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Abstract

Quantal corrections to classical trajectories as brought about by a ”quantal force” are
shown to be inconsistent, as there is no quantal trajectory.

In a recent paper[1] quantal corrections are atempted to be made to classical trajectories by using
Wigner’s distribution. It is shown here that such an enterprise is inconsistent.

Wigner’s distribution (in one dimension) reads

ρ(q, p, t) =
1

2πh̄

∫
dy · ψ∗(q − y/2, t)ψ(q + y/2, t)eipy/h̄ , (1)

where ψ(q, t) is the wavefunction. This ditribution has several remarkable properties; first,
it is normalized,

∫
ρdqdp = 1, secondly

∫
ρdp = |ψ(q, t)|2 is the position (q) distribution of

probability, while
∫
ρdq = |ψ(p, t)|2 is the momentum (p) distribution of probability, where

ψ(p, t) = (1/
√

2πh̄)
∫
dq · ψ(q, t)eipq/h̄ is the Fourier transform of the wavefunction. In addition,

the ρ-average of any physical quantity is also the quantal average of that quantity, which means
that we have a faithful representation of the quantal mechanics in terms of the distribution ρ too.
A function of q- and p- simultaneously for quantal situations is very tempting to suggest a classical
picture, but this is not the case. Indeed, for a general representation

ψ(q) = (2α/π)1/4e−α(q−q0)2e−ip0q/h̄ (2)

of the wavefunction ψ one gets

ρ(q, p) =
1

πh̄
e−2α(q−q0)2e−(p−p0)2/2αh̄2

, (3)

whence one can see that for a well-determined position q0 (α →∞) the momentum is not deter-
mined, and viceversa, for a well-determined momentum p0 (α→ 0;) the position is not determined;
though ρ provides a minimum position-momentum uncertainty ∆q∆p = h̄/2. Originally, the dis-
tribution ρ given by (1) has been used in fact for getting quantal corrections to the classical
thermodynamics.[2]

The time dependence of ρ can easily be inferred from (1) and Schrodinger’s equation for a particle
of mass m; it reads

∂ρ/∂t = −(p/m)∂ρ/∂q +
∫
dξ · J(q, p− ξ)ρ(q, ξ, t) , (4)
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where

J(q, p) =
i

2πh̄2

∫
dy · [V (q + y/2)− V (q − y/2)]e−ipy/h̄ , (5)

which leads to

∂ρ/∂t = −(p/m)∂ρ/∂q − ∂

∂p
(−ρV ′ +

h̄2

24
V
′′′
∂2ρ/∂p2) + ... (6)

for a power expansion of the potential V (q). It is tempting to view the h̄2-term in the rhs of (6) as
a quantal force superimposed over the remaining classical Liouville equation; however, this leads
to an inconsistent picture.

Indeed, equation (6) may be writetn as

∂ρ/∂t = −f(p)∂ρ/∂q − g(q, p)∂ρ/∂p , (7)

where

f(p) = p/m , g(q, p) =
∂

∂p
(−ρV ′ +

h̄2

24
V
′′′
∂2ρ/∂p2)/(∂ρ/∂p) ; (8)

it is then solved for any function ρ(q, p, t) = ρ(q − q(t), p− p(t)), providing

q̇(t) = f(p) = p/m ,

ṗ(t) = g(q, p) = −V ′(q) + h̄2

24
V
′′′
(q)(∂3ρ/∂p3)/(∂ρ/∂p)

, (9)

which resemble the classical trajectories of motion; indeed, (7) reads then

∂ρ/∂t = −q̇(t)∂ρ/∂q − ṗ(t)∂ρ/∂p , (10)

which is Liouville’s equation. However, the velocities q̇(t) and ṗ(t) as given by (9) do not originate
in a hamiltonian, i.e. there is no function H such as q̇(t) = ∂H/∂p and ṗ(t) = −∂H/∂q, and this
because of the quantal h̄2-term in (9). The existence of a hamiltonian would imply ∂f(p)/∂q +
∂g(q, p)/∂q = 0, which is not satisfied by the functions f and g given by (9), precisely due to
the presence of the quantal correction. Had such an identity be satisfied, and a hamiltonian be
granted, the momentum velocity would be given by

ṗ(t) = −V ′(q) +
h̄2

24
V
′′′
(q)(∂2ρ/∂p2)/ρ (11)

as assumed in Ref. 1; but this is not the case, and the velocity (11) employed in Ref. 1 is
consequently wrong. However, neither the momentum velocity given by (9) does better, again
because of the presence of the quantal correction. Indeed, equations (9) make sense only by
identifying p with p(t) and q with q(t); this implies ρ(q, p, t) = ρ(q − q(t), p − p(t)) = δ(q −
q(t))δ(p− p(t)), as noted in Ref. 1, and in faithful agreement with a classical dynamics; however,
in this case the quantal correction ∼ (∂3ρ/∂p3)/(∂ρ/∂p) in (9) vanishes, and we are indeed left
with the pure classical dynamics of the problem. Moreover, Wigner’s distribution given by (3)
becomes the classical distribution δ(q − q0))δ(p − p0) in the classical limit h̄ → 0 and α → ∞,
and q0 and p0 can be identified with the classical trajectory q(t) and p(t), respectively; this is the
clasical limit of the quantal mechanics; h̄ → 0 means h̄ much smaller than the classical action
p0q0. Using a smoothed gaussian distribution instead of δ(q− q(t))δ(p−p(t)), as done in Ref. 1, it
is either arbitrary or of the form (3); in the latter case it is not sufficiently smooth simultaneously
in q and p in order to ensure a corrective contribution to classical trajectories; consequently, the
attempt made in Ref. 1 is inconsistent. In fact, with a gaussian of the form e−β(p−p0)2 for ρ the
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quantal correction in (9) is ∼ h̄2β, and for Wigner’s distribution β ∼1/h̄2, so that the quantal
correction is no quantal at all; in fact, it is proportional to 1/α in (3), which means that it is
arbitrary. This proves again that the quantal correction to (9) is inconsistent, and, in fact, it does
not exist at all, as shown above.

It would seem that the authors of Ref. 1 make a case from equation (11) satisfying the Ehrenfest
theorem ṗ(t) = −V ′(q), in contrast with (9) which does not; however, (11) does not satisfy the
”classical Ehrenfest theorem”, i.e. Newton’s law; indeed, (11) can also be written as ṗ0 = −V ′(q0)−
(1/4α)V

′′′
(q0) for ρ ∼ e−α(q−q0)2e−β(p−p0)2 , or, since β = 1/αh̄2, a ”quantal force” (−βh̄2/4)V ′′′(q0)

would appear; which however, is different from the ”quantal force” (−βh̄2/6)V ′′′(q0) appearing in
(9); which shows again the inconsistency of such forces.

It seems that a quantal correction to classical trajectories in Ref. 1 is motivated by the chemical
reactivity

R =
∫

q1

dq · |ψ(q, t)|2 , (12)

which is the probability of finding the particle beyond a certain position q1 where a potential
barrier is supposed to be present. This is a quantal tunneling from a quasi-bound state near the
origin, and, as such, is far away of being a correction to classical trajectories. Indeed, the reactivity
R is given by

R =
∑
kk′
c∗kck′

∫
q1

dq · ϕ∗
k(q)ϕk′(q)e

i(εk−εk′ )t/h̄ , (13)

where ϕk(q) are the eigenfunctions of the hamiltonian and the energies εk are the corresponding
eigenvalues; for a wavepacket centered on some energy one obtains

R =
1

2π

∫
q1

dq ·
∫
dk · ei(q−vt)k =

∫
q1

dq · δ(q − vt) , (14)

which vanishes for t < q1/v and is unity for t > q1/v, the velocity v = ∂ε/h̄∂k being the group
velocity of that packet. Actually it is spread over ∆t ∼ ∆q/v ∼ h̄/∆V , where ∆q is approximately
the extent of the barrier around q1 and ∆V measures the deviation of the barrier from a constant
potential. For finite temperatures T = 1/β the reactivity is given by

R = 1
Z

∑
kk′ c

∗
kck′

∫
q1
dq · ϕ∗

k(q)ϕk′(q)e
i(εk−εk′ )t/h̄·

·e−βεk′ + h.c.
, (15)

where Z denotes the partiton function; similarly, for a wavepacket, we get

R =
1

2π

∫
q1

dq ·
∫
dk · ei(q−vt)ke−βh̄vk + h.c. , (16)

i.e.

R =
1

2
− 1

π
arctan

q1 − vt

βh̄v
; (17)

it exhibits the same more-or-less pronounced rise toward long times, where it goes like R ∼
1 − βh̄/πt; the survival probability 1 − R goes therefore like βh̄/πt, which can be approximated
by e−πt/βh̄ for long times; it follows that the well-known reaction constant k = π/βh̄ has a purely
quantal origin, as expected. It is worth noting that it is independent of reaction, and states, in fact,
the thermal equilibrium kt ∼ Tt/h̄ � 1; h̄/T is the fluctuating time. Actually, the exponential
rate of decay is valid for moderate times where the rate constant is given by a smaller k ∼ v/q1.
It is worth noting in this connection that the velocity v may, in fact, depend slightly on position,

as given by v =
√

2(ε− V )/m, and the integrals in (14) and (16) must be performed accordingly;
in addition, the time of passing through barrier is zero.
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