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A linearized self-consistent variational approach is employed to investigate the (thermodynamic) stability 
of a classical plasma (electrons and positive ions). It is shown, by using this approach, that a classical 
plasma, which consists of ions “dressed” with electrons, has a well-defined thermodynamics. In the 
strong-coupling regime the “plasma” is a solid, while, on passing to the weak-coupling regime, it becomes 
gradually a liquid, a non-ideal gas, and, finally, in the weak-coupling limit, it behaves as an ideal classical 
gas. A van der Waals-type equation is established for the plasma non-ideal gas.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

There is a long-standing interest regarding the relation between 
a classical ensemble of neutral atoms, molecules (a gas) and its 
ionized (plasma) state. This problem may be termed the thermo-
dynamic stability (instability) of a classical plasma, in the sense of 
the existence of a finite lower bound to the energy of the plasma 
(distinct from the ensemble of neutral atoms, molecules). As it is 
well known, a classical ensemble of Coulomb interacting point-
like charges would be unstable, the stability being achieved by 
resorting to the quantum-mechanical behaviour of the electrons 
in atoms and the exclusion principle [1–4]. The problem is still 
debated at present [5–10]. We show in this Note, by means of 
a linearized self-consistent variational approach, that the classi-
cal plasma, which may be viewed as a collection of ions “dresed” 
with electrons, has a well-defined thermodynamics. In the strong-
coupling regime [11,12] the “plasma” is a solid, while, on pass-
ing to the weak-coupling regime, it becomes gradually a liquid, 
a non-ideal gas, and, finally, in the weak-coupling limit, an ideal 
classical gas. A van der Waals-type equation is established here 
for the plasma non-ideal gas. Probably the first authors who sug-
gested the existence of an ionic lattice as the “ground-state” of a 
plasma at (very) high densities were Kirzhnits [13] and Abrikosov 
[14,15]. Long-range ordered phases have been reported recently 
in cold, strongly-coupled plasmas by computer simulations [16,
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17]. Coulomb crystals of jellium and one-component plasmas are 
known since long [18,19].

The thermodynamics of classical plasmas has been extensively 
investigated by using the so-called Colulomb systems [20,21]. 
A Coulomb system is an ensemble of electrical charges like ions 
and electrons (and, sometimes, neutral atoms) with Coulomb in-
teraction, where the electrons are given well-defined positions, i.e.
the electrons are viewed as pointlike particles. Such approaches 
encounter difficulties, related not only to the long-range character 
of the Coulomb interaction (which may be removed by screening), 
but also to the singularities arising from the Coulomb interaction 
at short distances. These short-range singularities may be effective 
at high densities, where the electron positions may be close to 
the ion positions. It is well known, for instance, that a consistent 
classical treatment of the Coulomb systems requires an effective 
repulsion of charges of different signs, or the presence of a com-
pensating background (like in the jellium model). Usually, such 
difficulties are solved by making use of various model hypothe-
ses, though, naturally, they are cured by the quantum-mechanical 
behaviour of the electrons. For instance, relatively reasonable re-
sults are obtained by postulating that a strongly-coupled plasma 
has a quasi-crystalline structure [22–24]. A thorough critical anal-
ysis of the statistical mechanics of the Coulomb systems was made 
by Norman and Starostin [25] (see also Refs. [26,27]).

The novelty of the present paper consists in assuming that 
the electrons in a classical plasma are distributed with a statis-
tical (Boltzmann) density. This assumption leads straightforwardly 
to “dressed” ions, interacting through (screened) potentials which 
exhibit equilibrium positions. The main new result of the present 
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paper is included in equations (18) and (25), which give these po-
tentials. Having equilibrium positions (minima points), the ion-ion 
potentials may lead to a solid phase of the classical plasma, which 
occurs naturally (there is no need to be postulated). The “dressed” 
ions can then be treated statistically, and their thermodynamics 
can be derived. Also, by making use of the ion-ion potentials, an 
excluded volume is identified and a van der Waals-type equation 
is derived, which indicates a precursory liquid phase.

2. Screening

We consider a classical plasma consisting of a large (macro-
scopic) number N of identical ions with electric charge q (q > 0) 
and an equal number N of electrons with charge −q, confined 
to a large (macroscopic) volume V and interacting by Coulomb 
forces. For simplicity we consider one type of singly-ionized atoms, 
though the procedure described below is valid for Nα ions, α =
1, 2, ..., with charge zαq and N = ∑

α zα Nα electrons (where zα

is a positive integer). The ions are viewed as point particles, while 
the electrons are viewed as a fluid with density n(r), where r is the 
position vector. We leave aside for the moment the thermal motion 
of the ions and give the ions parametric positions Ri , i = 1, 2, ...N . 
We may expect such an ensemble to be unstable, as will be shown 
below, in the sense that the ions get “dressed” with electrons. We 
shall show here that the “dressed” ions exhibit thermodynamically 
stable phases.

We denote by a the mean separation distance between ions 
(electrons) and write the concentration as n = N/V = 1/a3. We 
assume T � h̄2/ma2, where T is the temperature of the electrons; 
this is the condition of classical thermodynamics of the electrons 
with mass m; also, we assume a � aH = h̄2/mq2, where aH is the 
Bohr radius and h̄ is Planck’s constant. We neglect any energy loss 
which may appear in plasma.

The potential �(r) generated by the electric charges in plasma 
satisfies the Poisson equation

�� = −4πq
∑

i

δ(r − Ri) + 4πqn(r). (1)

The solution of this equation can be written as

�(r) = q
∑

i

1

| r − Ri | − q

∫
dr′ n(r′)

| r − r′ | + f (r), (2)

where the function f (r) is a solution of the Laplace equa-
tion � f = 0. If we identify the interaction Coulomb potential �
through � = � + f , the potential energy of the plasma is given by

E p = 1
2 q2 ∑

i �= j
1

|Ri−R j | − 1
2 q

∫
drn(r)�(r)− 1

2 q2 ∑
i

∫
dr n(r)

|r−Ri |+

+ q
∑

i f (Ri) − q
∫

drn(r) f (r),
(3)

or

E p = 1
2 q2 ∑

i �= j
1

|Ri−R j | −q2 ∑
i

∫
dr n(r)

|r−Ri | + 1
2 q2

∫
drdr′ n(r)n(r′)

|r−r′| +

+ q
∑

i f (Ri) − q
∫

drn(r) f (r),
(4)

where we recognize the ion-ion and electron-electron Coulomb re-
pulsion and the ion-electron Coulomb attraction. The function f (r)
plays the role of an external potential, whose effect in energy dis-
appears for f = const , as expected. For a uniform density of ions 
and electrons the potential � (equation (1)) and the potential en-
ergy given by equation (4) are vanishing. For pointlike electrons 
placed at r j an infinite attraction may arise for r j = Ri (we as-
sume that all Ri are distinct and, separately, all r j are distinct), 
with an infinite negative energy, which would mean the collapse of 
the plasma. Such a “catastrophic” situation may be avoided by the 
quantum-mechanical behaviour of the electrons inside the atoms.

The electron density is given by Gibbs distribution

n(r) = Cneβq�(r), (5)

where C is a normalization constant and β = 1/T is the reciprocal 
of the temperature T . The normalization constant C is obtained 
from

Cn

∫
dreβq�(r) = N. (6)

For a quasi-uniform potential � we may use the representation

eβq� = 1 + βq� + 1
2!β

2q2�2 + 1
3!β

3q3�3 + ... �

� 1 + βq�
(

1 + 1
2!βq� + 1

3!β
2q2�2 + ...

)
,

(7)

or

eβq� � 1 + γ βq�, (8)

where

γ = 1 + 1

2!βq� + 1

3!β
2q2�2 + ... (9)

and

�n = 1

V

∫
dr�n(r), n = 1,2,3... . (10)

Moreover, for a quasi-uniform potential � the correlations involved 
in �n , for any integer n in equation (10), can be left aside; we may 
replace �n by �n and write

γ = eβq� − 1

βq�
. (11)

The energy associated to the mean potential � plays the role of 
the chemical potential; the mean potential � is viewed here as a 
variational parameter for minimizing the energy.

Making use of this variational approach, we get from equa-
tions (5) and (6) the electron density

n(r) = Cn(1 + γ βq�), C = 1

1 + γ βq�
= e−βq�, (12)

where n(r) is a linear functional of the potential � (hence the 
denomination “linearized variational approach”).

Inserting the density n(r) given by equation (12) in equa-
tion (1), we get

�� = −4πq
∑

i

δ(r − Ri) + 4πCnq + 4πCγ nβq2�. (13)

We note that the neutrality of the plasma implies C = 1 and � = 0, 
γ = 1, a result which will be obtained below. Also, from equa-
tion (2) we expect � ≥ 0, due to the contributions of the regions 
where r is close to Ri . We write the potential � in equation (13)
as � = � − 1/γ βq and identify the function f (r) in equation (2)
as the constant f (r) = −1/γ βq; being a constant, f (r) does not 
contribute to the potential energy. Equation (13) becomes

�� = −4πq
∑

i

δ(r − Ri) + 4πCγ nβq2�, (14)

whose solution is the well-known Debye-Huckel screened potential 
[28]
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�(r) = q
∑

i

e−κ |r−Ri |

| r − Ri | ; (15)

the screening parameter is κ = (4πCγ nβq2)1/2. Making use of the 
potential � in equation (12), we can express the electron density 
as

n(r) = Cγ nβq�(r); (16)

the potential energy given by equation (3) becomes

E p = 1

2
q2

∑
i �= j

1

Rij
− κ2

8π

∫
dr�2(r)− κ2q

8π

∑
i

∫
dr

�(r)

| r − Ri | , (17)

where Ri j = Ri − R j . The integrals in equation (17) can be effected 
immediately (they are two-centre integrals [29]); we get the po-
tential energy

E p = −1

4
q2κ

⎡
⎣3N +

∑
i �= j

(
1 − 2

κ Rij

)
e−κ Rij

⎤
⎦ . (18)

From equations (15) and (16) we can see that each ion is sur-
rounded by an electron cloud extending, approximately, over dis-
tances of the order κ−1. Also, from equation (18) we can see that 
these “dressed” ions have a self-energy −(3q2κN/4) (the first term 
on the right in equation (18)) and interact by the screened effec-
tive (pseudo-) potential ∼ −(1 − 2/κ Rij)e−κ Rij ; this potential has 
a zero at Rij = 2/κ and a minimum at Rij = (

√
3 + 1)/κ . As it is 

well-known, the electrons “dress” the ions and screen the original 
Coulomb interaction. The electron-ion attraction and the electron-
electron repulsion contribute to the ion self-energy. The repulsive 
part of the interaction potential is due to the ion-ion Coulomb re-
pulsion. The same form of the ion-ion interaction potential has 
been derived in Ref. [30] for a solid-state (quantum) plasma.

3. Solid phase

The equilibrium is achieved for well-defined values of the pa-
rameters κ Rij , which ensure the minimum of the potential energy 
(interacting part) given by equation (18). The global minimum of 
the potential energy requires also the maximum value of the pa-
rameter κ = (4πCγ nβq2)1/2, i.e. the maximum value of the prod-
uct

Cγ = γ

1 + γ βq�
= 1 − e−βq�

βq�
(19)

(according to equations (11) and (12)). It is easy to see that the 
maximum value of this parameter is reached for � = 0, C =
γ = 1 (as expected from neutrality). For C = γ = 1 the screen-
ing parameter κ becomes κD = 1/λD = (4πnβq2)1/2, where λD =
a(aT /4πq2)1/2 is the well-known Debye length. Henceforth, we 
use κD for κ and λD for λ = 1/κ and remove the suffix D .

The equilibrium mean value of the parameters κ Rij is given 
approximately by κ Rij � √

3 + 1; making use of this value, the 
potential energy given by equation (18) can be written as

E p �−1

4
q2(4πnβq2)1/2

[
3+

√
3 − 1√
3 + 1

e−(
√

3+1)z

]
N �−3q2

4λ
N, (20)

where z is the mean number of nearest-neighbours; we can see 
that the interaction energy brings a small contribution in compar-
ison with the self-energy of the “dressed” ions. The equilibrium
configuration of N = 23 ions, resulting from numerical calcula-
tion (gradient method), is shown in Fig. 1. In quantum-mechanical 
terms this solid phase of the “plasma” may be viewed as its 
Fig. 1. Equilibrium configuration (solid state) of N = 23 ions, according to equa-
tion (18); configuration parameters xij = κRij are of the order xAB = 2.04, 
xBC = 2.4, xC D = 2.27, and bond angles are of the order (ABC) = 64.83, (AC D) =
(BC D) = 103.57 (degrees); the interaction energy is −1.2(q2/λ).

“ground-state”, though it is at a finite temperature. The frequency 
of oscillation ω0 of an ion in the potential well generated by its 
nearest-neighbours can be estimated from the potential given by 
equation (18); it is of the order ω0 � (zq2/Mλ3)1/2, where M is 
the ion mass. For a highly-compressed plasma the existence of an 
ionic lattice ground-state was suggested long ago [13–15].

The solid phase of the “plasma” exists for Rij � (
√

3 + 1)λ < a, 
i.e. for a < 1.68(q2/T ). It is convenient to introduce the length a0 =
q2/T and the notation as = 1.68a0; the ratio a/a0 = aT /q2 may be 
taken as the coupling parameter of the plasma. We can see that 
in the strong-coupling regime a 
 a0 the “plasma” is a solid. For 
a � as the vibration energy of an ion is comparable with the depth 
of the potential well and its vibration amplitude is comparable 
with the mean inter-ionic distance. If we compare the electron lo-
calization energy h̄2/mλ2 with the temperature T , we find that the 

quantum-mechanical solid appears for T <

√
4π(h̄2/ma2)(q2/a)

(which is, usually, smaller than the Coulomb energy q2/a). For 
a = as this condition becomes aH > 0.38a0. For T < 0.38(q2/aH )

we may view the “plasma” solid as a classical solid. This classical 
solid-phase is a distinct type of a classical solid; it may be termed 
a “plasmonic” solid, produced by inter-ionic (pseudo-) potentials 
which depend on temperature and density (equation (15)); in this 
solid phase the electrons behave classically. On passing to the 
weak-coupling regime, the “plasma” becomes gradually a liquid, a 
non-ideal gas, and, finally, in the weak-coupling limit a/a0 � 1, the 
plasma behaves as an ideal gas. This is the well-known condition 
of the existence of a (genuine) plasma [31–34]. A numerical exam-
ple of the parameter a0 is a0 � 10−7 cm for T = 104 K (electron 
charge −q = 4.8 × 10−10esu). The parameter a2

0 may be taken as 
the electron-electron collision cross-section in the weak-coupling 
limit of the plasma gas. (A similar, usually much larger, parameter 
exists for ions).

The above estimations are valid as long as the potential �

(equation (15)) is quasi-uniform, i.e. it differs little from its mean 
value ψ = 1/βq (� = 0). This condition is not fulfilled in small re-
gions surrounding the ion positions, so we may estimate the error 
by comparing

1

V i

∫
V i

dr
qe−κr

r
(21)

with � = 1/βq, where V i is a volume of the order λ3; we get 
the relative error � (a/λ)3, which is very small for λ � a (weak-
coupling regime). In the solid phase, when a is comparable with 
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λ (strong-coupling regime), we can get a more accurate estimation 
of the error by computing the self-energy

Es = −1

2
q

∫
V i

drn(r)�(r) − 1

2
q2

∫
V i

dr
n(r)

r
(22)

associated with the volume V i per ion (equation (3)); we get 
Es = −(q2/4λ)[3 − (1 + 2e)/e2], which should be compared with 
−(3q2/4λ) given by equation (20). We get a relative error � 0.28
and we can see that equation (20) provides a lower bound to the 
binding energy.

4. Liquid phase. van der Waals equation

According to equation (18), the potential energy of the plasma 
may be written as

E p = N�0 + 1

2
N�i, (23)

where

�0 = −3

4
q2κ = −3q2

4λ
(24)

is the self-energy and

�i =
′∑
j

U i j, Uij = −1

2
q2κ

(
1 − 2

κ Rij

)
e−κ Rij (25)

is the interaction energy of the i-th ion, generated by the two-
particle interaction Uij ; the prime on the summation means j �= i. 
We note that Uij is positive for Rij < 2λ and negative for Rij > 2λ. 
Two distinct regimes of interaction can be identified in the en-
semble of ions “dressed” with electrons, depending on the rela-
tion between the mean separation distance a and the length 2λ

(the third regime of interaction, which leads to the solid phase, is 
identified above by Rij = (

√
3 + 1)λ = a). If a 
 2λ, i.e. a � πa0

(weak-coupling regime), the positive part of the screened interac-
tion inside the sphere with radius 2λ (which may be called the 
Debye sphere) is cancelled out by the negative part of the interac-
tion generated by the ions lying outside this sphere. Indeed, from 
equation (25) we may write

�i = − Nq2κ

2V

∫
dR

(
1 − 2

κ R

)
e−κ R = 0. (26)

In these conditions the ions are practically free (with a small self-
energy) and, since the Debye length λ is very large, the electrons 
may also be viewed as being free; in this weak-coupling regime, 
we have a genuine plasma, which behaves very much as an ideal 
gas. As long as 2λ decreases and become comparable with a, the 
situation changes. For a � 2λ the Coulomb repulsion dominates, 
and the ensemble of ions behaves as if it would have an ex-
cluded volume. It follows that the condition 2λ = a provides the 
excluded-volume parameter of a van der Waals-type equation; the 
solution, denoted al , of the equation 2λ = a is al = πa0. It should 
be compared with the solution, denoted as above, of the equa-
tion Rij � (

√
3 + 1)λ = a, which is the condition of occurrence of 

the solid phase; we get as = 4πa0/(2.73)2 � 0.5al (smaller than 
al). If we compare the electron localization energy h̄2/mλ2 with 
the temperature T for a = al , we get that the liquid phase may be 
viewed as a classical liquid (where electrons behave classically) for 
T < 2.46(q2/aH ).

The change in the free energy brought about by the interaction 
is given by
Fig. 2. van der Waals isotherms p(v) = Ti/(v − 1) − 1/v3/2 (equation (29)) for re-
duced pressure p and volume v = V /N; from top to bottom the temperatures are 
Ti = 0.5, 0.429, 0.4, 0.385, 0.35, 0.3.

�F = −Ti ln

⎛
⎝ 1

V N

′∫
e−βi E p dr1...drN

⎞
⎠ , (27)

where Ti is the ion temperature (βi = 1/Ti ) and the prime means 
integration over the whole volume minus the excluded volume b =
1
2 · 4πa3

l /3 (the factor 1/2 arises from counting twice this volume 
in the integration over the independent variables ri , i = 1, 2, ...N , 
in equation (27)). Making use of equations (23)-(26), we get

�F = −NTi ln

(
1 − Nb

V

)
+ N�0 (28)

and the van der Waals-type equation[
p + α(N/V )3/2

]
(V − Nb) = NTi, (29)

where p is the pressure and the notation α = 3
4 q2√πa0 is intro-

duced (b = 2π4a3
0/3). Equation (29) can be viewed as the equation 

of state of a classical plasma. It differs from the equation of state 
of a classical plasma with continuously-distributed ions [35].

The (N/V )3/2-term in equation (29) is well-known. It was de-
rived in Ref. [28] for electrolytes (with a different numerical coeffi-
cient; it is related to the correlation energy [36]). A possible phase 
transition indicated by this term was first discussed by Norman 
and Starostin [37]. Experimental results which may be interpreted 
as confirming such a transition are discussed in Ref. [38].

The van de Waals equation for plasma (29) differs from the 
standard van de Waals equation (for gases with short-range in-
teraction) by the power (N/V )3/2 in the internal pressure (aris-
ing from the ionic self-energy) instead of (N/V )2. Formally, this 
may not look as a qualitative difference. However, a qualitative 
difference appears from the relation between the parameters α
and Tib. While in the standard van der Waals equation this re-
lation prevents, usually, the pressure to acquire negative values, 
in plasmas such a circumstance may appear; this is due to the 
long-range character of the Coulomb forces. The pressure given by 
equation (29) has an asymptote at the excluded volume V = Nb, 
two extrema and one inflexion point (the pressure is positive for 
Ti > 2α/3

√
3b = T /(2π)3/2), depending on the temperature Ti . 

A few van der Waals isotherms given by equation (29) are shown 
in Fig. 2. The inflexion point occurs at the critical values V c = 5Nb, 
Tic = 24α/25

√
5b1/2 and pc = α/25

√
5b3/2. It is worth noting that 

the critical temperature can be written as

Tic = 18
√

3 q2

= 18
√

3
T � 7 × 10−2T . (30)
25π 10π a0 25π 10π
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In the region near the asymptote the repulsive Coulomb part of 
the interaction dominates, while the unstable region with negative 
pressure is caused by an excess of self-energy. The two extrema 
of the function p(V ) given by equation (29) correspond to liquid-
gas mixed phases of the “plasma”; for V close to the excluded 
volume Nb, i.e. for a close to al , the “plasma” is a liquid. In the 
narrow region between al and as (as � 0.5al) the “plasma” is in 
a solid-liquid mixed phase; and for a smaller than as the “plas-
ma” is a solid. All these regions correspond to the strong-coupling 
regime. It is worth noting that in the strong-coupling regime the 
electrons are strongly correlated with the ions and their tempera-
ture T is only a parameter. The thermodynamics of the ensemble 
(“dressed” ions) is controlled by the ion temperature Ti 
 T . We 
can see from equations (29) and (30) that there is no critical point 
for T = Ti . Moreover, for T = Ti equation (28) gives the correlation 
energy E = −T 2 ∂

∂T (�F/T ).

5. Conclusion

In conclusion, we may say that the classical plasma investi-
gated here by means of a linearized self-consistent variational 
approach consists of ions “dressed” by electrons, which interact 
by a screened (pseudo-) potential. This potential exhibits minima 
which may accommodate the ions in a solid phase. In the strong-
coupling regime the ensemble is in a solid-state phase, while, on 
passing to the weak-coupling regime, the ensemble becomes grad-
ually a liquid, a non-ideal gas, and, finally, an ideal gas. We may 
say that a classical plasma, i.e. an ensemble of electrons and pos-
itive ions, has a consistent thermodynamics. The solid, liquid and 
non-ideal gas phases of the classical plasma are identified here. 
The method used in this paper is provided by a linearized self-
consistent variational approach where the electrons are described 
by their statistical (Boltzmann) distribution (density).
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