
1 23

Applied Physics A
Materials Science & Processing
 
ISSN 0947-8396
Volume 115
Number 2
 
Appl. Phys. A (2014) 115:387-392
DOI 10.1007/s00339-013-8030-7

Coupled nano-plasmons

M. Apostol, S. Ilie, A. Petrut, M. Savu &
S. Toba



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Appl Phys A (2014) 115:387–392
DOI 10.1007/s00339-013-8030-7

Coupled nano-plasmons

M. Apostol · S. Ilie · A. Petrut · M. Savu · S. Toba

Received: 2 October 2013 / Accepted: 2 October 2013 / Published online: 12 October 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract A simple model of coupled plasmons arising
in two neighbouring nano-particles is presented. The cou-
pled oscillations and the corresponding eigenfrequencies are
computed. It is shown that the plasmons may be periodically
transferred between the two particles. For larger separation
distances between the two particles the retardation is in-
cluded. The oscillation eigenmodes are the polaritons in this
case. There are distances for which the particles do not cou-
ple to each other, i.e. the polaritonic coupling gets damped.
The van der Waals-London-Casimir force is estimated for
the two particles; it is shown that for large distances the
force is repulsive. We compute also the polarizabilities of
the two coupled nano-particles and their cross-section under
the action of an external monochromatic plane wave, which
exhibit resonances indicative of light trapping and field en-
hancement. A resonant force is also identified, acting upon
the particles both on behalf of the external field and of each
other.

1 Introduction

Enhanced and locally confined optical fields associated with
nano-particles, nanostructures and nanoaggregates enjoy an
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increasing interest in nanoscale manipulation of active de-
vices [1, 2], nanoantennas [3–6], surface enhanced Raman
spectroscopy [7], light trapping [8], etc. The phenomenon
is obviously related to dipolar fields, resonances and, as it
was shown recently, hybridization [9, 10], charge building
in narrow nano-gaps and quantum tunneling within nan-
odimers [11–21]. All this dynamics is governed by cou-
pled nano-plasmons. Very interesting results have been ob-
tained recently regarding optical forces acting on a couple
of nanowires, arrays of nanowires embedded in metamateri-
als [22], as well as nano-particles in the vicinity of a fishnet-
like metamaterial [23].

The plasmon is an old and fundamental concept in con-
densed matter physics:1 they are long-wavelength longi-
tudinal oscillations of the charge density in matter. In a
simple model, which is usually called the Drude–Lorentz
model, matter can be represented as a plasma, consisting
of identical mobile charges q of mass m and concentra-
tion (density) n (e.g., electrons) moving uniformly and col-
lectively against a quasi-rigid background of neutralizing
charges −q (e.g., ions). The practical realization of the
long-wavelength limit implies finite-size polarizable bodies,
which entail, in turn, boundary conditions. Consequently,
we may have many branches of plasmons: for instance, in
a homogeneous conducting sphere the plasmon spectrum
is given by Ωl = ωp

√
l/(2l + 1), where ωp = √

4πnq2/m

is called the plasma frequency and l = 1,2 . . . is the az-
imuthal quantum number. A much more convenient rep-
resentation simplifies the things to point particles, which
may be a reasonably useful model for the nowadays nano-
plasmonics.

1There is an enormous and ubiquitous plasmon literature, which makes
a formal list of references both impossible and pointless.
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2 Matter polarization

As is well known, the Maxwell equations in matter im-
ply four unknowns: E (electric field), D (electric displace-
ment), H (magnetic field) and B (magnetic induction); and
only two independent equations (Faraday and Maxwell–
Ampère equations, which contain the curl and the time
derivatives). In order to solve them, we introduce consti-
tutive relations between these unknowns through the semi-
phenomenological and quasi-empirical dielectric function
ε and magnetic permeability μ. A large class of matter is
quasi-non-magnetic, such that we may equal H and B and
put μ = 1; still, we have three unknowns (E, D, and H) and
two equations.

On the other hand, the motion of the mobile charges in
polarizable matter can be described by a displacement field
u(t, r), which is a function of the time t and position r. In
the classical limit of small and slow variations (correspond-
ing to classical electromagnetism), this displacement field
generates a polarization charge density ρ = −nq div u and
a corresponding current density j = nqu̇. These charge and
current densities generate in matter an electric field E and a
magnetic field H; but we still have two independent equa-
tions and three unknowns: E, H and u. However, the dis-
placement field obeys an equation of motion, which, in this
classical limit, is the Newton equation of motion

mü = q(E + E0) − mω2
cu − mγ u̇; (1)

E is the internal (polarization) electric field, E0 is an exter-
nal electric field, ωc is a characteristic frequency and γ is
a damping coefficient (much smaller than any relevant fre-
quency). The magnetic part of the Lorentz force is absent in
equation (1) because the velocities of the charges in matter
are much smaller than the speed of light; the internal mag-
netic field is also absent, in accordance with our assump-
tion of small u and non-magnetic matter. Equation (1) is the
missing equation (the third equation), which helps solving
the Maxwell equations [24–26].

Obviously, P = nqu is the polarization (density of dipole
moments); equation (1) leads immediately to the well-
known Drude–Lorentz (plasma) dielectric function ε(ω) =
(ω2 − ω2

c − ω2
p)/(ω2 − ω2

c + iωγ ), where only the opti-
cal dispersion is included (through the dependence on the
frequency ω). As is well known, ωc = 0 corresponds to
conductors, while ωc �= 0 describes dielectrics. The model
and equation (1) can be generalized in multiple ways. We
limit ourselves here to use equation (1) in conjunction with
Maxwell equations, in order to describe a simple situation
regarding coupled nano-plasmons.

The longitudinal internal (polarization) electric field in
Gauss equation div E = −4πnq div u is given by E =
−4πnqu (i.e., E = −4πP). In the long-wavelength limit,
the finite size of the body is usually taken into account

Fig. 1 Two point dipoles

by a (de-) polarizing factor f , such as the field is given
by E = −4πnqf u; for instance, for a sphere f = 1/3. In-
troducing this polarization field in equation (1), taking the
Fourier transform and leaving aside the coefficient γ , we get
(
ω2 − ω2

c − f ω2
p

)
u = − q

m
E0; (2)

we can see that we have a plasmon resonance at frequency√
ω2

c + f ω2
p; for a conducting sphere with ωc = 0 and f =

1/3, we get the plasmon frequency ωp/
√

3, in accordance
with the frequencies Ωl given above for l = 1 [26].

3 Coupled nano-plasmons

We consider two point particles, denoted by 1 and 2, each
with its own plasmon frequency ω1,2, separated by the posi-
tion vector d (Fig. 1). We describe the motion of the mobile
charges in each particle by a displacement vector u1,2; equa-
tion (2) becomes
(
ω2 − ω2

1,2

)
u1,2 = − q

m
E02,1, (3)

where E01,2 is the electric field generated by particle 1 (2)
at the position of the particle 2 (1). In the long-wavelength
limit this is the field generated by a point dipole

E01,2 = v1,2n1,2q
3(u1,2d)d − u1,2d

2

d5
, (4)

where v1,2 are the volumes of the two particles and n1,2

are the concentration of the mobile charges in the particles;
equation (4) is valid in the near-field region c/ω � d , where
c is the speed of light [27]. Since the particles are considered
point-like, we have also v

1/3
1,2 � d . Introducing this field in

equations (3) we get two coupled equations for the displace-
ment vectors. It is convenient to use the projection of the
displacement vectors on the vector d and on a direction per-
pendicular to the vector d; we call the former the longitudi-
nal displacements and denote them by ul1,2, while the latter,
denoted by ut1,2, are called transverse displacements. The
equations for the longitudinal displacements are decoupled
from those corresponding to the transverse displacements;
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both sets of equations have the same structure. We limit our-
selves here to the longitudinal displacements

(
ω2 − ω2

1,2

)
ul1,2 = −ω2

p2,1v2,1

2πd3
ul2,1. (5)

The solution of these coupled-oscillators equations is straight-
forward. The factor v1,2/d

3 plays the role of a weak-
coupling constant. The eigenfrequencies of equations (5)
are close to the plasmon frequencies ω1,2, which should sat-
isfy the condition c/ω1,2 � d ; c/ω1,2 is usually called the
plasma wavelength. For typical values ω1,2 � 1015 s−1 we
get a critical distance of the order d � 0.1 µm; the treat-
ment given here holds for smaller distances, while for larger
distances we need to take into account the retardation in
estimating the polarization field.

An interesting situation occurs for two identical conduct-
ing particles ωc1 = ωc2 = 0, ωp1 = ωp2 = ωp and v1 = v2 =
v; in order to simplify the things we take also ω1 = ω2 = ωp .
In this case the eigenfrequencies are given by

Ωl1,2 = ωp

(
1 ± v

2πd3

)1/2

� ωp

(
1 ± v

4πd3

)
. (6)

The displacement vectors for the initial condition ul2(t =
0) = 0 read

ul1(t) = 2Aeiωpt cos
v

4πd3
t,

ul2(t) = −2iAeiωpt sin
v

4πd3
t;

(7)

we can see that the two coupled oscillations exhibit “beats”,
and the plasmons can be transferred periodically between
the two particles, as expected. A similar situation holds for
the transverse oscillations, with the factor 2π replaced by
4π in the above formulas. The corresponding eigenfrequen-
cies are given by

Ωt1,2 = ωp

(
1 ± v

4πd3

)1/2

� ωp

(
1 ± v

8πd3

)
. (8)

4 van der Waals–London–Casimir force

A polarizable point-like particle can be approximated by a
dipole, with the current density j = vnqu̇δ(r) and charge
density ρ = −vnq(u grad)δ(r), where v is the volume of
the particle placed at the origin. For these charge and cur-
rent distributions we can compute easily the electromagnetic
potentials (Fourier transforms):

A = −iλvnqu
eiλr

r
, Φ = −vnq

ur
r

∂

∂r

eiλr

r
, (9)

where λ = ω/c. The polarization electric field is given by
E = −(1/c)∂A/∂t − gradΦ , so that we can include the re-
tardation in the equation of motion (1). For the longitudi-

nal oscillations of two identical conducting particles (ω1 =
ω2 = ωp) we get

(
ω2 − ω2

p

)
ul1,2 = − ω2

pv

2πd3
(1 − iλd)eiλdul2,1 (10)

(and a similar set of equations for the transverse oscilla-
tions). We can see that in the non-retarded limit λd � 1
equations (10) go into equations (5) derived above. We are
interested now in the wave-zone limit λd � 1. The eigen-
frequencies of equations (10) are given by

(
ω2 − ω2

p

)2 = ω4
pv2

(2πd3)2
(1 − iλd)2e2iλd , (11)

or

tanλd = λd,
(
ω2 − ω2

p

)2 = ω4
pv2

(2πd3)2

(
1 + λ2d2). (12)

It is convenient to introduce the notations g = v/2πd3 � 1
and ωpd/c = A; the solution can be found as a series of
powers of g:

Ω = ωp

[
1 ± 1

2
g
(
1 + A2)1/2

+ 1

8
g2(A2 − 1

) + · · ·
]
; (13)

it should satisfy the equation tan(Ωd/c) = Ωd/c, which, in
the limit g � 1 becomes tanA � A (Ω � ωp); for large val-
ues of A we get A = ωpd/c � nπ . We can see that there
are real solutions for the eigenfrequencies only for certain
values of the distance dn � nπc/ωp , which are approximate
multiples of the plasma wavelength (in this limit). The cor-
responding oscillations are usually called polaritons. For in-
termediate values of d the eigenfrequencies are complex,
i.e. the coupling between the two particles is damped (the
damping parameter γ in the equation of motion (1) should
be retained in this case). We can equally well say that the
two particles are not coupled in this case.

The zero-point (vacuum fluctuations) energy can be esti-
mated as E = ∑

�Ω/2, where the summation extends over
all the eigenfrequencies. The motion of the transverse de-
grees of freedom leads to the eigenfrequencies equation

tanλd = λd

1 − λ2d2
,

(
ω2 − ω2

p

)2 = ω4
pv2

(4πd3)2

(
1 + 3λ2d2 + λ4d4).

(14)

The solution is given by

Ω = ωp

[
1 ± 1

4
g
(
1 + 3A2 + A4)1/2

+ 1

32
g2(3A4 + 3A2 − 1

) + · · ·
]
. (15)
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Now we can compute the zero-point energy (the transverse
degrees of freedom have a double multiplicity):

E = �ωp

[
3 + g2

16

(
3A4 + 5A2 − 3

)]
(16)

and the corresponding force

F = �ωpv2

32π2

(
3ω4

p

c4d3
+ 10ω2

p

c2d5
− 9

d7

)
. (17)

We can see that in the non-retarded limit (ωpd/c � 1) the
force is attractive and goes like −1/d7; this is the van der
Waals–London force; it comes from the longitudinal degrees
of freedom. In the opposite, retarded limit ωpd/c � 1 the
force is repulsive and goes like 1/d3; this is the limit of the
Casimir force, coming entirely from the transverse oscilla-
tions [28]. The force changes sign around ωpd/c � 1 and
has a maximum for ωdd/c � 1. For intermediate distances
the numerical coefficients in equation (17) are not reliable,
since the transverse oscillations do not occur at the same dis-
tances dn as the longitudinal ones; increasing the distance,
the longitudinal and transverse oscillations contribute alter-
nately to the repulsive force.

It is worth emphasizing that the problem discussed here
exhibits two scale parameters, the ratio g = v/2πd3 of the
particle volume v to the particles separation volume � d3

and the ratio A = ωpd/c of the inter-particles distance d

to the plasma wavelength c/ωp . We have assumed g � 1,
which amounts to point-like particles. In this case the dis-
placement field and the polarization has only one degree of
freedom, without spatial dependence. For finite-size parti-
cles, i.e. for particles with a finite extension, the situation is
more complicated, since there appear more degrees of free-
dom, whose dynamics depends, in addition, on the particle
shape. Although the treatment can be started in the same
way as described here, it can only be completed by resorting
to numerical calculations. However, it is worth noting that
many relevant traits of molecular forces are obtained within
the present analytical model, in spite of its simplifying ap-
proximations. In particular, it is easy to see that the particle
size and shape do not matter for large distances d (Casimir
force); at small distances but for large plasma wavelength
the attractive character of the van der Waals–London force
obtained here is preserved. At intermediate distances, com-
parable with the plasma wavelength, the situation is rather
undefined (in the sense that it changes continuously with
modifying the distance), especially for finite-size particles.

5 External field

We consider the two point dipoles acted by an external
monochromatic plane wave with the electric field E0(t, r) =
E0 cos(ωt − kr), ω = ck and E0k = 0 (Fig. 2). The two par-
ticles separated by the distance d lie along the z-axis and

Fig. 2 Two coupled point dipoles subjected to an external field

the external field (wavevector k) makes an incidence angle
α with the z-axis. For a p- (parallel) wave we have both
a longitudinal (E0z) and a transverse (E0x ) component of
the external field, while for an s- (senkrecht) wave we have
only a transverse component E0y . We assume further the
most interesting situation of two identical point dipoles with
v1/3 � d � c/ω (optical excitation), as well as d � c/ωp .
The equation of motion (1) gives

ül1,2 + ω2
pul1,2 − vω2

p

2πd3
ul2,1 = q

m
E0l cosωt,

üt1,2 + ω2
put1,2 + vω2

p

4πd3
ut2,1 = q

m
E0t cosωt,

(18)

where we have neglected the position dependence of the ex-
ternal field at the location of the two point dipoles. The so-
lution of this equation is given by

u1l = u2l = − q

m
E0l

1

ω2 − Ω2
2l

cosωt,

u1t = u2t = − q

m
E0t

1

ω2 − Ω2
1t

cosωt,

(19)

where

Ω2
2l = ω2

p

(
1 − v

2πd3

)
, Ω2

1t = ω2
p

(
1 + v

4πd3

)
. (20)

Equations (19) give the polarizabilities of the two coupled
point dipoles (P = nqu is the polarization). It is worth noting
that there exist two resonant frequencies Ω2l (shifted to the
red with respect to the characteristic frequency ωp of the
isolated dipole) and Ω1t (shifted to the ultraviolet). At these
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resonances the light is trapped by the two coupled dipoles,
and the field is enhanced appreciably.

Having known the displacements u1,2 we can use the po-
tentials given by equations (9) to compute the field in the
wave zone (r � d). The calculations are straightforward.
We can use the results for estimating the cross-section de-
fined as dσ = SrdΩ/S0r

3, where S is the Poynting vector
of the scattered field and S0 is the Poynting vector of the
incident field. We get the total cross-sections

σp = 2ω4
pv2

3πc4
ω4

[
sin2 α

(ω2 − Ω2
2l )

2
+ cos2 α

(ω2 − Ω2
1t )

2

]
,

σs = 2ω4
pv2

3πc4
· ω4

(ω2 − Ω2
1t )

2

(21)

for the p- and, respectively, the s-wave. We can see the res-
onant cross-section (especially the longitudinal resonance at
lower frequencies), which indicates again the phenomenon
of light trapping and field enhancement.

6 Resonant force

Under the action of an external field the particles get po-
larized; the displacement field given by equations (19) gen-
erates charge and current densities; for instance, the par-
ticle placed at r = 0 acquires a charge density ρ(r) =
−vnq(u grad)δ(r), where u denotes its displacement field.
The external field acts upon this charge by a drift force given
by

Fd =
∫

drρ(r)E0(t, r); (22)

the calculations are straightforward and we get

Fd = vnq(ku)E0 sinωt. (23)

A similar drift force acts upon the particle placed at r = d.
We can see that an external s-wave, as well as an external
plane wave acting upon an isolated particle brings no drift
force. Making use of equations (19) for a p-wave (and iden-
tical particles), we get the drift force

Fd = 3v2ω4
pω

64π2cd3
· sin 2α sin 2ωt

(ω2 − Ω2
2l )(ω

2 − Ω2
1t )

E0E0. (24)

We note the resonant character of this force for frequency ω

approaching the frequencies Ω2l or Ω1t .
There is also an interaction force acting between the two

particles. For instance, we get the force acting upon the par-
ticle placed at r = 0 on behalf of the particle placed at r = d

by using the (dipole) field given by equation (4) in equation
(22). We get an interaction force

F12l = 3v2ω4
p

16π2d4

[
2E2

0l

(ω2 − Ω2
2l )

2
− E2

0t

(ω2 − Ω2
1t )

2

]
cos2 ωt,

F12t = − 6v2ω4
p

16π2d4
· E0lE0t

(ω2 − Ω2
2l )(ω

2 − Ω2
1t )

cos2 ωt.

(25)

We note again the resonant character of this force, as well
as its non-central character, in general (for a p-wave it gives
rise to a torque).

In estimating these forces we limited ourselves only to
the polarization (displacement field) generated by the exter-
nal field. In general, we should also take into account the
field generated by the particles in estimating the displace-
ment field. The contribution of this “internal” field (which
acts as an external field for each particle) is proportional to
the volume v of the particles, and for a finite number of par-
ticles it may be neglected. However, for a large number of
particles, its contribution is important. It is worth noting also
that under the action of such resonant interaction forces the
nano-particles can get organized in super-structures.

7 Conclusion

We have analyzed here the electromagnetic coupling be-
tween two polarizable point-like particles, modeled as point
dipoles. This may be a reasonably useful model of coupled
nano-plasmons and nano-polaritons. For small separation
distances between the two particles (smaller than the plasma
wavelength), where the non-retarded coupling regime domi-
nates, the two particles exhibit coupled plasmons, which can
be transferred from one particle to other. The zero-point fluc-
tuations give the attractive van der Waals–London force in
this case, acting between particles and behaving like −1/d7,
where d is the separation distance. For distances larger than
the plasma wavelength the retardation comes into play and
the coupling is realized through polaritons. This may hap-
pens only for certain discrete sets of separation distances
(different for longitudinal and transverse oscillations of the
charge density, with respect to the separation vector), in be-
tween the coupling being damped (non-coupling); it is real-
ized either by longitudinal or transverse oscillations of the
charge density, in turn. Immediately beyond distances of the
order of the plasma wavelength, the zero-point energy force
acting between particles becomes repulsive, arising from
transverse oscillations (polaritons) and going at infinity like
1/d3.

The polarizabilities of the two coupled nano-particles ex-
hibit plasmonic resonances, which are also present in the
cross-section of the scattered field as well as in the resonant
force acting upon the particles both on behalf of the external
field and of each other.
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The method used in getting the results presented here
consists, basically, of the equation of motion of the electric
polarization, related to the displacement field of the mobile
charges. This method has also been employed in previous
publications for getting various other results [24–28]. In par-
ticular, the force acting between two point-like polarizable
dipoles when one of them is subjected to an external field
was derived in Ref. [27]. It is a force generated by the mu-
tual polarizations, in contrast with one of the forces derived
here, when the external field acts upon, and polarizes, both
particles.
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