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Abstract. According to the standard theory, a spatially-extended (diffuse) dou-
ble layer is assumed to occur in charged colloids (suspensions), leading to repulsive
forces that might compensate, at relevant distances, the attractive molecular forces. It
is shown in this paper that a surface double layer of atomic dimensions is present at
the surface of neutral condensed bodies, which originates in the cohesion of the con-
densed matter. This surface double layer generates exponentially small forces, with
a (negative) exponent of the order of the ratio of the distance to the mean distance
between the atomic constituents. Such colloids may be termed neutral colloids. The
forces generated by the surface double layer are too small to compensate the attrac-
tive molecular forces and to ensure the equilibrium at relevant distances. The surface
double-layer forces are calculated here explicitly for half-spaces and spheres, both in
vacuum and in a material medium. The examination of the dynamics of the neutral
colloids leads to the conclusion that, very likely, a (quasi-) equilibrium may be attained
for mean separation distances between the colloidal particles much larger than their
plasma wavelength, where the molecular forces become, practically, ineffective. For
charged colloids (charged, for instance, by electrolyte dissociation) the electric interac-
tion of the ions and colloidal particles requires the application of the cohesion theory
of electrically-interacting particles, which may lead to particle stabilization, or even
aggregation. The equilibrium mean separation distance is estimated here within this
theory and the Hardy-Schulze-Ostwald law is obtained.
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1. INTRODUCTION

It is well known that lyophobic colloids (and suspensions) are subject to attrac-
tive molecular forces (van der Waals-London-Casimir forces) [1, 2]. Other forces
which may appear in these colloids are either particular or too small, such that they
may be left aside in the present discussion. At the same time, the current DLVO
(Deryagin-Landau-Verwey-Overbeek) theory of charged lyophobic colloids assumes
that spatially-extended double layers generate repulsive forces which, combined with
the attractive forces, may ensure equilibrium at relevant distances, at least for long
periods of time [3, 4]. The interface which may appear at the contact of two con-
densed phases diminishes gradually the effects of the double layer [5] (as it is known
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in emulsions or, especially, in semiconductors). The DLVO theory is the current stan-
dard theory of lyophobic colloids (see, for instance, Refs. [6]-[9]); it is viewed as ac-
counting satisfactorily for the stabilization, aggregation and, generally, dynamics of
the colloidal suspensions, by means of the spatially-extended (diffuse) double layer,
assumed to appear in charged colloids, as a consequence of the particle-medium in-
terface. However, a number of issues are raised by this theory, which are discussed in
this paper. A critical survey of the DLVO theory, partly from different perspectives,
is given in Refs. [10, 11].

Our previous work [12]-[16] in the cohesion theory of the condensed matter
shows that a double layer of atomic dimensions appears at the surface of the neu-
tral condensed bodies (in vacuum or in a material medium), as a consequence of the
cohesion forces. We call it a surface double layer, in order to distinguish it from
the spatially-extended (diffuse, Gouy-Chapman) double layer. Its occurrence may
already raise a problem for the theory of colloids. We analyze this surface double
layer in the first part of the present paper; the charged colloids are treated in the
second part. It is shown that the forces generated by the surface double layer are ex-
ponentially small, with a (negative) exponent of the order of the ratio of the distance
to the atomic-scale distances. Consequently, these forces are much smaller than the
attractive molecular forces for any distance much larger than atomic distances. We
calculate in this paper the surface double-layer forces for half-spaces and spheres,
both in vacuum and in a material medium. These forces are attractive for half-spaces
and repulsive for spheres. While they are small for all distances of interest, they ac-
quire high values over distances of the order of the atomic distances. The electric
field of the surface double is limited to the atomic vicinity of the surface. In the
bulk of the medium the forces generated by the surface double layer are vanishingly
small. We call such a colloid a neutral colloid. It follows that the equibrium of the
neutral lyophobic colloids (suspensions) cannot be attained without special condi-
tions. The analysis of the dynamics of the neutral colloids made here leads to the
conclusion that, very likely, a (quasi-) equlibrium may be attained for mean separa-
tion distances between particles much larger than their plasma wavelength, where the
molecular forces become, practically, ineffective. The analysis of the surface double
layer made here may help clarify results obtained usually in the diffuse double-layer
theory.

In the presence of a small amount of electrolyte (or by various other means) the
surface of the colloidal particles may acquire electric charges. The charged colloid
particles and the in-between ions interact by electric forces. In this case it is necessary
to resort to the cohesion theory mentioned above. The double layer theory is usually
restricted to computing the interaction energy (forces) between a pair of particles,
but, in order to estimate the equilibrium, we need the total energy of the ensemble,
because the interaction implies long-range forces. For many, small particles, as in a
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colloidal ensemble, the total surface is comparable with the total volume, such that
it brings an important contribution to the total energy (“surface energy” [17]). This
contribution is taken into account by the cohesion theory. Within this theory we show
here that the charged colloids may be stabilized (aggregated), or even flocculated at
small distances (without resorting to attractive molecular forces). The equilibrium
mean separation distance is estimated here in this case within the framework of the
cohesion theory of electrically-interacting particles and the Hardy-Schulze-Ostwald
law is obtained. We assume in this paper that the cohesion modifications of the
interface occur over distances of the order of the atomic distances (as for a perfect
contact), and the interface remains well-defined over distances of this order.

We include here a brief comment on the current use of the Debye-Huckel the-
ory for colloids, where there are a few basic points which need attention. A density
of positive and negative ions n± = ne∓qϕ/T is usually assumed, where n is the con-
centration of ions, ±q are the ion charges, ϕ is the electric potential generated by
these ions and T is the temperature. The Poisson equation is usually written as

∆ϕ= 4πnq
(
eqϕ/T −e−qϕ/T

)
' κ2ϕ , (1)

where κ2 = 8πnq2/T and, for simplicity, qϕ/T is assumed to be much smaller than
unity. First, we can see that there is an imbalance of charge in equation (1), which
indicates that we need boundary conditions, as it is well known. The boundary con-
ditions ensure the global charge neutrality. If we take as a boundary condition a
point-like ion, then the solution has the well-known form ϕ ∼ e−κr/r, where r is
the distance from that ion. However, in that case the corresponding density of ions
in equation (1) should be absent, since the source terms are distinct from boundary
conditions, and they should not be counted twice. The solution is given in that case
by the change caused by the potential ϕ in the density of the other type of ions, and
the parameter κ2 becomes κ2 = 4πnq2/T [15]. The same is valid for ions placed on
the surface of the domain, for instance on a plane surface, where the solution has the
form ϕ ∼ e−κx, x being the distance from the surface. In these cases there is only
one species of ions in the charge distribution included in equation (1). More exactly,
there is only the charge excess which is relevant as a source term in equation (1).
Unfortunately, this misleading circumstance is often overlooked.

Second, there is a problem with the approximation of the type n+ =ne−qϕ/T '
n−nqϕ/T + ... in the Debye-Huckel equation. It was shown [15] that the contribu-
tion of the constant term n may be absorbed in the potential and has no effect in the
interaction energy, while higher-order terms in the expansion of n+ bring negligi-
ble contributions in the dilute (weak-coupling) limit. However, close to equilibrium,
the interaction energy computed with this approximation may be overestimated by
' 30% [15].
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Third, it is usually assumed that the temperature in the expression of κ is the
colloid temperature, while, in fact, it is the dissociation temperature, because the
ionic dissociation occurs under the action of the electrical forces of the surrounding
medium, not under the thermal action of the medium (though the thermal motion of
the medium may help the effect of the electric forces to increase); it is easy to see
that the dissociation process is a statistical process, with the temperature of the order
T ' q2/a, where a is a distance of the order of the atomic distance in the electrolyte
molecule. This is why there is no need, in fact, to compute the free energy (the
temperature T which enters the parameter κ and the mechanical energy is distinct
from the colloid (medium) temperature). We note that the dissociation process is
distinct from the thermal motion of the ions (electrolyte molecules) in the medium.

Finally, we note that the proper Debye-Huckel equation with proper boundary
conditions may lead to a two-particle interaction energy which is attractive at long
distances and has a negative minimum (without including molecular forces), in con-
trast with the standard results of the double-layer theory; this is shown in this paper
for charged spherical colloidal particles. Although equation (1) is often used as a
starting point for electrolytes or homogeneous weakly-interacting plasmas, its appli-
cation to colloids (which originates with the work of Gouy [18] and Chapman [19])
can be misleading.

2. PLASMA MODEL

In a condensed phase (solid, liquid) the electrons and the ions are redistributed
with respect to the neutral-atom (molecule) state. A similar situation occurs in a
plasma. The Coulomb energy associated with this charge redistribution leads to co-
hesion. We may view such a condensed-phase model as consisting of N identical
ions with charge q and N identical negative ions with charge −q, where q is con-
nected with the chemical valency; the electrons may play the role of the negative
ions. It is not necessary for our discussion to specify the valency, nor the number of
ions in a dissociated (distorted) molecule; it is sufficient to impose the charge con-
servation. Similarly, we may extend the discussion to several species of ions. The
charge redistribution generates an electric potential. At any point in the sample we
are near an ion which is surrounded by a cloud of counter-ions; therefore, we may
attribute a position Ri to that ion (i= 1,2, ...N ) and a density n(r) to the surround-
ing counter-ions. The less-mobile q-ions are given positions Ri and the more mobile
−q-ions (counter-ions) are described by density n(r). The potential ϕ should satisfy
the Poisson equation

∆ϕ=−4πq
∑
i

δ(r−Ri) + 4πqδn(r) , (2)
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where δn(r) is the (small) change in the density with respect to the neutral-atom
(molecule) state.

For metals consisting of cations and electrons at high densities δn(r) is the
density of the collective electrons in the Fermi sea. The relationship 4πqδn(r) = κ2

ϕ(r) exists between this density and the potential, where κ is a variational parame-
ter determined from the cohesion condition (minimum of the energy); it is found
κa ' 1, where a is the mean separation distance between the ions (concentration
n = 1/a3) [12]. For a classical plasma (where the temperature effects are rele-
vant), consisting either of cations and electrons, or of both types of ions, the den-
sity is n(r) = neqϕ(r)/T and δn(r) ' nqϕ(r)/T , where T is the temperature of the
counter-ions; in this case 4πqδn(r) = (4πnq2/T )ϕ(r) and κ2 = 4πnq2/T [15]. This
is Debye-Huckel theory, where 1/κ = a

√
Ta/4πq2 is the Debye screening length.

Therefore, in both cases equation (2) becomes

∆ϕ=−4πq
∑
i

δ(r−Ri) +κ2ϕ(r) (3)

(to be compared with equation (1)). The solution of this equation is the screened
Coulomb potential

ϕ= q
∑
i

1

|r−Ri|
e−κ|r−Ri| ; (4)

its vanishing at infinity ensures the charge conservation, which can readily be checked
in equation (3). The ion-counter-ion attraction, the repulsion between counter-ions
and the repulsion between the ions leads to the total interaction (potential) energy
[12, 15]

Epot =−3

4
Nq2κ− 1

4
q2κ

∑
i 6=j

(
1− 2

κ |Ri−Rj |

)
e−κ|Ri−Rj | (5)

(the details of calculation are given below, for the more general case of charged col-
loids). We can see that the total potential energy given by equation (5) includes ionic
self-energies (−3q2κ/4) and inter-ionic potentials (summation over i 6= j), which
exhibit minima. At long distances these potentials are attractive, while at short dis-
tances they are repulsive. Therefore, at low ionic temperatures and high densities we
may have solids, with a precursory liquid phase, i.e. we may have cohesion. The
equilibrium of the ionic ensemble is obtained by minimizing (numerically) the total
energy given by equation (5) with respect to κ |Ri−Rj | [12, 15]. Similar results
hold for distinct species of ions [16].

For metallic solids the minimum of the total energv gives equilibrium positions
for ions and κa ' 1 [12]. Qualitatively similar results hold for covalent bonding.
Also, the transition to a liquid followed by a solid state is shown by using equa-
tion (5) for a classical plasma [15]. In that case the transition to the liquid state,
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which also occurs for κa ' 1, is predicted by a van der Waals equation of state for
a plasma gas with interaction (non-ideal gas). The counter-ion temperature is suffi-
ciently high in that case that the equilibrium condition κa' 1 is fulfilled; for slightly
higher densities or lower ion temperatures a liquid-solid transition occurs. These re-
sults hold both for electron-ion and ion-ion plasma. The plasma becomes a liquid for
κa =

√
4πnq2/Ta ' 1, i.e. for a Debye length of the order of the mean separation

distance a, where the coupling parameter q2/aT is of the order unity (q2/aT ' 1).
For a Debye length slightly shorter than a, the plasma becomes a solid, first a classi-
cal (“plasmonic”) solid, thereafter, for slightly higher densities, when the quantum-
mechanical behaviour begins to dominate, a quantum solid [15]. For two species of
ions the equilibrium positions given by the minimum of the interaction potentials in
equation (5) are for one species of ions (q-ions), the counter-ions being distributed
symmetrically in the screeaning cloud (which extends over a nearest-neighbour re-
gion), such as to minimize the repulsion energy when passing from a continuous den-
sity to a discrete one (ionic solids). The plasma model described here may be used as
a representative model for the cohesion of solids and liquids. This model is applied
to homo-atomic metallic clusters [12]-[14], classical two-component plasmas [15]
metallic binary clusters [16], and heavy atoms [20]. Basically, it is a quasi-classical
model, which admits (small) quantum-mechanical corrections. We show below that
it can also be applied to charged colloids.

3. HALF-SPACE

For finite-size bodies the cohesion potential given by equation (4) gives rise
to a surface double-layer. Let us consider a uniform distribution of ions in the half-
space x < 0 with a plane surface at x= 0 (continuum approximation). The potential
ϕ given by equation (4) is

ϕ=

{ 4πnq
κ2

(
1− 1

2e
κx
)
, x < 0 ,

2πnq
κ2

e−κx , x > 0
(6)

and the potential energy (equation (5)) is

Epot =−3

4
Nq2κ+

πnq2

2aκ3
Ns , (7)

where Ns is the number of surface ions. The minimization of the energy with res-
pect to κ brings a correction proportional to Ns/N � 1 to κa ' 1, which may be
neglected. Making use of ∆ϕ=−4πρ, we get the charge density

ρ=−1

2
nq · sgn(x)e−κ|x| (8)
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and, from 4πncq = κ2ϕ, the counter-ion density

nc =

{
n
(
1− 1

2e
κx
)
, x < 0 ,

1
2ne

−κx , x > 0 .
(9)

We can see that the internal face of the surface (x < 0) is depleted of counter-ions,
which spill over its external face (x > 0). This is a surface double layer, which
extends over distances of the atomic-scale order (κ ' 1/a). The surface energy in
equation (7) gives the surface tension. The energy needed for taking a counter-ion
from the surface (x = 0) to infinity, qϕ(x = 0+) = 2πnq2/κ2, is the work function
of the material [21, 22]. The vibrations of the surface double layer (perpendicular to
the surface) are the surface plasmons with frequency ω0/

√
2, ω2

0 = 4πnq2/m, where
m is the mass of the counter-ion. Also, the double-layer potential gives rise to a
surface scattering lifetime of the electrons. The tunneling of the ions through the
double-layer potential barrier generates the structured interface at the contact of two
condensed phases. The apparition of this interface diminishes gradually the effects
of the surface double-layer [5].

Making use of the potential ϕ and the charge density ρ (equations (6) and (8)),
we can compute the self-energy of a half-space; it is given by

Es =
1

2

∫
drϕρ=

πn2q2

2κ3
S =

πnq2

2aκ3
Ns , (10)

where S is the area of the surface; we can see that the self-energy is the surface energy
in equation (7) (in the continuum approximation the ion self-energy −3Nq2κ/4 is
lost). Similarly, the interaction energy between two (identical) half-spaces with par-
allel surfaces separated by distance d (in vacuum) is

U =−πn
2q2S

κ3
(1 +κd)e−κd ; (11)

the force acting between these two bodies is

F =−πn
2q2S

κ
de−κd . (12)

We can see that the force is attractive, with a minimum for d = 1/κ ' a, which
indicates the tendency of the two bodies to collapse into one body.

A comparison of this force with the van der Waals-London-Casimir force shows
that the former is much smaller (in absolute value) for distances much larger than
atomic distances. This is due to the abrupt exponential fall of the double-layer force,
as shown in equation (12) (κ' 1/a� d). However, for distances of the order of the
atomic distance a the force given by equation (12) is large (F ' q2/a2 per atom).
This force, together with the Coulomb repulsion of the ions (which is absent in the
continuum approximation) ensures the cohesion [12–16].
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The Casimir force between two identical (metallic) half-spaces is FC =−π2~c
S/240d4, valid for d� c/ω0 (where ω0 is the plasma frequency); the van der Waals-
London force is FW = −~ω0S/32π

√
2d3 (for dielectrics small numerical factors

may appear) [23, 24]. For (not very small) colloid particles the plasma wavelength
λ= c/ω0 (of the order 103Å for ω0 = 1015s−1) is much larger than the mean inter-ion
separation distance, such that the van der Waals-London-Casimir force dominates the
double-layer force. The maximum value of the double-layer force (equation (12)) is
of the order q2/a2 per surface ion (κ ' 1/a), reached for distances of the order
d ' a, and the van de Waals force for this distance is of the same order ~ω0//a '
q2/a2 (we take a of the order of the Bohr radius); at these distances the two forces
are comparable, but at very small distances the van der Waals force is appreciably
modified by other forces, like solvation, hydrophobic or steric forces, whose nature
is only partially known [25]. At larger distance we should compare e−x with 1/x3,
where x= d/a; we can see that the inverse power dominates the exponential. This is
due to the large scale factor κ in the exponent of the double-layer force in comparison
with the lack of scale in the inverse-power laws of the molecular forces. The relevant
distances considered throughout this paper are distances much longer than the atomic
scale distances (d� a).

4. MATERIAL INTERFACE. THE MEDIUM

Let us consider two half-spaces in contact with a plane separation surface x= 0.
We denote all the quantities of the half-space x> 0 by the suffix 0 (material medium).
The potential of this ensemble can be written straightforwardly by using equation (6).
The self-energy per unit area of the surface is

Es =
πn2q2

2κ3
+
πn20q

2
0

2κ30
− 2πnn0qq0
κκ0(κ+κ0)

; (13)

we can see that apart from the self-energies of the two bodies there appears an inter-
action surface energy, as expected (it contributes to the construction of the interface).
We note that the potential of the interface given by equation (6), which includes two
κ, κ0-exponentials on each side (x> 0 and x< 0), differs from the potential given by
the electromagnetism of the macroscopic bodies, which includes only one exponen-
tial on each side. This is due to the fact that the electromagnetism of the macroscopic
bodies ignores the atomic structure of the interface. Also, the surface electric field
generated by a half-space is exponentially low, such that the ions of the other half-
space are not affected too much, except for those in the immediate neighbourhood
of the interface (especially for a large disparity betweeen the parameters of the two
half-spaces).

We consider now an ensemble of bodies, labelled by a, placed at ra. Each body
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generates a potential ϕa(r− ra), which can be calculated from equation (4). The
total potential is ϕ(r) =

∑
aϕa(r− ra) and the total electric field is E = −gradϕ,

E =
∑

aEa, Ea = −gradϕa (the charge density ρ is gven by ∆ϕ = −4πρ). The
total energy is given by

E =
1

8π

∫
drE2(r) =

1

8π

∑
a,b

∫
drEaEb , (14)

where the summation over a and b extends to all bodies. We can separate the self-
energy and the interaction energy U =

∑
a6=bUab, where the pair-wise interaction

energy can be written as

Uab =
1

8π

∫
drEa(r−ra)Eb(r−rb) =

1

8π

∫
drEa(r)Eb(r+rab) , (15)

rab = ra−rb being the distance between the a-th body and b-th body; hence, we can
calculate the force Fab =−∂Uab/∂rab acting between two bodies.

The presence of the medium and the differences between the bodies complicate
considerably the calculation. The complication arises from the finite spatial extension
of the bodies and the inter-body spatial region occupied by the medium, which must
be included in equation (4) for the calculation of the potentials. However, a great
simplification is obtained by allowing the medium to occupy the whole space and
writing the potential as

ϕ= ϕ0 +
∑
a

(ϕa−ϕ0a) , (16)

where ϕ0 is the potential of the medium calculated as if the medium occupies the
whole space and ϕ0a is the potential of the medium calculated as if the medium
occupies the volume of the a-th body. The potential ϕ0 calculated from equation
(4) is ϕ0 = 4πn0q0/κ

2
0; it is a constant and does not contribute to the electric field.

A further simplification is provided by the observation that the potential given by
equation (4) depends on the parameters q and n (or q and κ, since κ' n1/3), which
do not differ too much from body to body. Consequently, we calculate the difference
of the potentials in equation (16) as the first-order differential ϕa−ϕ0a = δϕa with
respect to these parameters. This procedure is in accordance with the continuum
approximation.

Let us apply this procedure to two identical half-spaces separated by a slab
which occupies the region 0 < x < d. It is convenient to view the slab as a body
immersed in a medium. We need the variation of the potential

ϕ= qn

∫
0<X<d

dR
1

|r−R|
e−κ|r−R| =

2πqn

κ

∫ d

0
dXe−κ|x−X| , (17)
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which generates the electric field

E =
2πqn

κ

[
e−κ|x−d|−e−κ|x|

]
. (18)

The interaction energy given by equation (15) is

U =−π
∫
dx
[
δ(qκ2)− qκ2δκ |x−d|

]
·

·
[
δ(qκ2)− qκ2δκ |x|

]
e−κ|x|e−κ|x−d|

(19)

(per unit area), where we use qn/κ = qκ2 (n = 1/a3 ' κ3). The main contribution
to this integral comes from the |x−d| |x|-term; keeping only this contribution is in
accordance with the continuum approximation. We get

U '−1

6
πq2κ(δκ)2(κd)3e−κd , (20)

where q and κ are the parameters of the slab and δκ = κ−κ0, κ0 corresponding to
the half-spaces. The result is valid for κd� 1. We can see that the force acting
between the two half-spaces is an attractive force. By comparing equation (20) with
equation (11) (the latter for two half-spaces in vacuum), we see that the effect of
the medium is the replacement of κ2 by (δκ)2. We note that the use of a dielectric
function (constant) of the medium is not appropriate, since the field varies spatially.

5. SPHERE

A spherical uniform distribution of ions in equation (4) gives the potential

ϕ=

{
4πnq
κ2

[
1− (1 +κr0)e

−κr0 sinhκr
κr

]
, r < r0 ,

4πnq
κ2

(κr0 coshκr0− sinhκr0)
e−κr

κr , r > r0 ,
(21)

where r0 is the radius of the sphere. For κr0� 1, equations (21) can be simplified
to

ϕ'
{ 4πnq

κ2
− 2πnq

κ2
r0
r e
−κ(r0−r) , r < r0 ,

2πnq
κ2

r0
r e
−κ(r−r0) , r > r0 .

(22)

This expression is similar with that corresponding to a half-space double-layer (equa-
tion (6)), except for the factor r0/r, as expected. The dynamics of the spherical dou-
ble layer gives the surface (dipole) plasmons, with the frequency ω0/

√
3, where ω0

is the frequency of the bulk plasmons.
Let us consider two identical spheres, one placed at the origin (0) and the other

R, separated by distance R and immersed in a medium. The leading contributions to
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the change they bring in the electric field in the limit κR� κr0� 1 are

δE0 =−2πnq
κ r0δκe

−κr r
r ,

δER =−2πnq
κ r0δκe

−κ|r−R| r−R
|r−R| .

(23)

The leading term in the interaction energy (equation (15)) is

U ' 5π2

3
q2κ(δκ)2r20(κR)2e−κR ; (24)

the force acting between the two spheres is a repulsive force. This force is much
smaller than the van der Waals-London force for distances much larger than the
atomic distances. Indeed, the van der Waals-London potential can be written as
UW = −C/R6; for distances much larger than the dimension of the spheres the
constant C is C ' 3~ω0v

2/64π2, where ω0 is the plasma frequency and v is the vo-
lume of the sphere [26]. By comparing UW with U given by equation (24) we get
U < |UW | at least for r0 & 10a.

We include here the interaction energy of a half-space and a sphere (same ma-
terial) separated by distance d (κd� κr0� 1),

U '−π
2

3
q2r0(δκ)2(κd)3e−κd ; (25)

the force is attractive, a feature specific to the infinite extension of the half-spaces.

6. DYNAMICS OF A NEUTRAL COLLOID

The separation regime between the van der Waals-London and the Casimir
forces is governed by the so-called plasma wavelength λ = c/ω0. A typical plasma
frequency for solids is ω0 = 1015s−1, which gives λ= 3×10−5 cm (0.3µm). If the
mean separation distance between the colloidal particles is larger than λ, the van der
Waals-London forces are ineffective; it remains the Casimir forces, which are very
small. For such distances the particles may be approximated by point-like particles.
In this case the Casimir forces are repulsive and go like 3~ω0v

2/32π2λ4d3, for d� λ
and identical particles, where v is the particle volume and d is the separation distance
between the particles [26]. For intermediate distances, the exact Casimir forces are
not known, but it is known that they are very small. In these circumstances we may
say that the colloidal particles are quasi-free.

If the mean separation distance between the particles is smaller than λ, the
van der Waals-London attractive force acts between the particles. This force can be
written as A/d7, where we may take approximately A' 9~ω0v

2/32π2 (for identical
particles; A = 6C, where C is introduced above) [26]. The total force acting upon
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a particle is practically vanishing, due to the rapid decreasing with the distance, ex-
cept for those particles placed inside a spherical shell of thickness λ at the periphery
of the spatial region occupied by the particles. This total force can be estimated
as ' (C/λ7)(λ3/d3). Under the action of this force the border of the spatial re-
gion occupied by the colloid, placed initially at R0, shrinks, such that we may write
N/R3 = 1/d3, where N is the total number of particles and R is the radius of the
spatial region of the colloid at any moment. Indeed, the contraction of the colloidal
region is very slow, such that the osmotic pressure ensures the thermal equilibrium at
any moment. The equation of motion of the radius R is MR̈ =−CN/λ4R3, where
M is the particle mass; the solution is

R=R0

(
1− 4CN

Mλ4R4
0

t2
)2

=R0

(
1− 9~ω0v

2

8π2Mλ4R0d30
t2
)2

, (26)

where d0 is the initial mean separation distance between the particles. The result
is valid for R0 � λ� d0 � v1/3. In the limit v −→ 0 the rate coefficient of the
time variation in equation (26) is very small, such that the ensemble can be at quasi-
equilibrium. However, for more realistic values of the parameters in equation (26)
the conditions of (quasi-) equlibrium are difficult to be met, and, very likely, the
ensemble is unstable (and collapse). We are led to conclude that the more realistic
condition of (quasi-) equlibrium is d� λ, i.e. the mean separation distance between
the particles is much larger than the plasma wavelength.

7. CHARGED COLLOIDS

We have discussed above neutral colloids. If a small amount of electrolyte
is added to the solution, an amount of dissociated ions tends to adhere to the col-
loidal particles. Also, the colloid particles may acquire electric charges by various
other agencies. The interaction between these particles is now governed by poten-
tials similar with those given by equation (5), which may lead to quasi-bound states
(according to the cohesion theory).

We consider a set of spherical colloidal particles labelled by i, each placed at
Ri, with a radius r0i and a surface charge Qi. The particle charge density is

ρp =
∑
i

Qi
4πr20i

δ (|r−Ri|− r0i) ; (27)

this charge density generates a potential ϕp =
∑

iQi/ |r−Ri| in the region com-
prised between the particles (outside region); inside the particles ϕp = 0. The inter-
action energy between the particles (Coulomb repulsion) is Ep = 1

2

∑
i 6=jQiQj/Rij ,

as expected, where Rij = Ri−Rj .
We assume that in-between the particles there is a concentration nc of undis-
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sociated charges (electrolyte molecules); they may dissociate in pairs of ±q-charges.
The q-charges go to the surface of the particles (irrespective of the sign of q), while
the −q-charges remain in-between the particles; we call these latter charges counter-
ions. All these charges generate a potential ϕ, such that a local change δnc =ncqϕ/T
occurs in the counter-ion density. The potential ϕ satisfies the Poisson equation

∆ϕ=−
∑
i

Qi
r20i
δ (|r−Ri|− r0i) +κ2ϕ , (28)

where κ2 = 4πncq
2/T . This equation is valid in the region comprised between the

particles (outside region), where the first term on the right plays the role of a bound-
ary condition (in a multiply-connected domain). Inside the particles the potential is
zero. The solution vanishing at infinity can be written as

ϕ=
∑
i

Q∗i
e−κ|r−Ri|

|r−Ri|
, (29)

where the constants Q∗i (effective charges) are determined from the charge conserva-
tion. Indeed, by integrating over the whole space, we get

4πQi = κ2Q∗i

∫
dr
e−κ|r−Ri|

|r−Ri|
, (30)

where the integration in equation (30) is performed over the whole outside region
(i.e., avoiding all the particles). It is convenient to integrate over the whole space
in equation (30) and subtract the integration over all the particles. The integrals are
elementary, and we get

Q∗i = [(1 +κr0i)e
−κr0i−

−
∑′

j(κr0j coshκr0j− sinhκr0j)
e−κRij
κRij

]−1Qi ,

(31)

where the prime on the summation over j means j 6= i. The first term on the right
in equation (31) comes from the i-th particle, while the summation over j 6= i comes
from all the other particles. We note that the finite size of the particles renormalizes
the charge Qi into an effective charge Q∗i . This renormalization arises from the
boundary condition to the potential in equation (28), imposed at the surface of the
particles. The renormalization factor for each particle depends on all the particles,
such that these factors give rise to many-particle forces in the ensemble. Also, we
note that the assumption of spherical particles simplifies greatly the calculations (for
particles with a general shape, the terms in the superposition of the potential ϕ are
not spherically-symmetric anymore). Although the potential given by equation (29)
looks like a superposition of double-layer potentials, it can be viewed in fact as a
multiple-layer potential, due especially to the effectve charges Q∗i , which depend on
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all the particles.
Equation (28) and the solution given by equation (30) are specific to the Debye-

Huckel theory (compare with equations (3) and (4)). The potential ϕ accounts for the
Coulomb attraction between particles and the counter-ions and the Coulomb repul-
sion between the counter-ions, such that, in computing the total interaction energy
we should add the particle-particle Coulomb repulsion Ep given above. The charge
density of the counter-ions is

ρc =−qδnc =−ncq
2

T
ϕ=−κ

2

4π
ϕ (32)

in the outside region and zero inside the particles. The total potential (interaction)
energy of the ensemble is given by

Epot =

∫
drρc

(
ϕ− 1

2
ϕc

)
+Ep =

1

2

∫
drρcϕ+

1

2

∫
drρcϕp+Ep , (33)

where ϕc = ϕ−ϕp is the potential generated only by the counter-ions; the term 1
2ϕc

should be subtracted in equation (33) because the interacting term ρcϕ counts twice
the counter-ions repulsion. The integration in equation (33) is extended to the whole
outside region. It is convenient to integrate in equation (33) over the whole space
and subtract the contribution of the regions occupied by particles. We introduce the
notation Epot = Ewpot+Eppot, where

Ewpot = 1
2

∫
drρcϕ+ 1

2

∫
drρcϕp+Ep =

=−κ2

8π

∫
dr
(
ϕ2 +ϕϕp

)
+Ep =

=−κ2

8π

∑
ijQ

∗
iQ
∗
j

∫
dr e

−κ|r−Ri|
|r−Ri|

e
−κ|r−Rj|
|r−Rj | −

−κ2

8π

∑
ijQ

∗
iQj

∫
dr e

−κ|r−Ri|
|r−Ri|

1
|r−Rj | +

1
2

∑
i 6=j

QiQj
Rij

(34)

is the part of the energy correspoding to the integration over the whole space, and

Eppot =
κ2

8π

∑
i

∫
|r−Ri|,<r0i

dr
(
ϕ2 +ϕϕp

)
(35)

is the part corresponding to the integration over the region occupied by the particles.
The integrals in equation (34) are double-centre integrals which can be effected by
using elliptic coordinates [12, 15]. They are given by∫

dr
e−κ|r−Ri|

|r−Ri|
e−κ|r−Rj |

|r−Rj |
=

2π

κ
e−κRij (36)
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and ∫
dr
e−κ|r−Ri|

|r−Ri|
1

|r−Rj |
=

{
4π
κ

1−e−κRij
κRij

, i 6= j ,
4π
κ , i= j .

(37)

We get

Ewpot =−κ
4

∑
i

(
Q∗2i + 2Q∗iQi

)
−

−κ
4

∑
i 6=j

(
Q∗iQ

∗
j −

Q∗
iQj+Q

∗
jQi

κRij

)
e−κRij−

−κ
4

∑
i 6=j

(
Q∗iQj +Q∗jQi−2QiQj

)
1

κRij
.

(38)

This is precisely the potential energy given by equation (5) for point-like (r0i = 0)
identical charges Q∗i = Qi = q. Equation (5), pertaining to the cohesion theory, is
extended here to charge spherical-shells.

The calculation of the integrals in equation (35) (i.e. the integrals in equations
(36) and (37) where the integration is restricted to a finite domain) is more compli-
cated. It is easy to see that the energy Eppot in equation (35) implies, besides particle
self-energy and pair-wise interaction potentials, many-particle interactions. Fortu-
nately, a great simplification comes from the observation that the mean inter-particle
distance Rij is larger than the mean radius r0i (and for a dilute ensemble it is much
larger). Therefore, we may restrict ourselves to the approximation κr0i� 1. Within
this approximation in the renormalization factor in equation (31) we may neglect the
contribution of the summation over j, which leads to an effective charge

Q∗i '
[
1 + (κr0i)

2
]
Qi (39)

(this is a self-particle renormalization). In the worst case where κr0i ' 1 the con-
tribution of the j-summation in equation (31) is of the same order of magnitude as
the self-particle contribution (κr0i)

2 in equation (39). Making use of this approxi-
mation we may calculate Eppot up to corrections of the order (κr0i)

2. We note that
the many-particle forces begin to appear with a third-order term ∼ (κr0i)

3. Using
(κr0i)

2Qi =Q∗i −Qi, we get

Eppot = κ
2

∑
i(κr0i)Q

2
i+

+3κ
4

∑
i 6=j

(
Q∗iQj +Q∗jQi−2QiQj

)
e−κRij
κRij

−

+κ
4

∑
i 6=j

(
Q∗iQj +Q∗jQi−2QiQj

)
1

κRij
,

(40)
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such that the total potential energy is

Epot = Ewpot+Eppot =−κ
4

∑
i

(
Q∗2i + 2Q∗iQi

)
+ κ

2

∑
i(κr0i)Q

2
i−

−κ
4

∑
i 6=j

[
Q∗iQ

∗
j −2

2(Q∗
iQj+Q

∗
jQi)−3QiQj

κRij

]
e−κRij ;

(41)

we note that unscreened Coulomb terms do not appear in the total energy, as ex-
pected. Apart from the particle self-energy, we get the pair-wise interaction potentials

Φij =−κ
2

Q∗iQ∗j −2
2
(
Q∗iQj +Q∗jQi

)
−3QiQj

κRij

e−κRij (42)

(in the interaction energy 1
2

∑
i 6=j Φij in equation (41)). In contrast with the double-

layer theory, the two-particle interaction potentials given by the cohesion theory in
equation (42) are attractive at infinity, where they go like -

(
κQ∗iQ

∗
j/2
)
e−κRij , in

agreement with Langmuir’s original observation [27] and subsequent discussions
[10, 11, 28]-[34]. The total potential energy given by equation (41) and the pair-wise
potentials given by equation (42) are valid up to the second-order terms (κr0i)

2� 1
(first non-vanishing correction to the interaction potentials). This is a satisfactory
approximation as long as Rij � r0i. Even in the unfavourable situation of a close
contact Rij = r0i+r0j we still have Rij > r0i, r0j , especially for large particles. For
small particles close to each other, the above approximation is not valid anymore; in
particular many-particle forces appear in this case.

The two-particle interaction potentials Φij exhibit negative minima, where the
particles may accommodate, if the temperature of the medium is not too high. This
would lead to the stabilization of the colloid. The attractive molecular forces con-
tribute to a small extent, since the equilibrium energy is an electrostatic energy of the
order Q∗iQ

∗
j/Rij , which, usually, is higher than the energy of the molecular forces

(in absolute value). The equilibrium configurations (which can be found numerically)
indicate a solid phase, in general disordered; for a large number of identical particles
the phase can even be ordered. However, in general, there are many sets of equilib-
rium configurations, differing from one another by small amounts of energy (like an
amorphous solid), such that there are large fluctuations between various equilibrium
configurations. For higher temperature of the medium the solid melts, such that we
have a colloidal liquid phase.

In order to get an insight into the nature of the potentials Φij we use mean
values r20 = r20i,Q=Qi,R=Rij and introduce the notationα= 1+r20; the potentials
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Φij can be written as

Φ =−1

2
κQ2

(
α2−2

4α−3

κR

)
e−κR ; (43)

this potential has a zero for κR = 2(4α− 3)/α2 (' 2 for α ' 1) and a minimum
for κR' 2.73 (α' 1), where the potential is Φ0 '−10−2κQ2 '−3×10−2Q2/R.
For a qualitative discussion we may take a mean equilibrium distance between the
particles of the order κR ' 1 and a minimum energy of the order Φ0 ' −Q2/R.
If Q2/R > Tc, where Tc is the temperature of the medium, we have a transition
to the solid phase; this condition reads also R3 = 1/γ < Q6/T 3

c , where γ is the
particle density; this is the familiar Hardy-Schulze-Ostwald law [35]-[37]. We note
that κR ' 1 implies R ∼ 1/

√
nc, a relation which has been known since long, both

experimentally and theoretically [38, 39].
In contrast with the cohesion theory for solids or plasmas, where the chargeQ is

equal to q, in colloid theory Q is a free parameter. Within the present approximation
we may write the counter-ion density as nc =Q/qR3 and κ2'

(
aQ/qR3

)
(q2/aT )'

1/R2 (leaving aside numerical factors like 4π/3 or 4π); since q2/aT ' 1 we get an
estimation of the equilibrium mean separation distance of the order R ' a(Q/q),
where a is a distance of the order of the atomic distance between the ions in the
electrolyte molecule (leaving aside the molecular forces). We can see that for large
values ofQ the distanceR is large, while for small values of the particle chargeQ the
distance R is small and the colloid may be flocculated (coagulated). It may happen
that the added electrolyte diminishes the particle charge, such that the equilibrium
distance R ' a(Q/q) decreases and the colloid becomes flocculated (aggregated).
It is plausible to assume that that the charge Q attached to a particle of radius r0 is
proportional to the surface of the particle (r0� ap, where ap is the mean separation
distance between the atomic constituents of the particle). The maximum value of
this charge is of the order Q= q(r20/a

2
p), such that we get R' a(r20/a

2
p). We can see

that small particles acquire a small charge and are more prone to aggregate at small
distances (coagulate), while larger particles may be stabilized at larger distances, as
expected.

It is worth noting that the colloidal stabilization (and aggregation) are discussed
here at thermodynamic equilibrium, where solid and liquid phases are identified (and
even a gaseous phase at large separation distance). Let us suppose that initially we
have a dispersed colloid, with a (mean) particle charge Q and a large (mean) sep-
aration distance R0. The initial counter-ion density is low and the initial value κ0
of the parameter κ is small. From equation (41) we have a configurational equilib-
rium for κ0R0 ' 1, with an energy minimum of the order−Q2κ0; the temperature of
the medium may be sufficiently large to overpass this minimum, such that we have
a gaseous phase, with attractive interactions between particles. Therefore, the en-
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semble begins to shrink down to smaller values R of the separation distance, where
the parameter κ has an enhanced value, which corresponds to a lower energy. If
the temperature of the medium is still higher than this energy minimum, we have a
(thermodynamically-stable) liquid phase; if, on the contrary, the energy minimum is
sufficiently deep, we have a stable solid phase and we may say that the colloid is sta-
bilized. In the solid phase the mean separation distance is given byR' a(Q/q); ifQ
is small, the colloid may even be flocculated (aggregated). At this stage, however, for
very small separation distances, the cohesion theory as described above breaks down,
because there appear many-particle forces, corrections to the energy minima and, in
addition, attractive molecular forces may bring their important contribution. How-
ever, if the aggregation process is not very much developed, peptization can not be
excluded, if the charges are removed, or mechanical means are applied. This applies
also to the stabilization phase, though it is difficult to assess the precise conditions of
reversibility/irreversibility of these phase transitions.

Another example is provided by a dense set of particles which get dispersed
in the medium. At the initial moment the particles release counter-ions and acquire
ionic charges. The counter-ions are placed initially outside the region occupied by
the particle set, and the particles are dispersed under the action of the Coulomb re-
pulsive forces. Thereafter, the counter-ionic atmosphere builds up around particles,
which may acquire equilibrium positions (get stabilized), as described above, or may
acquire a liquid phase around these equilibrium positions.

8. CONCLUDING REMARKS

It is shown here that a surface double layer of atomic thickness is a consequence
of the cohesion forces for finite-size bodies. The surface double-layer forces are
exponentially small, with the (negative) exponent of the order of the ratio of the
distance to the mean distance between the atomic constituents. Consequently the
repulsive forces generated by the surface double layer are too small to compensate the
attractive molecular forces at relevant distances. We may call such a colloid a neutral
colloid. It is likely that the stability of the neutral lyophobic colloids (suspensions)
may be attained for mean separation distances between the particles much larger than
the plasma wavelength, where the molecular forces become ineffective. The surface
double-layer forces are estimated here for half-spaces (where they are attractive) and
spheres, and the dynamics of the neutral colloids is analyzed.

For charged colloids the cohesion theory is employed to estimate their sta-
bility and aggregation conditions. We note that, in contrast with the double-layer
theory, the cohesion theory predicts an attractive force between colloid particles
placed at long distances. The inter-particle equilibrium distance is estimated by
means of the cohesion theory and the Hardy-Schulze-Ostwald law is derived. Solid
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and liquid phases are identified in charged colloids, and even a transition towards
a flocculated (aggregated) phase. The dynamics of the transitions towards these
thermodynamically-stable phases is discussed.
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