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a b s t r a c t

Non-inertial electromagnetic effects in matter, i.e. electromagnetic fields created by a non-inertial

motion of material bodies, are discussed within the Drude–Lorentz (plasma) model of matter

original motion, while shock-like movements of a point-like body generate electromagnetic fields with

the characteristic (atomic scale) frequency of the bodies. The polarization of a rigid body induced by

rotations is discussed in various circumstances. A uniform rotation produces a static electric field in a

dielectric and a stationary current (and a static magnetic field) in a conductor. The latter corresponds to

the gyromagnetic effect (while the former may be called the gyroelectric effect). Both fields are

computed for a sphere and the gyromagnetic coefficient is derived. A non-uniform rotation induces

emission of electromagnetic fields. The equations of motion for the polarization are linearized for slight

non-uniformities of the angular velocity and solved both for a dielectric and a conducting sphere. The

electromagnetic field emitted by a dielectric spherically shaped body in (a slightly) non-uniform

rotation has the characteristic (atomic scale) frequency of the body (slightly shifted by the uniform part

of the angular frequency). In the same conditions, a conducting sphere emits an electromagnetic field

whose frequency is double the uniform part of the angular frequency.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The magnetization of a rotating body (Barnett effect) [1], or the
rotation of a magnetized body (Einstein–de Haas effect) [2],
are both known as the gyromagnetic effect(s). By extension, the
rotation of a spin (magnetic dipole) in a magnetic field, or the
rotation of an electric dipole in an electric field, is also called
gyromagnetic (respectively gyroelectric) effects (phenomena).
Such effects are attractive experimental tools, since they provide
access to magnetic susceptibility, orbital magnetic effects, mag-
netic properties of matter, including powders and granular
matter, etc. [3–11]. Although these effects are known for a
long time, the gyromagnetic coefficient for macroscopic bodies
remained a phenomenological parameter. Here, we derive the
gyromagnetic coefficient for a sphere, by using the well-known
Drude–Lorentz (plasma) model of matter polarization. Histori-
cally, the Drude–Lorentz model has proven useful in describing
the electric conduction or the optical properties of matter
[12–17]. Recently, it was used for describing the reflection and
refraction, as well as plasmons, polaritons and van der Waals–
London and Casimir forces in matter interacting with the electro-
magnetic field [18,19].
ll rights reserved.
Here, we put the problem in more general terms. Since the
rotation associated with the gyromagnetic effect is a non-inertial
motion, we can extend the resulting electromagnetic properties
to other non-inertial motions, like translations, for instance. We
show here that a point-like body in oscillatory motion, or a wave
propagating in an extended body generate electromagnetic fields
with the same frequency as the frequency of the oscillatory
motion or the wave frequency. A shock-like movement of a
point-like body generate electromagnetic fields with the char-
acteristic (atomic scale) frequency of the body. It is also shown
that a uniformly rotating dielectric sphere develops a static
(quadrupolar) electric field (which may be called the gyroelectric
effect), while a uniformly rotating conducting sphere sustains
stationary electric currents which generate a magnetic field. This
is the gyromagnetic effect, and the gyromagnetic coefficient is
computed here for a spherically shaped body. Slightly non-uni-
form rotations are also discussed in the context of the linearized
equations of motion for the polarization. It is shown that a
dielectric spherically shaped body in a slightly non-uniform
rotation generates electromagnetic fields with the characteristic
(atomic scale) frequency of the body (slightly shifted by the
uniform part of the angular frequency), while a conducting sphere
in the same conditions emits electromagnetic fields with the
frequency equal to the double of the uniform part of the angular
velocity.
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Non-inertial translations: We assume a simple model of homo-
geneous matter consisting of identical, mobile charges q moving
in a neutralizing background of charges �q. A local relative
displacement u generates a polarization charge density r and a
polarization current density j given by

r¼�nq divu, j¼ nq _u, ð1Þ

where n is the charge density. The polarization (dipole momen-
tum of the unit volume) is given by P¼ qnu, so the charge and
current densities can also be written in the usual form r¼�divP
and j¼ _P. Let the background moves as a rigid body with velocity
V and let mo2

c u be an elastic force acting locally upon the charges,
where m is the (reduced) mass of the charges and oc is a
characteristic frequency. The frequency oc is an atomic-scale
frequency, corresponding to a model of dielectrics. For conduc-
tors, where the electrons are quasi-free, oc ¼ 0. The equation of
motion for the charge displacement reads

m €u ¼�m _V�mo2
c u�mg _u, ð2Þ

where g is a damping coefficient (g5oc , for oc a0). Usually, we
set g¼ 0, as for an ideal body (plasma). Similarly, we neglect the
collision processes of the charges in the body. Making use of the
Fourier transforms we get

uðoÞ ¼ �ioVðoÞ
o2�o2

c þ iog
ð3Þ

and

uðtÞ ¼
1

2p

Z
do �ioVðoÞ

o2�o2
c þ iog

e�iot : ð4Þ

(where the integration must be performed in the lower half-plane).
For an oscillatory motion with amplitude B and frequency O

the velocity is given by VðtÞ ¼ BO cos Ot and

uðtÞ ¼ �
BO2

O2
�o2

c

sin Ot, ð5Þ

(where we dropped out the damping factor g). For a wave with a
wavevector k, VðtÞ ¼ BO cosðOt�kxÞ and

uðtÞ ¼ �
BO2

O2
�o2

c

sinðOt�kxÞ: ð6Þ

For a shock of duration T ðT5tÞ and velocity V0, VðtÞ ¼ TV0dðtÞ and

uðtÞ ¼ TV0 cos oct: ð7Þ

The polarization charges and currents corresponding to the
polarization P¼ qnu give rise to electromagnetic fields described
by the Kirchhoff’s retarded potentials

FðR,tÞ ¼

Z
dR0

rðR0,t�9R�R09=cÞ

9R�R09
,

AðR,tÞ ¼
1

c

Z
dR0

jðR0,t�9R�R09=cÞ

9R�R09
, ð8Þ

where the integration is performed over the volume of the body.
For a point-like body located at the origin we take u¼

vu0ðtÞdðRÞ, where v is the volume of the body. The polarization
charge and current are given by

r¼�nqvðu0gradÞdðRÞ, j¼ nqv
@u0

@t
dðRÞ: ð9Þ

The potentials can easily be computed

FðR,tÞ ¼ nqv
R

cR2

@u0ðt�R=cÞ

@t
þ

Ru0ðt�R=cÞ

R3

� �
,

AðR,tÞ ¼ nqv
1

cR

@u0ðt�R=cÞ

@t
: ð10Þ
(We can check the Lorenz gauge divAþð1=cÞ@F=@t¼ 0). Making
use of Eq. (5) for an oscillatory motion we get the potentials

FðR,tÞ ¼�
BnqvO2

O2
�o2

c

en

cR2
O cos Oðt�R=cÞþ

Re

R3
sin Oðt�R=cÞ

� �
,

AðR,tÞ ¼�
BnqvO2

O2
�o2

c

e

cR
O cos Oðt�R=cÞ, ð11Þ

where e is the unit vector along the direction of the motion. We
can see that the body in oscillatory motion radiates electromag-
netic waves with the motion frequency O. Making use of Eq. (7)
for a shock, we get

FðR,tÞ ¼ nqvTV0 �
Re

cR2
oc sin ocðt�R=cÞþ

Re

R3
cos ocðt�R=cÞ

� �
,

AðR,tÞ ¼�nqvTV0
e

cR
oc sin ocðt�R=cÞ, ð12Þ

and the radiation emitted has the characteristic frequency oc of
the body.

Let us assume now that we have an infinitely-extending body
subjected to a wave-like motion, as given by Eq. (6). The
potentials are given by

FðR,tÞ ¼�
8pBknqO2

O2
�o2

c

cosðOt�kRÞ

k2
�O2=c2

,

AðR,tÞ ¼�
8pBnqO3

cðO2
�o2

c Þ

cosðOt�kRÞ

k2
�O2=c2

, ð13Þ

where we can introduce the velocity v¼O=k of the propagating
wavelike motion of the background. We can see that the emitted
radiation has the frequency O of the wave propagating in
the body.

We can see from the above discussion that a non-uniform
translation of a body can generate electromagnetic fields. This is a
non-inertial electromagnetic effect.

Rotations. Static electric field: Let us assume that the rigid
background is moving with an angular velocity O

!
. The motion

of the displacement u is described by

€u ¼ r�
_
O
!
þ2 _u � O

!
þO
!
� ðr� O

!
Þ�o2

c u�g _u, ð14Þ

where the first term in the rhs comes from the non-uniformity of
the angular velocity, the second represents the Coriolis force and
the third is the centrifugal force. We chose O

!
and

_
O
!

oriented
along the z-axis, i.e. O

!
¼Oez and

_
O
!
¼ _Oez, and see immediately

that uz ¼ 0. We get two coupled equations

€uxþo2
c uxþg _ux�2O _uy ¼ y _OþxO2,

€uyþo2
c uyþg _uyþ2O _ux ¼�x _OþyO2, ð15Þ

for the other two components of the displacement.
We consider first O¼ const (a uniform rotation). Usually,

O5oc . Averaging out the high-frequency oscillations of the
solution of the homogeneous system of Eq. (15), we are left with
the (particular) solution ðg¼ 0Þ

ux ¼ x
O2

o2
c

, uy ¼ y
O2

o2
c

: ð16Þ

We can see that the centrifugal force pushes the charges towards
the surface of the rotating body. Since u does not depend on the
time, the current, the vector potential and the magnetic field are
vanishing. We are left with a static scalar potential as given by
Eq. (8). We compute this scalar potential for a spherically shaped
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body of radius a, for which the displacement field u reads

u¼
O2

o2
c

ðx,y,0Þyða�RÞ, ð17Þ

where yðxÞ ¼ 1 for x40 and yðxÞ ¼ 0 for xo0 is the step function.
The calculations are straightforward. Making use of Eq. (1) we
compute the polarization charge density (paying attention to the
derivatives of the step function), expand the Coulomb potential in
Eq. (8) in Legendre polynomials and use the well-known addition
theorem for the two vectors R and R0. We get easily the potential

FðRÞ ¼ �4pnq
O2

o2
c

1

3
a2�

1

5
ð2R2
�z2Þ, Roa,

a2

15R3

3z2

R2
�1

� �
, R4a:

8>>><
>>>:

ð18Þ

We can see that this is a quadrupole potential, with a charge
contribution inside the sphere. The corresponding electric field
E¼�gradF can be easily computed from Eq. (18). We give here
the electric field inside the sphere

EðRÞ ¼�
16p

5
nq

O2

o2
c

x,y,
1

2
z

� �
: ð19Þ

We can see that the x,y-components of the electric field are
proportional to the corresponding components of the polarization
(P¼ nqu, where u is given by Eq. (17)). In addition, there appears
also a z-component of the electric field, due to the non-uniform
polarization along this direction. It is also worth noting that the
average of the electric field (and polarization) over the volume of
the sphere is vanishing. We can call this effect the gyroelectric
effect.

Rotations. Gyromagnetic effect: For conductors, the situation is
different. For oc ¼ 0 (and _O ¼ 0,g¼ 0), Eq. (15) becomes

€ux�2O _uy ¼ xO2, €uyþ2O _ux ¼ yO2: ð20Þ

Again, averaging out the oscillating terms, we are left with the
solution

_ux ¼
1

2
Oy, _uy ¼�

1

2
Ox: ð21Þ

We can see that the combined effect of the Coriolis and the
centrifugal forces leads to the occurrence of circular polarization
currents in the plane transverse to the rotation axis. These
currents (given by j¼ nq _u) are stationary and divergence-free
(divj¼ 0). They generate a magnetic field H¼ curlA, where A is
given by Eq. (8). Again, the calculations for a spherically shaped
body are straightforward. This time, the contributions are dipolar
(arising from the associated Legendre function P1

1). We get the
vector potential

AðRÞ ¼
pnqO

3c
ðy,�x,0Þ

a2�
3

5
R2, Roa,

2a5

5R2
, R4a:

8>>><
>>>:

ð22Þ

and the magnetic field inside the sphere

H¼�
2pnqO

5c
xz,yz,

5

3
a2�ð2R2

�z2Þ

� �
: ð23Þ

We can see that, both inside and outside the sphere, the magnetic
field has the specific two-poles pattern of a magnetic dipole.

The average of the magnetic field over the volume of the
sphere gives the only non-vanishing contribution

Hz ¼�
16pnqa2

25c
O: ð24Þ

The coefficient in front of the angular velocity O in Eq. (24) is the
coefficient of the gyromagnetic effect. For non-magnetic matter
Hz is the magnetization, and m¼ VHz is the magnetic moment,
where V is the volume of the body. Eq. (24) can then be written as

m¼�8p
5

Q

Mc
L, ð25Þ

where Q is the total (mobile) charge of the body, M is the mass of
the body and L is the angular momentum (with respect to the
rotation axis). From the equation of motion dL=dt¼ m!�H0 in an
external magnetic field H0, we get dm!=dt¼ gH0 � m!, where
g¼ ð8p=5ÞðQ=McÞ is the gyromagnetic ratio. By analogy with the
quantum particles, the numerical factor �16p=5 in Eq. (25) can be
viewed as the g-factor in the relationship between the magnetic
moment and the angular momentum.

Similar calculations can be done for other shapes of the bodies,
however, with appreciable technical difficulties in many cases.

Time dependence. Dielectrics: In order to include the time
dependence we linearize Eq. (15) by writing

O¼O0þO1ðtÞ ð26Þ

and

ux,y ¼ ux,y0þux,y1ðtÞ, ð27Þ

where O0 ¼ const, O1ðtÞ5O0 and ux,y0 ¼ const are given by
Eq. (16) (where O is replaced by O0). It is not necessary to have
ux,y1ðtÞ5ux,y0. Upon linearization Eq. (15) becomes

€ux1þo2
c ux1þg _ux1�2O0 _uy1 ¼ y _O1þ2xO0O1,

€uy1þo2
c uy1þg _uy1þ2O0 _ux1 ¼�x _O1þ2yO0O1: ð28Þ

We take the Fourier transform of these equations and omit for the
moment the argument o in ux,y1ðoÞ and O1ðoÞ. Eq. (28) read

ðo2�o2
c þ iogÞux1�2iO0ouy1 ¼ C,

ðo2�o2
c þ iogÞuy1þ2iO0oux1 ¼D, ð29Þ

where

C ¼ ðiyo�2xO0ÞO1, D¼�ðixoþ2yO0ÞO1: ð30Þ

We note the symmetry of the system of Eq. (29) for x2y and
O0;12�O0;1. The solutions of Eq. (29) can readily be obtained. For
O05oc (which is the realistic condition) they have four poles
7oc 7O0�ig=2 in the lower half-plane. We take the inverse
Fourier transform (the integration must be performed in the lower
half-plane) and get

ux1ðtÞ ¼O1ðocÞcos octðy cos O0t�x sin O0tÞ,

uy1ðtÞ ¼�O1ðocÞcos octðy sin O0tþx cos O0tÞ: ð31Þ

In the amplitudes of the oscillating functions in Eq. (31) we used the
approximation O05oc , and assumed also O1ðocÞ ¼On

1ðocÞ (and
put g¼ 0). As a consequence of this approximation, the displace-
ment components given by Eq. (31) are determined solely by the
non-uniform angular velocity (the _O- term in Eq. (14)), the role of
the Coriolis force being that of shifting the frequency oc to oc 7O0.
Within this linear approximation the centrifugal force does not
contribute (it determines the constant displacements ux,y0).
Comparing Eq. (16) with Eq. (31), we can see that, although
O15O05oc , it is possible to have ux,y1bux,y0, if the Fourier
component O1ðocÞ is sufficiently large (as, for instance, for
shocks). Further on, we leave aside the displacements ux,y0 and
focus ourselves on the effect of the time-dependent components
ux,y1. It is easy to see from Eq. (31) that the displacement u
performs a wobbling motion, including a rotation with freq-
uency O0 and a radial oscillation with frequency oc (u2

x1þu2
y1 ¼

O2
1ðocÞr2 cos2 oct).

We simplify further Eq. (31) by noticing that they imply
oscillations with the frequencies oc 7O0 where we may neglect
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O0 in comparison with oc. We get

ux1ðtÞ ¼O1y cos oct, uy1ðtÞ ¼�O1x cos oct: ð32Þ

Making use of Eq. (1), we can see that the polarization charge
density is vanishing for a sphere (div½u1yða�RÞ� ¼ 0, where a is the
radius of the sphere); we are left with the polarization current
density

j1 ¼ nqO1ocð�y,xÞyða�RÞsin oct, ð33Þ

which we use to compute the vector potential from Eq. (8).
The vector potential A given by Eq. (8) contains the ‘‘retarded’’
Coulomb potential eioc9R�R09=c=9R�R09. This potential has an
expansion in Legendre polynomials Pn, whose coefficients are
given in Ref. [20]. It reads

eil9R�R09

9R�R09
¼

ip
2
ðRR0Þ�1=2

X
n ¼ 0

ð2nþ1ÞJnþ1=2ðlRo ÞHnþ1=2ðlR4 ÞPnðcos YÞ,

ð34Þ

where Jnþ1=2 and Hnþ1=2 are the Bessel and, respectively, Hankel
functions of the first rank, Y is the angle between the two vectors
R and R0, Ro ¼minðR,R0Þ, R4 ¼maxðR,R0Þ and l is any real
parameter ðl¼oc=cÞ. We limit ourselves to the radiation zone
R4a, lRb1 and a macroscopic body for which lab1. We get the
vector potential

AðRÞ ¼
4pnqa2cO1

ocR2
sin

oca

c
ð�y,xÞsin ocðt�R=cÞ: ð35Þ

This vector potential has a dipolar character and satisfies divA¼ 0.
We can see that a dielectric spherically shaped body which
rotates about an axis with a (slightly) non-uniform angular
velocity (O¼O0þO1, O0 ¼ const, _O1a0, O15O0) emits radiation
with the frequency Coc , where oc is the characteristic (atomic
scale) frequency of the body. The amplitude of the emitted field is
governed by the Fourier transform O1ðocÞ of the angular velocity.

Time dependence. Conductors: In order to carry out the linear-
ization procedure for conductors ðoc ¼ 0Þ we introduce the new
variables vx,y ¼ _ux,y and write Eq. (15) as ðg¼ 0Þ

_vx�2Ovy ¼ y _OþxO2,

_vyþ2Ovx ¼�x _OþyO2: ð36Þ

Here we set O¼O0þO1ðtÞ and vx,y ¼ vx,y0þvx,y1, where O15O0,
O0 ¼ const and vx0 ¼O0y=2, vy0 ¼�O0x=2. The constant compo-
nents vx,y0 are given by Eq. (21) and causes the gyromagnetic
effect. We focus here on the time dependent components.
The Fourier transforms of the solution of the linearized system
of Eq. (36) have two poles in the lower half-plane at 72O0.
The corresponding displacement field is given by

ux1 ¼�
1
2O1ð2O0Þðx sin 2O0t�y cos 2O0tÞ,

uy1 ¼�
1
2O1ð2O0Þðx cos 2O0tþy sin 2O0tÞ: ð37Þ

In Eq. (37) O1ð2O0Þ is the Fourier transform O1ðoÞ for o¼ 2O0

(we have assumed On

1ðoÞ ¼O1ðoÞ). In the subsequent calculations
we omit the argument 2O0 and write simply O1 for O1ð2O0Þ.

Now, it is easy to compute the electromagnetic potentials
given by Eq. (8). According to Eq. (1) the polarization charge and
current densities for a sphere of radius a are given by

r¼ 1

2
nqO1 2yða�RÞ�

a2�z2

a
dða�RÞ

� �
sin 2O0t,

j¼�nqO0O1½ðx,yÞcos 2O0tþðy,�xÞsin 2O0t�yða�RÞ: ð38Þ

The calculations are straightforward and go in the same manner
as for a dielectric sphere described above. We give here the lead-
ing terms for the realistic conditions O0a=c51 and O0R=c51,
i.e. for wavelengths c=O0 much longer than the radius of the
sphere and the distances of interest (this is the opposite to the
approximation used for a dielectric sphere, where the relevant
frequency oc corresponds to very short wavelengths). Under
these conditions we get the scalar potential

FðRÞ ¼
4pnqa5O1

15R3
P2ðcos yÞsin 2O0ðt�R=cÞ, ð39Þ

and the vector potential

AðRÞ ¼ �
4pnqa5O0O1

15cR3
½ðx,yÞcos 2O0ðt�R=cÞþðy,�xÞsin 2O0ðt�R=cÞ�,

ð40Þ

(where cos y¼ z=R). We can check immediately the Lorenz gauge
divAþð1=cÞ@F=@t¼ 0 (within our approximation). The retarded
contribution to Eqs. (39) and (40) (2O0R=c in the oscillatory
functions) can be omitted, and the field assumes, in fact, the
aspect of a stationary field. We can see that a conducting sphere
which rotates about an axis with a (slightly) non-uniform angular
velocity emits (quadrupolar) radiation with the frequency 2O0,
where O0 is the uniform part of the angular velocity. The
amplitude of this radiation is governed by the non-uniform part
O1 of the angular velocity.

Concluding remarks: Electromagnetic phenomena arising from
the non-inertial motion of matter have been investigated in this
paper by using the well-known Drude–Lorentz (plasma) model of
polarizable matter and the corresponding equation of motion for
the electric polarization. It was shown that a point-like body
subjected to an oscillatory motion emits an electromagnetic field
with the same frequency as the frequency of the oscillatory
motion; while the same body subjected to a shock-like movement
emits an electromagnetic field with the characteristic (atomic-
scale) frequency of the body. A wave propagating in an infinitely
extended body generates an electromagnetic field with the same
frequency as the wave frequency.

It was also shown that a dielectric sphere in uniform rotation
develops a static polarization (and electric field), which contains a
quadrupolar term. This may be called a gyroelectric effect.
The average of this electric field over the volume of the sphere
is vanishing. Similarly, a conducting sphere in uniform rotation
sustains circular, static polarization currents, which lead to an
(average) axial magnetic field (i.e., oriented along the rotation
axis) proportional to the magnitude of the angular velocity.
The corresponding vector potential has a dipolar character. This
is the well-known gyromagnetic effect, and the gyromagnetic
coefficient was computed here for a spherically shaped body.

Slightly non-uniform rotations have also been investigated
here by means of a linearized equation of motion for the electric
polarization. A dielectric spherically shaped body rotating with a
slightly non-uniform angular velocity emits an electromagnetic
field with the characteristic (atomic scale) frequency (slightly
shifted by the uniform part of the angular velocity). A conducting
sphere in similar conditions emits an electromagnetic field whose
frequency is double the uniform part of the angular frequency.

In conclusion, we may say that a variety of electromagnetic
phenomena appear as a result of the non-inertial motion of
matter, including static electric or magnetic polarization, as well
as emission of electromagnetic field.
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