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Abstract: The classical theory of scattering of longitudinal waves (sound) by small inhomogeneities (scatterers) in
an ideal fluid is generalized to a distribution of scatterers and such as to include the effect of the inho-
mogeneities on the elastic properties of the fluid. The results are obtained by a new method of solving
the wave equation with spatial restrictions (caused by the presence of the scatterers), which can also be
applied to other types of inhomogeneities (like surface roughness, for instance). A coherent forward scat-
tering is identified for a uniform distribution of scatterers (practically equivalent with a mean-field approach),
which is due to the fact that our treatment does not include multiple scattering. The reflected wave is ob-
tained for a half-space (semi-infinite fluid) of uniformly distributed scatterers, as well as the field diffracted
by a perfect lattice of scatterers. The same method is applied to a (inhomogeneous) rough surface of a
semi-infinite ideal fluid. A perturbation-theoretical scheme is devised, with the roughness function as a per-
turbation parameter, for computing the waves scattered by the surface roughness. The waves scattered by
the rough surface are both waves localized (and propagating only) on the surface (two-dimensional waves)
and waves reflected back in the fluid. They exhibit directional effects, slowness, attenuation or resonance
phenomena, depending on the spatial characteristics of the roughness function. The reflection coefficients
and the energy carried on by these waves are calculated both for fixed and free surfaces. In some cases,
the surface roughness may generate waves confined to the surface (damped, rough-surface waves).
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1. IntrOductlon generalization. The generalization consists in including
the effect the inhomogeneities may have upon the elastic
properties of the fluid localized on them (parameter n in

The scattering of longitudinal waves (sound) by small this paper) and to get the scattered field arising from any

. . . . S istributi f i . Th h -
inhomogeneities (scatterers) in an ideal fluid is a well- distribution of scattering centers. The method can be ap

known subject (see, for instance, Ref. [1]). We derive here plied also to other types of scatterers (like, for instance, a
these classical results by a new method, which allows a surface roughness). There is a great deal of interest today

in scattering of sound, especially in random media (by us-
ing Foldy's theory and its recent developments) [2-4], and,
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in general, in complex media, where serious mathematical
difficulties are encountered [5]. Though it does not in-
clude the multiple scattering, the model put forward here
leads to definite results, such as the field reflected by a
half-space of uniformly distributed scatterers, or the field
diffracted by a perfect lattice of scatterers.

The effect of a rough, solid surface on the fluid dynamics,
in particular the waves (sound) scattered by the surface
roughness, enjoy also a great deal of interest [6-25] The
interaction between a solid wall and the fluid flow, as
well as the action of a solid interface on the fluid dy-
namics have been emphasized recently [26, 27]. A rough
surface shares, to some extent, the properties of a porous
medium [28]. The surface roughness was modelled as an
inhomogeneous fluid layer on a rigid plate and the scat-
tering of acoustic waves was considered within a radia-
tive regime by means of coupled integral equations [29].
A great deal of insight into the scattering mechanism by
rough surfaces has been achieved [30] by means of Biot's
theory and its recent developments [31-33]. The general
characteristics of the waves scattered by a rough surface
are directional effects, slowness and attenuation, as well
as possible resonances for surface gratings (corrugations).
The main difficulty in getting more definite results in this
problem resides in modelling conveniently the inhomo-
geneities and the surface roughness, such as to arrive at
mathematically operational approaches [34, 35] .

The method devised for the scattering of sound by small
inhomogeneiteis is applied here to the scattering of sound
by an inhomogeneous rough surface of a semi-infinite
(half-space) fluid. The rough surface is modelled as a
surface whose elastic properties differ from the ones of
the semi-infinite (half-space) fluid bulk, in contrast with
a homogeneous rough surface which has the same elastic
properties as the bulk. In general, a surface, especially
a rough one, acts like a source for scattered waves. We
devise here a theoretical-perturbation scheme for treating
the wave equation for longitudinal (sound) waves proap-
agating in a semi-infinite solid with a rough surface. The
perturbation parameter is the roughness function, i.e. the
deviation of the surface from a plane. It is shown that the
scattered waves appear in the first-order approximation for
a fixed surface, while for a free surface they appear only
in the second-order approximation. Two kinds of scattered
waves are identified: waves localized (and propagating
only) on the surface (two-dimensional waves) and waves
reflected back in the fluid. In some cases, the latter waves
may get confined to the surface (damped, rough-surface
waves). For a homogeneous roughness only the waves lo-
calized on the surface survive. The reflection coefficients
(and the energy carried on by these waves) are calculated

and various characteristics like slowness, attenuation or
possible resonance phenomena are discussed.

2. Background

We consider a homogeneous, isotropic, ideal fluid of infi-
nite extension. A small displacement field u(r, t), where
r denotes the position and t denotes the time, gives rise
to a density imbalance dn = —ndivu in the fluid den-
sity n, a local change of volume 0V = Vdivu and a local
change of pressure dp, depending on the equation of state
of the fluid; for an adiabatic change, dp = (dp/dn)son =
—n(dp/dn)sdivu, where S denotes the entropy. As it is
well known [1], such a fluid supports longitudinal waves
(sound), described by the equation of motion

1
ﬁu—grad~divu:0 , (1)

where c¢ is the sound velocity. Indeed, by taking the div
in equation (1), we get the wave equation for free waves
propagating with velocity c. The displacement field is
subjected to the condition curlu = 0. Therefore, it is
convenient to introduce the potential function ¢ = divu
(proportional to the pressure) and write equation (1) as

1.
Sé-ne=0. )

The sound propagation in fluids is also described by
means of another potential function ¥, defined by dp =
—podW¥/otandv = 0 = grad¥, where p is the (mass) den-
sity and v is the fluid velocity [1]. Then, Euler’s equation
pov/0t + gradop = 0 (for small velocities v) is satisfied
identically, and the continuity equation ddp/dt+ pdivv =
0 becomes the wave equation 3*W/9t? — ?A¥ = 0,
through 0p = (dp/dp)sdp, with the sound velocity given
by ¢? = (dp/dp)s. The connection between the two po-
tential function ¥ and & is given by

op = — pd¥ /0t = (0p/dp)sdp = —p(Op/dp)sdivu
=~ pco o)

or
v .,

— =cP; 4

3 =€ 4)

for a monochromatic wave W = (ic?/w)®. According to

equation (1), the energy density (per unit mass) carried
on by the longitudinal waves in a fluid is given by

1,5, 1 ot

12
= — —c°d -
e u + =c 3w

1
5 5 (grad®)? + 5c2<l>2 )

where equation (4) is used for a monochromatic wave. For
a plane wave, equation (5) gives e = c?®2.
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3. Small inhomogenities

We assume a small inhomogeneity (foreign body, impu-
rity) in an ideal fluid, placed at a fixed position r;, of a
mean radius h; (a scatterer). For h; much smaller than
the relevant wavelengths of the disturbances propagating
in the fluid we can write the potential function ¢ as

®(r, 1) = @(r, )0(r —rif — hi) =
(6)
= (r, )0(]r —rif) — higp(r, )o(Ir —ril)

where 8(x) =1 for x > 0, 6(x) = 0 for x < 0 is the step
function and ¢ is the Dirac function, or

d=q+06b, 60 =—hp(r, )5(Ir—r). (7

The potential ¢ satisfies the free wave equation (with spe-
cific boundary conditions at the surface of the inhomo-
geneity). According to our decomposition given by equa-
tion (6) we can see that ¢ satisfies the free wave equation
in the whole space, while 0% generates a source-term
(a force), localized on the inhomogenity, which may give
scattered waves. We introduce the potential ®4 for de-
scribing these scattered waves. It should obey the wave
equation

1.
Sé—ad =1, (8)

where the force f is given by
1 .
f:;écb—Aéd). 9)

Equation (8) is merely a re-writing of the wave equation
for 0¢. The force f is the difference between the inertial
force 0%/c? and the elastic force Ad®; it represents the
distinct way the inhomogeneity responds to (follows) the
wave motion in comparison with the fluid bulk. For waves
localized on the inhomogeneity, equation (8) has the so-
lution 1 = 0. Another solutions are given by the waves
scattered in the fluid by the inhomogeneity, ie. waves
generated in equation (8) by the source term f (a particu-
lar solution of equation (8)). We generalize this model of
inhomogeneity by introducing a different "sound" velocity
T in equation (9). The force is then written as

1 .
f= 06050 (10)

Such a generalization amounts to assuming that the elas-
tic properties of the fluid localized on the inhomogene-
ity are different than the elastic properties of the fluid

bulk. For instance, the spatial variations of the scatterer
shape may affect the elastic properties of the fluid in its
neighbourhood. It is convenient to introduce the parame-
ter n = 1 — c?/¢? for describing such an 'inhomogeneous"
scatterer. A homogeneous scatterer (i.e., the absence of
the scatterer) would correspond to n = 0. A perfectly rigid
scatterer would have ¢ — oo and n — 1.

Obviously, according to equations (6) and (7), the scheme
of calculation put forwad here is a perturbation-theoretical
scheme, with the mean radius h; as the perturbation pa-
rameter. In view of the small magnitude of the mean radius
h;, we limit ourselves here to the first order of the pertur-
bation theory.

We consider an incident plane wave ¢ = e witikr
where w = ck. Then, the source-term becomes
0 = —hiod(|r — ry|)e Witk (11)

and the force given by equation (10) reads

2
f=hipo [%6(|r —r|) = Ad(|r — r1|)] etttk (12)
c

or

f= _’Ih[(iingaﬂr — ry|)eiwt+ikiy
(13)
+higo [‘:—226(|r — ) = AS(r — r,-|)] et

As it is well known, the solution of equation (8) is given
by

1 ,ei%|'_"| ,
¢1(r,t):ﬂjdr v f(r,t) . (14)
with f given by equation (13). The second term in the
rhs of equation (13) can be integrated by parts in equa-
tion (14), and we get the laplacian applied to the Green
function (spherical wave) of the Helmholtz equation. This
way, we get the localized waves

&y = —hig / dr'd(r—r)o(|r' — ri]) = —hipod(|r — ri]) ,

(15)
which are precisely the localized waves ®1; = 0® given by
equation (11), as expected (we leave aside the exponential
factor e~@+i) The first term in the rhs of equation (13)
gives the scattered waves

2 Y-
hz‘POw e—iwr+ikri/dr/e C| |

Oy, = —
' 4c? [r —r'|

o(lr —r) -
(16)
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We assume that the o-function in equation (16) extends
o(lr—ri]) =~ 1/h; for
[r — r;| < h;. Then, the integral in equation (16) is evalu-
ated easily. We get

over the small distance h;, ie.

where v; is the (mean) volume of the scatterer.

We can see that the validity of the perturbation-
theoretical scheme requires h; < A, where A = c/w is the
wavelength of the incident wave. According to equation
(17), the scatterer generates spherical waves, the dfferen-
tial cross-section being given by

2 4
_ 2 Viw

do=n (4m)2ct

Q, (18)

where Q denotes the solid angle. As it is well known, it
is proportional to the square volume of the scatterer and
the fourth power of the frequency. The energy flux (per
unit mass) dI” = cer?dQ (with the origin of the reference
frame at r;) is given by

vioiwt
dr = 27 Y0 ,
(4m)%c

(19)

which is to be compared with the energy flux 3¢ per
unit cross-sectional area in the incident wave (cross-
section). The scattered field given by equation (17) does
not exhibit directional effects, because the fluid velocity
v = (ic’/w)gradd® in the source-term given by equation
(11) is isotropic. We can say that the scattered field given
by equation (17) arises from a "'monopole" scatterer.
There is another solution of the free waves equation in
the presence of a small inhomogenity placed at r;: it is
given by & ~ &(r —r;). Indeed, it satisfies trivially the
free waves equation for any r # r;. This potential function
should carry in front of the d-function a factor proportional
to the volume v;. Since 2th?8(r) = d(r), it is easy to see
that this factor is 3v;/2. Under the action of an incident
wave ®q this solution changes by an amount which can be
derived from d0®'0t = vgradd’ = (3/2)vivgradd(r — r;),
where v = gradW¥ is the velocity of the fluid particles.
For a monochromatic wave, making use of W = (ic?/w)®y,
we get 00 = (3/2)vi(c?/w?)graddogradd(r — r,), or, for
a plane wave,

' 3ivic gy —iwttike _
0P = =-"e ikgradd(r —r;) =

(20)

— 3o ,—iwt+ikr
= Ste ikgradd(r —r;)

(the multiplication should be done for complex conjugate
quantities). This change in the potential function gives
rise to a force, similar with the force given above by equa-
tion (12). Introduced in equation (14), it generates a lo-
calized wave equal to d®', as expected, and a scattered
wave given by

P1s == 8mc? k? [r—r|
(1)
or
’ 3Vvigow _iupae k(r —r;) eIl
&~ p 2V o—iwttik i -
1s =N 8rc [r—ri [r—rg (22)

(leading approximation). We can see that these scattered
waves exhibit directional effects, as arising from a "dipole"
scatterer.

The total scattered field is obtained by adding equations
(17) and (22). We get

Vi(POk 3 ot ik eik\r—r[|
o, = — k— Jkn, | et & (03
Tan ( 2" ) € [r —r 23)
where n; = (r — r;)/|r—r;| is the unit vector from the

scatterer to the observation point. The cross section is
given by

, Viw! 3 :
dU:f]W(1_§COSQi) dQ, (24)

where 6; is the angle between the direction of propagation
of the incident wave and the direction of observation from
the scatterer. For a perfectly rigid scatterer we may take
¢ — oo and n — 1. It is worth noting that there is a
scattering angle given by cos 8 = 2/3 where the scattered
field is vanishing. This is a well-known, classical result
for the scattering of sound.[1]

4. Distributions of scatterers

For a distribution of inhomogeneities equation (23) gives
the scattered field

ik|r—r|

o, = _n"’ike*fwf Y v (k — %kn,») ekri & (25)

4 - Ir—r|

Let us assume a uniform distribution of identical scatterers
(v; = v), with a density o, and take the origin as the

Svigow? . ...k ei%|'_',|
%o ef‘“'”’k”—/dr'igrad6(|r’—r[|),
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observation point (r = 0). The summation in equation

(25) becomes an integral,

o, = —nav(po—l(ze_iw’/dr (1 + §cos 9) e“”“’sei” ,
4 2 r

(26)

where 6 is the angle between the propagation vector k

and the position r; of the inhomogeneity. It is easy to see

that the integral in equation (26) can be put in the form

3 . elkr a [ 2+3u
dr (142 cos 0] etreosd € _7/ d ,
/ ' ( + 2 cos ) € r k2 J_, u(1 + u)?

(27)
where u = cos 8. We can see that this integral has a
singularity for 6 = m, arising from the backward scatter-
ers (forward scattering). Indeed, we can see easily that

for 6; = 7 in equation (25) (a line of scatterers), we get
a logarithmic singularity. This is an example of coherent
forward scattering, corresponding to a vanishing phase
kr; + kr; = 0 in equation (25), an expected result for a
uniform distribution of scatterers without multiple scat-
tering, which is equivalent with a mean-field approach for
a uniform medium. It is to be compared with the scattering
by one scatterer (placed at r; = 0), where the maximum
of the scattered field lies in the backward direction. This
singularity arises from the fact that our approach does
not include multiple scattering (for instance, forward and
backward scattering).

Equation (25) gives reflected waves. Indeed, let us assume
that we have a uniform distribution of identical scatterers
in a half-space defined by z > d. The scattered field
given by equation (25) can be written as

K? .
o, = _nv(ﬁoie—zwtﬂkrl ) (28)
Jt
where
1 1 . 3i d 1 .
| = —— _ ptkri(l4cos @) _ 25 ¥ ' ikri(14cos 6;) )
245° 2 ok Z 2°

(29)
The summation in equation (29) is peformed oevr the half-
space. It is convenient to introduce k = (k ., k), where k.
is the wavevector parallel to the surface of the half-space
and « is the component of the wavevector perpendicular to
this surface. It is also convenient to use cylindrical coordi-
nates r; = (r;1, z;). The calculations are straightforward;
they imply the known integral[36]

£ ikl
gt (30)

/ drio(k V2 — 22)el* =
el

We get the leading contribution to the scattered field

2
ok —iwt+iky

4K2 e rle—ikz , (31)

&, ~ nov

which is the reflected field. The reflection coefficient (the
ratio of the scattered amplitude to the amplitude of the
incident wave) is R = novk? [4k?.

It is worth discussing a laticial distribution of identical
scatterers. The force which generates the scattered field in
this case contains a factor which has the latice periodicity.
For instance, this force in equation (13) can be written as

h sz ikr —ik(r—r;
_n%ek Zé(|r—r,-|)e (r=ri) (32)

(where the factor e~ is left aside). We can see that
the summation over i is a periodic function of r with the
lattice periodicity. Therefore, it can be expanded in a
Fourier series involving only the reciprocal vectors g of
the lattice. The scattered field given by equation (8) can
also be expanded in a Fourier series of wavevectors k+ g.
We get the final result for the scattered field at large
distances

eikr
b, = nov
s naveo 87r

> (K + 3kg) / dr'eik+ar’ - (33)
g9

where k' = kr/r is the wavevector of the scattered wave
and integration is performed over the scatterers sam-
ple. We can see that the wave exhibits diffraction spots,
provided the well-known Laue-Bragg diffraction condi-
tion k — k' + g = 0 (g% + 2kg = 0) is satisfied. The
cross-section for a diffraction spot is given by do =
(/8)(nov)?V(k? + 3kg)*>dQ, where V is the volume of
the sample (compare with equation (24)). It can also be
written as do = (/8)(novk?)?V(2 — 3 cos 0)>dQ), where
0 is the angle between k and k'.

5. Fluid with a rough surface

We consider a semi-infinite (half-space) homogeneous,
isotropic, ideal fluid, extending boundlessly along the
r = (x, y) directions and limited along the z-direction
by a surface z = h(r), where h(r) > 0 is a function to
be further specified (roughness function). The fluid occu-
pies the region z < h(r). As before, we introduce a small
displacement field u(r, z, t) (where t denotes the time)
which gives rise to a density imbalance dn = —ndivu in
the fluid density n, a local change of volume 0V = Vdivu
and a local change of pressure 0p, as described in Section
2. The displacement field u satisfies equation (1) and the
potential field ® = divu satisfies equation (2).

For a semi-infinite fluid with a surface described by equa-
tion z = h(r) and extending in the region z < h(r), the
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potential ® can be written as
& = g(r, z, t)0h(r) — 2] , (34)

where 6(z) is the step function. We assume that the mag-
nitude of the roughness function h(r) is small in compar-
ison with the relevant wavelengths of the elastic distur-
bances propagating in the fluid, so that we may write

b~ by + 0P (35)
where

by = pO(—2) , 0Py = h(r)ed(z) + %hz(r)(pé/(z) + .
(36)
where 0(z) is the Dirac function (and the prime means dif-
ferentiation with respect to the variable z). The specific
conditions of validity for this approximation will be dis-
cussed on the final results. We assume that the potential
¢ satisfies the wave equation

1
§¢—A¢:0 (37)

with specific boundary conditions at z = 0. This equation
describes the incident and (specularly) reflected waves
propagating in a fluid with a plane surface z = 0. It is
easy to see that for a fixed surface d¢/dz|,_, = 0, so that
we have the plane waves

@ = 2¢ oS Koz - e~ witikor (38)

where w is the frequency, ko is the in-plane wavevector

and ko = v/ w?/c? — kZ. In this case we can limit ourselves
to the first order in h in the second equation (36), and get

0Dy = 2h(r)@od(z)ewitikor (39)
For a free surface ¢|,_, =0, so we have
@ = 2igg sin Kz - e~ Withor (40)

in this case, the first-order contribution to the second
equation (36) is vanishing and we get

by = —ih?(r) koo 0(z)e~ witikor (41

We can see that 09 acts as a source-term (a force) local-
ized on the surface, which can generate scattered waves.

We denote the potential function associated with these
waves by®; it satisfies the wave equation

1.
Sé—ad =1, (42)

where the force f is given by

1
T

f 0Py — AdDy . (43)

Equation (42) is merely a re-writing of the wave equation
for 0®g. The force f is the difference between the inertial
force 0®q/c? and the elastic force Addy; it represents the
distinct way the surface follows the wave motion in com-
parison with the bulk. For localized waves equation (42)
has the solution ®; = d®y. Another solutions are given
by the waves scattered back in the fluid by the surface
roughness, i.e. waves generated in equation (42) by the
source term f (a particular solution of equation (42)). We
generalize this model of surface roughness by introducing
a different "sound" velocity ¢ in equation (43). The force
is then written as

1 .
f=—06by—N5D, . (44)
C

Such a generalization amounts to assuming that the elas-
tic properties of the fluid localized on the rough surface
are different than the elastic properties of the fluid bulk,
i.e. the surface roughness is inhomogeneous in compari-
son with the bulk. This may correspond either to a sur-
face whose physical properties have been changed, or to
a fluid homogeneous everywhere, including its rough sur-
face. Indeed, in the latter case, it is precisely the spa-
tial variations of the rough surface which affect its elastic
properties, viewed as a homogeneous medium, and ren-
der it, in fact, a rough surface which is inhomogeneous
with respect to the bulk. It is convenient to introduce the
parameter = 1 — ¢?/c? for describing the inhomoge-
neous roughness. A homogeneous roughness corresponds
ton=0.

Obviously, according to equations (35) and (36), the
scheme of calculation put forwad here is a perturbation-
theoretical scheme, with the roughness function h(r) as the
perturbation parameter. We limit ourselves here to the
first relevant orders of the perturbation theory. We can
see that for a fixed surface the first-order approximation
is sufficient for getting scattered waves, while for a free
surface we have to go to the second-order approximation.
This implies already a double scattering by the surface
roughness. Higher-orders of the perturbation theory will
give multiple scattering.
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6. Waves scattered by the rough
surface

We use the potential 0%y given by equations (39) and
(41) to compute the force given by equation (44). The
calculations are easily performed for one Fourier compo-
nent h(q)e'@of the roughness function h(r), corresponding
to the wavevector q (for simplicity we drop the argument q
in h(q)). For a fixed surface, making use of equation (39),
we get

f = —2hgo [?25(2) n 6"(2)] emtotrik (45)

where k = ko + q and ® = / w?/c? — k2. The solution of
equation (42) is of the form ®; = ¢;(2)0(—z)e~ @k 5o
that equation (42) becomes

62<p1 2
o7 + Kk =
(3 ’ - ”
% 5(2) + 1], 8 (2) + 2heo [Kzé(z) +5 (z)] ,
z z=0
(46)
where k¥ = +Vw?/c?— ki We note that k =

VkZ +2koq + g% and k =/« — 2koq — g2. The com-
bination of the wavevectors kg and q in k = ko + q is
the source of directional effects, included both in k and «.
As it is well-known, the Green function of equation (46)
(one-dimensional Helmholtz equation) is

Leix|zfz’| ) (47)

Glz=2) =5

so that the solution of equation (46) is given by

@i1(z) = /dz’S(z’)G(z—z') \ (48)

where the source S denotes the rhs of equation (46). The
calculations are straightforward. We get a localized solu-
tion @1, = 2h¢yd(z), which corresponds to 0%y given by
equation (39), as expected, and a wave reflected back in
the fluid, given by

lh(po — —iKkz
o1 = —7(% — e ) (49)
or 5
. h w —iwt+ikr—ikz
O (50)
(for z < 0).

Likewise, for a free surface, making use of equation (41),
we get a localized wave

Oy = —ihypokod(z)e Wtk (51)

which coincides with 09, given by equation (41), and a
reflected wave

_ ek’ i
b1 = 4k ¢ ' 2
where
hy = / drh?(r)e~@ (53)

(which depends on q) is the Fourier transform of the rough-
ness function squared (the integration is performed in
equation (53) over the unit area).

From the results derived above we can say, qualita-
tivey, that the perturbation-theoretical scheme of calcu-
lation is valid for the magnitude of the roughness func-
tion much smaller than the relevant wavelengths. For
instance, from equation (50) we have hw?/c’k <« 1, or
h « Acos 6,, where A is the wavelength of the scattered
wave and 6, is its reflection angle. From equation (52),
we can see that the waves scattered by a free surface
is a second-order effect, implying multiple (double) scat-
tering, within this approximation, as expected. For the
scattered waves localized on the surface, we may repre-
sent the o-function as extending over a distance of the
order of h,, = max h(r), and the perturbation-theory crite-
rion is satisfied for h(r) < h,,, where h(r) is the average
of the roughness function (the roughness function should
have a few "spikes" only). For a constant roughness func-
tion (q = 0), the criterion of series expansion is not sat-
isfied for localized waves, while the scattered waves are
reflected back along the original ®y-waves; this particular
case should be included in the original formulation of the
problem for the ®y-waves.

It is also worth noting that we have waves @4, scattered
back in the fluid only for an inhomogeneous roughness
(n # 0); for a homogeneous roughness we have only the
waves ®q; localized on the surface.

7. Discussion

The localized waves ®q; have the general form of the in-
coming wave e~ wi+ikor

modulated by the roughness function h(r) (for a fixed
surface) or h?(r) (for a free surface). If q is a char-
acteristic wavevector of these roughness functions and

k = ko + q, the velocity of the localized waves is given by
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¢s = wlk = cko/ksin 8, where 6 is the incidence angle
of the incoming wave. The directional effects are clearly
seen from the presence of k == /k{ + 2koq + g2 in the
denominator of this relation. It is worth noting that for
q = =*kg, i.e. for roughness functions (h(r) or h?(r)) modu-
lated with the same wavelength as the original ®o-wave,
there appear scattered waves with half the wavelength
of the original ®o-waves (wavevector 2kq) and, in addi-
tion, the whole surface suffers a vibration (independent of
the coordinate r), corresponding to k = 0, a characteris-
tic resonance phenomenon. The waves corresponding to
the wavevector 2ko have a velocity w/2ky, which is twice
as small as the original velocity on the surface. This is
indicative of the slowness phenomenon, associated with
rough surfaces.

The q = *ko resonance phenomenon is exhibited also by
the waves scattered back in the fluid. Another resonance
phenomenon may appear for £2koq+ g? = 0, which is the
well-known Laue-Bragg condition for the X-rays diffrac-
tion in crystalline bodies (or surface gratings) [14, 15, 37].
In this case k = ko, k = kg, and for ko and q antiparallel
the scattered waves propagate in opposite direction with
respect to the original incident ®g-waves.

A worth noting case corresponds to g > kp, when the
wavevector kK may become purely imaginary (xk ~ —q) and
the scattered waves are confined to the surface. According
to equations (19) and (21), the reflected waves are now
damped (~ e9) and their amplitudes are proportional to
the roughness functions h(r) or h%(r). These surface waves
are generated by the rough surface; they may be called
rough-surface waves.

As it is well known, the energy of the incident wave is
transferred to the reflected waves. In the present case,
it is transferred both to the specularly reflected waves
as well as to the scattered waves, including the waves
localized on the surface and the waves scattered back in
the fluid. Within our approximation, in the limit h — 0,
equation (D) gives the main contribution

2ct ,
e~ ?hztp(z)éz(z) (54)

for waves localized on a fixed surface and

4

e = 5 —hlpiKi6(2) (55)
for waves localized on a free surface. We can see that
the localized waves can store an appreciable energy, es-
pecially for a fixed surface, arising from the component
of the fluid velocity perpendicular to the surface. Indeed,
taking approximately 6/2(2) ~1/h? (and 8(z) ~ 1/h,,), we
get the ratio of the energy density stored on a fixed sur-
face (equation (54)) to the energy density of the incident

wave of the order of =~ h?A?/h?, which may achieve large
values even for h/h, <« 1, for wavelengths A much longer
than the extension h,, of the surface roughness. This re-
sult reflects the large kinetic energy of the fluid particles
acting upon a fixed surface.

Using equations (50) and (52), we can calculate the reflec-
tion coefficients of the scattered waves (the ratio of their
amplitude to the amplitude ¢, of the incident wave): R =
inhw?/2c%k for a fixed surface and R = nhokyw?/4c%k for
a free surface. It is worth noting the directionality effects
exhibited by these reflection coefficients, through « ap-
pearing in the denominator. The energy density carried
on by the scattered waves is the square of these reflection
coefficients. We can see that the total amount of energy
carried on diffusively by the waves scattered by the sur-
face roughness implies sums of the form 3 |h(q)* /x*(q),
or) q |h2(q)|* /«%(q), where h(q) and h;(q) are the Four-
rier transform of the roughness function h(r) and, respec-
ticvely, h%(r) and k(q) = /&5 — 2koq — 2. In order to
maximize this energy, it is necessary, apart from partic-
ular cases of gratings (one, or a few wavevectors q), to
include as many Fourier components as possible, i.e. the
surface should be as "rough" as possible in order to have
a good attenuation, a reasonably expected result.
Finally, it is worth noting that, in a formally rigourous
treatment, we should "renormalize" the amplitudes of the
reflected original ®o-waves such as to include (accomo-
date) the scattered waves in the boundary conditions,
which is a well-known procedure specific to theoretical-
perturbation calculations.

8. Conclusion

Finally, we may say that a new model of small inhomo-
geneities (scatterers) in an ideal fluid has been introduced
here, which allows for including the effect the inhomo-
geneities may have on the elastic properties of the fluid
(parameter n). The classical results for one scatterer have
been re-derived by a new method of solving the wave
equation and the wave reflected by a half-space of uni-
formly distributed scatterers, as well as the wave diffracted
by a perfect lattice of scatterers have been derived. The
model can be extended to other types of inhomogeneities,
like, for instance, a rough surface, and may also be useful
in the complex problem of multiple scattering.

Further, we have introduced a model of inhomogeneous
surface roughness for a semi-infinite (half-space) homoge-
neous, isotropic, ideal fluid and solved the wave equation
for the waves scattered by this surface roughness in the
leading orders of approximation with respect to the rough-
ness magnitude. For a fixed surface, the scattered waves
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appear in the first-order aproximation, while for a free sur-
face they appear in the second-order approximation. The
scattered waves are of two kinds: waves localized (and
propagating only) on the surface (two-dimensional waves)
and scattered waves reflected back in the fluid by the sur-
face roughness. In some cases, the latter waves may be-
come confined to the surface (rough-surface waves). The
reflected waves are absent for a homogeneous roughness,
where there exist only localized waves.
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