∼ nh/m, i.e. is quantized in h/m-quanta, and curl is represented
as h̄/m(g ×G), where k ∼ g (∼ G).

The ground-state of (4) is a condensate with all p = 0; its elementary excitations consist of pairs
of interacting particles; following Ref.13 one gets straightforwardly

H = 1
2
Nnv(0) + 1

2
n2 ∑ v2(p)

p2/m
+

∑
(p2/2m)a+

pap+

+1
2
n

∑
v(p)[a+

pa
+
−p + a−pap + 2a+

pap]

(7)

for the hamiltonian of these excitations; it is worth noting that the excitations contributions are
consistently included in (7) up to the second order of the perturbation theory, and the ground-
state energy is accordingly renormalized by the second term in the rhs of (7). The diagonalization
of the hamiltonian above is straightforward, and the excitation spectrum is given by

ε(p) = [nv(p)p2/m+ (p2/2m)2]1/2 , (8)

while the ground-state energy reads

E0 =
1

2
Nmu2 +

1

2
n2

∑ v2(p)

p2/m
+

1

2

∑
{ε(p)− [p2/2m+ nv(p)]} , (9)
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where u =
√
nv(0)/m is the sound velocity (∼ 240m/s); carying out the integration in (9) one gets

E0 = (1/2)Nmu2[1 + α(mu)3/2π2h̄3n], where α is slightly smaller than the usual value α = 2.3
corresponding to a δ-type interaction (v(p) = v(0)). For typical hard-core atomic potentials
the experimental spectrum of excitations is obtained from (8); similarly, it is given by screened
Coulomb potentials with oscillatory tails. The excitations spectrum (8) can also be put in another
form; indeed, denoting ε0 = p2/2m one gets from (8) ε = ε0(1+nv(p)/ε0) for large p; on the other
hand the pair distribution function is given by S(q) = (1/N)

∑
eiq(Ri−Rj) =

∑′ eiqRi (where N
is the number of atoms and prime means summation over neighbours), and the potential can be
written as v =

∑
v(r−Ri) ∼ nv(q)S(q) for q ∼ 1/a; therefore, ε = ε0(1+ v/S(q)ε0); in addition,

the energy of the excitation can also be written approximately as Sε0 + v = ε0 for the movement
of an atom around its position Ri, hence ε = ε0/S(q) = h̄2q2/2mS(q), as suggested in Ref. 15.

The excitations of the superfluid form its normal component, while the remaining part is the
superfluid component; they have distinct densities, and a two-fluid picture holds for superfluidity,
as suggested earlier.[21] Sound, vortices and rotons do scatter on each other in the normal part
of the superfluid, and the corresponding cross-section can be estimated.[22] The superfluid flows
frictionlessly through capillaries and narrow slits, in a rotating vessel the superfluid does not rotate,
has no inertia momentum (it is incapable of rotational flow), exerts no pressure on an immersed
body (Euler’s paradox); since the normal part and the superfluid part are in equilibrium there
is no entropy transfer between them, and, of course, no friction and no viscosity in the relative
motion of the two fluids one against the other. The superfluid flows like an ”ordered”fluid, without
changing the entropy, and does not carry heat (and the superfluid motion is thermodynamically
reversible); and, of course, it is so at zero temperature, practically; flowing out of vessels and
carying no heat the superfluid leaves behind the heat which boils the remaining fluid (this is
the thermomechanical effect). The heat is transported by the normal fluid, which flows to the
cold temperatures, while the superfluid flows in compensation to the warmer temperatures; this
out-of phase mutual flow of the two fluids may proceed by temperature waves, which are called
the second sound, and whose velocity is u/

√
3 at vanishing temperature, in contrast to the usual

u-sound which is called the first sound too. Indeed, the interaction of the phonons with atoms
gives Boltzmann’s equation ∂f/∂t+ (uqi/q)∂f/∂xi = I for their distribution function f , where I
is the collision integral; introducing momentum Pi =

∫
qif and energy E = u

∫
(q2

i /q)f one gets
∂Pi/∂t+(1/3)∂E/∂xi = 0 as well as ∂E/∂t+u2∂Pi/∂xi = 0 (collisions do conserve the momentum
and energy), hence ∂2E/∂t2 − (u2/3)∂2E/∂x2

i = 0 and the second sound velocity u/
√

3.

It is now worth turning back to vortices. One may notice for the beginning that vortices given by
(5) and (6) do not commute indeed with the hamiltonian (7). The wavefunction of a fluid moving
with the velocity v has the form ψ ∼ exp(imv

∑
R/h̄), and for a fluid rotating with the angular

velocity ω the circulation of this velocity on a closed loop is of course
∮
dl · v = (h/m)× integer

from the periodicity of the wavefunction, i.e. it is quantized by h/m, and its curl is 2ω; obviously,
v = ωr = (L/m)/r in this case, and the vorticity is nothing but the quantization of the angular
momentum L, and its curl is vanishing then. Such a motion is called a ”vortex” too, but of course
v

∑
R = 0 in this case; it was suggested[23] that space is disconnected, and has a ”hole”, for

instance at the centre, in which case ψ would go like ψ ∼ exp(iϕ(R)/h̄); however v = (h̄/m)gradϕ
would have no curl then, but, nevertheless, it is supposed further on that it may have a singularity
at the ”hole”, where its curl might be non-vanishing, and Stokes’ theorem would be used on the
external loops only; in which case such a vortex might probably be better called a ”circulating
vortex”, or an L-vortex, in contrast with a ”curl, or an ω-, vortex”. In any case it has nothing
to do with the superfluid excitations called vortices. Nevertheless, such an irrotational motion
does exist of course, with v = ωr = L/mr, and the energy associated with one quanta of rotating
velocity is the centrifugal energy

∫
πrdr · nm(h̄/mr)2d, i.e. πn(h̄2/m) ln(b/a) per unit depth d of
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the liquid; which is not compensated by the surface tension of a real hole; however, many such
”linear holes”, i.e. cylinders, do appear in a rotating superfluid, whose free surface is finely rigged
with them, such as to minimize the energy and conserve the angular momentum, and they are
related with the capacity of the superfluid of creating internal non-uniformities of a normal fluid,
by exciting true vortices.

Let ψ(r, q) be the wavefunction of an ensemble of particles, for one particle at r and the rest with
coordinates q. The one-particle density matrix ρ(r − r′) =

∫
dqψ∗(r, q)ψ(r′, q) has the Fourier

transform
∫
dRρ(R)eikR = (1/V )

∫
dq |ψ(k, q)|2, and (1/V ) |ψ(k, q)|2 is the probability for one

particle of being on the k-state; for a condensed Bose liquid all the particles are deployed on the
state k = 0, so that ρ(r) is finite at infinite; this is an off-diagonal long-range order.[24] What is
more interesting is that the condensate has a field a0, or, for a non-uniform condensate moving
with some velocity, a ψ(r) = a(r)eiφ(r) field, where a(r) is the amplitude and Φ(r) is a phase; this
is a classical field (though for a quantal object), and is called the wavefunction of the condensate;
the velocity is v = (h̄/m)gradΦ and is irrotational (curlv = 0), as for a superfluid condensate. It
is easy to see that ψ(r) obeys

(− h̄2

2m
∆− µ)ψ(r) + v(r = 0)a3 |ψ(r)|2 ψ(r) = 0 (10)

for a δ-potential, which minimizes the classical energy for an average number of particles (µ is
the chemical potential); this is the Gross-Pitaevskii equation,[14] and describes non-uniformities
of a moving condensate; in particular, it gives a depletion of the superfluid near a wall (and the
surface tension of the superfluid), as well as cylindrical ”circulating vortices” for a rotating supe-
fluid (vθ ∼ 1/r); in the latter case ψ goes like ψ ∼ eiθ and it is read ψ ∼ eiLθ/h̄, corresponding to
an angular momentum L = h̄; and the velocity reads vθ = L/mr; it has nothing to do with the
true superfluid ”curl vortices” (which, in particular, are associated with a hard-core potential). It
is worth noting that the other two components of the angular momentum are vanishing as for a
vanishing macroscopic rotation of the cylindrical vortex about the corresponding directions. Su-
perfluid motion of non-uniform Bose condensates, as well as their long-wavelengths excitations, or
macroscopic flows, superfluid hydrodynamics, including phase interference, Josephson-like oscilla-
tions of the flows, etc, are described by the Gross-Pitaevskii equation (10),[25] which amounts, for
these reasons, to a mean-field theory; beyond this mean-field regime the picture is dominated by
the atomic limit of the true curl -, quantal vortices.

Because the condensate does not conserve the number of particles (and its gauge symmetry ap →
ape

iϕ is broken, as one can see, for instance, from (7)); and, in order to allow for the excitations
in the condensate, it must be written as

ψ(r) =
√
n(1− 1

2
divu)eiΦ , (11)

where u is the slowly varying long-wavelengths sound field, while Φ is associated with all the
rest of possible movements, macroscopic motion included. Indeed, |ψ(r)|2 = n(1 − divu) is the
change in density, while Φ-motion does not change the density; of course, including excitations
the condensate wavefunction (11) has to be quantized; for the beginning it may be viewed as a
quasiclassical description. In addition, the macroscopic motion may be left aside, and the phase
Φ may be viewed as varying abruptly over atomic distances near a given position; the direction
of its variation varies continuously, and this is the sense in which it describes a quasiclassical
motion; otherwise, due to its localization and to the uncertainty in the direction of its variation,
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it corresponds to a quantal motion. The energy can easily be derived from (3) as

H =
∫
dr · ψ+(p2/2m)ψ + 1

2

∫
v(r− r′)ψ+(r)ψ+(r′)ψ(r′)ψ(r) =

= h̄2n
2m

∫
dr · |gradΦ|2 + 1

2
n2

∫
v + 1

2
n2

∫
v · (divu)(div′u) =

= h̄2n
2m

∫
dr · |gradΦ|2 + 1

2
n2V

∑
v(q) + 1

2
n2V

∑
v(q)q2u∗quq .

(12)

With the kinetic term
∫
dr · mn|∂u/∂t|2 /2 one gets the sound quanta ω =

√
nv(0)/mq for the

u-motion in (12). For the Φ-phase in (11) one may take Φ = gu according to the discussion above,
where u is the displacement along a wavector g of the order of the reciprocal vector G (in which case
the direction of the phase variation may also be quantized). The displacement u is developed in
Fourier series as u =

∑
uge

i(g+q)r, where q is very small in comparison with g (so that n
∫
dr = 1).

The gradient of the phase can be represented as gradΦ ∼ −gu/a+g ·gradu, since gradg ∼ −g/a,
so that the velocity is v ∼ (h̄/m)(−gu/a+ g · gradu), and its curlv ∼ −i(h̄/ma) ∑

g × g′ug′e
ig′r

is non-vanishing. The corresponding energy as estimated from (12) is given by

h̄2

2m
(g2 |ug|2 /a2 + g2 |ug|2 /a2 + g2q2 |ug|2) '

' {h̄2(ag)2/ma2 + (ag)2p2/2m}a+
g ag ,

(13)

where ug ∼ aag; for ag = π one obtains an energy ∆ + p2/2µ, where ∆ = π2h̄2/ma2 ' 8K and
µ = m/π2 ' 0.1m for He4, which is the rotons spectrum. (It is worth noting that

∑
gq = 0 in

(13)). However, curlv does not commute with (13); it may be viewed as a spin S of magnitude
one, as corresponding to the vector g, in which case the energy is represented as (Sug)

2, but still
S is not determined. Rotons and the superfluid vortices are purely quantal particles. In addition.
phase is not determined, as for a determined number of atoms (one), and this is a phase diffusion.

However, it is energetically favourable for vortices turning about the same direction to get together,
forming larger vortices (and antivortices) which are classical, and are ”curl vortices”; however, they
create discontinuities in the superfluid velocity, associated with the surface tension, and the free
surface of a rotating superfluid is rippled with such layers of discontinuity.[26] The superfluid
velocity goes like 1/r in such a rotating fluid, as for conserving the angular momentum (and like
in Gross-Pitaevskii equation), and of course it is irrotational (and flow conserving, divv = 0), and
at least one true vortex there exists at the centre.

There is still another equivalent representation of the wavefunction (11). Indeed, the long wave-
lengths part can also be written as ψ =

√
neiu/a, and the density is given by ψ+(r − ia/2)ψ(r +

ia/2) = n(1 − agradu/a) = n(1 − divau/a) = n(1 − divu); this form of the wavefunction shows
up the condensate interference. A classical phase, i.e. a determined phase corresponds to an
undetermined number of particles, and these are so indeed, as the atomic distances are un-
certain. As regards the vortex part of the wavefunction (11) the phase Φ may be written as
(1/h̄)

∫
prdr + (1/h̄)

∫
pθrdθ + (1/h̄)

∫
pϕr sin θdϕ in spherical coordinates, which means

(1/h̄)
∫
prdr + (1/h̄)

∫
Lϕdθ − (1/h̄)

∫
Lθ sin θdϕ , (14)

where L is the angular momentum; in particular Lθ sin θ = Lz, and Lϕ = rpθ, Lθ = −rpϕ.
Therefore,

gradΦ =
1

h̄
(pr, Lϕ/r, −Lθ/r) =

m

h̄
(vr, rωϕ, r sin θ · ωz) , (15)
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where angular frequencies ωϕ,z are introduced as for a free angular motion. One can see that
curlv = (2 cos θ ·ωz, −2 sin θ ·ωz, 2ωϕ), which is non-vanishing for a non-vanishing L; in cartesian
coordinates curlv = 2(−ωϕ sinϕ, ωϕ cosϕ, ωz). The energy given by (12) reads

h̄2n

2m

∫
dr · |gradΦ|2 =

1

2m
p2

r +
1

2mr2
L2 , (16)

and its minimum value is ∆ = (π2 +2)h̄2/ma2, corresponding to r = a/
√

2 and l = 1; it gives 9.6K
for the vortex excitation in liquid He4, in perfect agreement with the experimental data.[20] One
can see that the vortices are not defined for a given energy (except for the Lz-component in the
wavefunction). In addition, writing up ∆ = p2/2µ with p = h̄(2π/4r) = h̄(π/

√
2a), one gets the

effective mass µ = 0.2m for rotons, in good agreement with the experimental data.[20] It is worth
noting that even if Lz is determined, together with the vortex energy, the velocity and its curl
are not, as a consequence of the quantal nature of the particle microscopic motion; or, conversely,
if one allows for an undetermined energy of the vortex, and requires a well-determination of the
wavefunction, or of velocity and its curl, it is again impossible, due to the quantal nature of the
angular momentum components. However, there is one case where the quantal vortex is well
defined, and this corresponds to a cylindrical rotator. The phase of the vortex reads then

(1/h̄)
∫
pzdr + (1/h̄)

∫
Lzdθ , (17)

its gradient is given by

gradΦ =
1

h̄
(pz, Lz/r) =

m

h̄
(vz, rωz) , (18)

and the energy reads
h̄2n

2m

∫
dr · |gradΦ|2 =

1

2m
p2

z +
1

2mr2
L2

z . (19)

The excitation energy diminishes a little (for Lz = 1), the roton mass increases slightly, the energy
is defined together with the wavefunction, the curl of velocity is 2ωz, but it is not defined (actually
it vanishes) for a given momentum and energy, since vθ = rωz = Lz/mr in that case. Finally it
is also worth notingthat the condensate wavefunction is actually a field operator for vortices, as
expected for such quantal objects. Also, a rigid body rotates with an angular velocity without
conserving the local angular momentum (v = ωr), and the local velocity has a non-vanishing curl
(2ω), so that it has a rotational flow, in contrast with a superfluid that rotates with a constant
distribution of angular momentum (v = L/mr), and no curl of velocity (potential flow); a classical
fluid is capable of both a potential and a rotational flow (as an excited superfluid too), and the
extent to which its flow is rotational expresses its resemblance to a rigid body and its developing
turbulence.
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