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ARTICLE INFO ABSTRACT

According to the standard theory, a spatially-extended (diffuse) double layer is assumed to occur in charged
colloids (suspensions), leading to repulsive forces that might compensate, at relevant distances, the attractive
molecular forces. It is shown in this paper that, in contrast with this standard double-layer theory, the electric
interaction of the ions and the charged colloidal particles requires the application of the cohesion theory of
electrically-interacting particles, which may lead to stabilization, or even aggregation of the colloid, in-
dependently of attractive molecular forces. The screened two-particle interaction which occurs in this case (in
the dilute limit) is attractive at long distances and repulsive at short distances, with a negative minimum. Many-
particle forces occur over short distances, which complicate considerably the situation. Solid and liquid phases
are identified here in charged colloids (and even a non-ideal gaseous phase with attractive interaction), the
equilibrium mean separation distance between the particles is estimated and the transition between various
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phases is discussed.

1. Introduction

It is well known that lyophobic colloids (and suspensions) are sub-
ject to attractive molecular forces (van der Waals-London-Casimir
forces) [1,2]. Other forces which may appear in these colloids are either
particular or too small, such that they may be left aside in the present
discussion. For instance, since we are not interested in the kinetics of
these colloids (but only in their equilibrium phases), we may left aside
the brownian and viscous (Stokes) forces. The current DLVO (Deryagin-
Landau-Verwey-Overbeek) theory of charged lyophobic colloids as-
sumes that spatially-extended double layers, which appear at the sur-
face of the colloid particles, generate repulsive forces, which, combined
with the attractive molecular forces, may ensure equilibrium at relevant
distances, at least for long periods of time [3,4]. The DLVO theory is the
current standard theory of lyophobic colloids (see, for instance, Refs.
[5-8]); it is viewed as accounting satisfactorily for the stabilization,
aggregation and, generally, dynamics of the colloidal suspensions, by
means of the spatially-extended (diffuse) double layer, assumed to ap-
pear in charged colloids, as a consequence of the particle-medium in-
terface. However, a number of issues are raised by this theory, which
are discussed in this paper. A critical survey of the DLVO theory, partly
from different perspectives, is given in Refs. [9,10].

Our work in the cohesion theory of the condensed matter [11-15]
shows that a double layer of atomic dimensions appears at the surface
of the neutral condensed bodies (in vacuum or in a material medium),

* Corresponding author.
E-mail address: apoma@theory.nipne.ro (M. Apostol).

https://doi.org/10.1016/j.chemphys.2019.110660

as a consequence of the cohesion forces. We call it a surface double
layer, in order to distinguish it from the spatially-extended (diffuse,
Gouy-Chapman) double layer, assumed to appear in charged colloids. It
may easily be shown (and, partly, it was shown in Refs. [13]) that the
forces generated by the surface double layer are exponentially small,
with a (negative) exponent of the order of the ratio of the distance to
the atomic-scale distances. Consequently, these forces are much smaller
than the attractive molecular forces for any distance much larger than
atomic distances. In particular, these forces are attractive for half-
spaces and repulsive for spheres. While they are small for all distances
of interest, they acquire high values over distances of the order of the
atomic distances. The electric field of the surface double layer is prac-
tically limited to the atomic vicinity of the surface. In the bulk of the
medium the forces generated by the surface double layer are vanish-
ingly small. It follows that the surface double layer may be viewed as
being irrelevant for the dynamics of the lyophobic colloids (though it
may contribute to charging the surface of the particles).

The surface of the colloidal particles may acquire electric charges.
The charged colloid particles and the in-between ions interact by
electric forces. In order to assess the effect of these forces, it is necessary
to resort to the cohesion theory mentioned above. Besides other diffi-
culties (to be discussed below), the double-layer theory is usually re-
stricted to computing the interaction energy (forces) between a pair of
particles, but, in order to estimate the equilibrium, we need the total
energy of the ensemble, because the interaction implies long-range
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forces. For many, small particles, as in a colloidal ensemble, the total
surface is comparable with the total volume, such that it brings an
important contribution to the total energy (“surface energy” [16]). This
contribution is taken into account by the cohesion theory. Within this
theory we show here that the charged colloids may be stabilized (ag-
gregated), or even flocculated at small distances, without resorting to
attractive molecular forces. Solid and liquid phases are identified in
charged colloids, and even a non-ideal gaseous phase, and the transition
between these phases is discussed. The equilibrium mean separation
distance between the particles is estimated. We assume in this paper
that the cohesion modifications of the particle-medium interface occur
over distances of the order of the atomic distances (as for a perfect
contact), and the interface remains well-defined over distances of this
order (a discussion of this point is given in Ref. [17]).

A few basic difficulties of the DVLO theory can be traced back to the
application of the Debye-Huckel theory to colloids. A density of positive
and negative ions n, = ne¥®/T is usually assumed, where n is the
concentration of ions, + g are the ion charges, ¢ is the electric potential
generated by these ions and T is the temperature. The Poisson equation
is usually written as

Ap = 47[nq(eq¢/T - e—lw/T) ~ K2¢, a

where ; here, for simplicity, qp/T is assumed to be much smaller than
unity (the dielectric constant of the medium may be included in the
charge q). First, we can see that there is an imbalance of charge in Eq.
(1), which indicates that we need boundary conditions, as it is well
known. The boundary conditions ensure the global charge neutrality
[18]. If we take as a boundary condition a point-like ion, then the so-
lution has the well-known form ¢ ~ e~*/r, where r is the distance from
that ion. In that case the corresponding density of ions in Eq. (1) should
be absent, since their contribution is included in the boundary condi-
tions (source terms), and they should not be counted twice. The solu-
tion is given in that case by the change caused by the potential ¢ in the
density of the other type of ions (counter-ions), and the parameter x>
becomes x? = 47nq?/T [14]. For external charges, placed, for instance,
on a plane surface of the domain, the solution has the form ¢ ~ e, x
being the distance from the surface; in that case both species of ions are
present in Eq. (1). If many external charges are present, all of them
should act as boundary conditions. This makes the solution to depart
appreciably from the usual solution, where only pairs of external
charges are considered. This is shown explicitly below. Noteworthy, in
all cases, it is the charge imbalance generated by the relative position of
the ions with respect to one another which generate screening.

Second, there is a problem with the approximation of the type
ny = ne¥®'T ~ n ¥ nqp/T + ...in the Debye-Huckel equation. It was
shown [14] that the contribution of the constant term n may be ab-
sorbed in the potential and has no effect in the interaction energy. This
reflects the average local neutrality for an infinite ensemble of charges.
The higher-order terms in the expansion of n_ bring negligible con-
tributions in the dilute (weak-coupling) limit. However, close to equi-
librium, the interaction energy computed with this approximation may
be overestimated by ~ 30% [14].

Third, it is usually assumed that the temperature in the expression
of x is the colloid temperature, while, in fact, it is the dissociation
temperature. The ionic dissociation occurs under the action of the
electric forces of the surrounding medium, and the dissociation process
is a statistical process with its own temperature T of the order ¢*/a,
where a is a distance of the order of the atomic distance in the dis-
sociating molecule. Indeed, the dissociation occurs when the Debye
length a\/aT/q* (=~ 1/x) is of the order a, such that T ~ ¢*/a [11,14].
This is why there is no need, in fact, to compute the free energy (the
temperature T which enters the parameter x and the mechanical energy
is distinct from the colloid (medium) temperature). We note that the
statistical dissociation process is distinct from the thermal motion of the
molecules (ions) in the medium.

Finally, we note that the proper Debye-Huckel equation with proper
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boundary conditions may lead to a two-particle interaction energy
which is attractive at long distances and has a negative minimum
(without including molecular forces), in contrast with the standard
results of the double-layer theory; this is shown in this paper for
charged spherical colloidal particles. Eq. (1) is the standard starting
point for electrolytes or homogeneous weakly-interacting plasmas, but
its application to colloids (which originates with the work of Gouy [19]
and Chapman [20]) can be misleading sometimes.

2. Charged colloids

The colloid particles may acquire electric charges on their surface
by various means. We consider a set of spherical colloidal particles
labelled by i, each placed at R;, with a radius r,; and a surface charge Q;.
The particle charge density is

Qi

P, = ——=0(Ir — Ryl — ryp;
"= 2 S @
this charge density generates a potential ¢, = 2, Qi/Ir — Ryl in the re-
gion comprised between the particles (outside region); inside the par-
ticles ¢, = 0. The interaction energy between the particles (Coulomb
repulsion) is E, = % E,.# QiQj/ Ry, as expected, where R; = R; — R;.

We assume that in-between the particles (outside region) there is a

concentration n of ions with charges + q (dissociated ions). The total
potential ¢ satisfies the Poisson equation

Ap = — Z %ié(lr — R — ry) + 4mtnq(e%%'T — ¢~9%/T)
T Toi 3)

(we assume the same temperature for both species of ions). This
equation is to be compared with Eq. (1). Not too close to the bare
particles, we may replace the exponentials in Eq. (3) by their first-order
expansion. The Poisson Eq. (3) becomes

Ap = — Z %5(Ir - Ry — 1) + x%p,
=~ 1 )

where k2 = 87nq?/T . We can see that the potential of the bare particles
is screened by the change dn = 2nqe/T in the ion density. According to
Eq. (4), the equilibrium may be achieved for particle density of the
order dn, which is itself of the order n (as it is shown explicitly below).
The particle charges are screened for all relevant distances and the
exponent lqe/ Tl is at most of the order unity, such that the approx-
imations used in deriving Eq. (4) are valid, except for very small inter-
particle distances; the value of the potential at equilibrium may be af-
fected by ~ 30% an error [14].

Eq. (4) is valid in the region comprised between the particles
(outside region), where the first term on the right plays the role of a
boundary condition (in a multiply-connected domain). Inside the par-
ticles the potential is zero. The solution vanishing at infinity can be
written as

e—x\r—R,‘l

¢=Zj: Q"._Ir—RiI’ ©)

where the constants Q; (effective charges) are determined from the
charge conservation. Indeed, by integrating Eq. (4) over the whole
space, we get

e—xlr—Ri\
47Q; = x*Q [ dr——,

Q’ Q f Ir — Ryl (6)
where the integration in Eq. (6) is performed over the whole outside
region (i.e., avoiding all the particles). It is convenient to integrate over
the whole space in Eq. (6) and subtract the integration over all the
particles. The integrals are elementary, and we get
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-1
X . e Rjj

Q=1 + xry)e ™0 — Z (xrycoshxry, — sinhxry;) " Qi

x.

j i )]

where the prime on the summation over j means j # i. The first term
on the right in Eq. (7) comes from the i-th particle, while the summation
over j # i comes from all the other particles. We note that the finite
size of the particles renormalizes the charge Q; into an effective charge
Q;'. This renormalization arises from the boundary condition in Eq. (4),
imposed at the surface of the particles. The renormalization factor for
each particle depends on all the particles, such that these factors give
rise to many-particle forces in the ensemble. It is worth noting that the
ion concentration n, entering the screening parameter x, affects the
renormalized charge Q" (not the bare charge Q;, of course). Also, we
note that the assumption of spherical particles simplifies greatly the
calculations (for particles with a general shape, the terms in the su-
perposition of the potential ¢ are not spherically-symmetric anymore)
[21,22]. Although the potential given by Eq. (5) looks like a super-
position of double-layer potentials, it can be viewed in fact as a mul-
tiple-layer potential, due to the summation over i and the effective
charges Q;", which depend on all the particles.

Eq. (4) and the solution given by Eq. (6) are specific to the Debye-
Huckel theory. The potential ¢ accounts for the Coulomb attraction
between particles and the ions and (partly) the Coulomb repulsion
between the ions, such that, in computing the total interaction energy
we should add the particle-particle Coulomb repulsion E, given above.
The density of the ion charge imbalance is

p=—gn=-2

7T ®

in the outside region and zero inside the particles. The total potential
(interaction) energy of the ensemble is given by

1
B = [ drp(fp - 5%) + ©

where ¢, = ¢ — @ is the potential generated only by ions; the term %cpi
should be subtracted in Eq. (9) because the interacting term pg counts
twice the ion repulsion. The integration in Eq. (9) is extended to the
whole outside region. It is convenient to integrate in Eq. (9) over the
whole space and subtract the contribution of the regions occupied by
particles. We introduce the notation E,y = Epy + Efo, where

1 1
Ep=5fdrp¢+5fdrp¢p+Ep,

Epoy = %fdrp(p + %fdrp(pp +E,= —;—”fdr(qaz + ¢9,) + Ep=

ek Ir-Ril —xIr—Rjl ,—xIr—R;l

ZQIQde r—Ril IRl

x2 * ekIr-Ril 1 QiQj
_QZ Q'Q [far Rl R T 224 Ry
ij i# (10)

is that part of the energy corresponding to the integration over the
whole space, and

K2
Eb = — d
POt g Z ‘[;—Ri|»< roi r (11)

is the part corresponding to the integration over the region occupied by
the particles. The integrals in Eq. (10) are double-centre integrals which
can be effected by using elliptic coordinates [11,14]. They are given by

@ + 99,

e~ —xIr=Rjl —xlr Rjl 27

fdrlr—RI Ir — Ryl _7(% (12)
and
= R

' ! W = (13)
We get
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Epor ==} E (Q* + 2Q7Q)-

43 (00 e
i7) '

- QO+ QQ-20Q)5
i#j (14)

In the limit of identical point-like charges (ry; = 0) the energy given by
Eq. (14) acquires the expression

) 2 ) ke
Ep = ——Kq - qu Z (1 - E)e ij

Py ij (15)

given in Refs. [11-15]. That result is generalized here to charged
spherical-shells.

The calculation of the integrals in Eq. (11) (i.e. the integrals in Egs.
(12) and (13) where the integration is restricted to a finite domain) is more
difficult. It is easy to see that the energy EJ,, in Eq. (11) implies, besides
particle self-energy and pair-wise interaction potentials, many-particle
interactions. Fortunately, a great simplification comes from the observa-
tion that the mean inter-particle distance R;; is larger than the mean radius
Toi (and for a dilute ensemble it is much larger). Therefore, we may restrict
ourselves to the approximation xry; < 1. Within this approximation in the
renormalization factor in Eq. (7) we may neglect the contribution of the
summation over j, which leads to an effective charge

QF = [1 + (erpi)*1 Qi (16)

(this is a self-particle renormalization). In the most unfavourable case
xrp; =~ 1 the contribution of the j-summation in Eq. (7) is of the same order
of magnitude as the self-particle contribution (x#,;)? in Eq. (16). Making
use of this approximation we may calculate E},, up to corrections of the
order (xr,;)>. We note that the many-particle forces begin to appear with a
third-order term ~ (xr,;)?. Using (xr,)*Q; = Q" — Q;, we get

Efi=73 >, (Krﬂi)Qi2+

i

+ 33 QFQ + QQ-2QQ)" “,.j”—
i#j
+E5(Q'Q + QQi - 2QiQ)
i#j 17)

such that the total potential energy is

Epot = Epoy + By = = Z Q7 +2Q'Q)+ 5 (xro.-)of—

i

o 2QFQFQI)-3Q ]

- % Z [Qx Qj - 2+]e *Rij;
i#] 18)

we note that the bare Coulomb term does not appear in the total energy, as
expected for a screened interaction. Apart from the particle self-energy in
Eq. (18) (the first two terms on the right), we get the pair-wise interaction

potentials

2Q'Q +QQ) —

KR,'j

e Rij

3Q;Q;
@, = —%[Q:‘Q; -2 ’]

19

(in the interaction energy Z ‘Du) In contrast with the double-layer
theory, the two-particle mteracuon potentials given by the cohesion
theory in Eq. (19) are attractive at infinity, where they go like
(kQ;"Q;/2)e~i, in agreement with Langmuir’s original observation [23]
and subsequent discussions [10,24-31]. The total potential energy given
by Eq. (18) and the pair-wise potentials given by Eq. (19) are valid up to
the second-order terms (x#,;)* < 1 (first non-vanishing correction to the
interaction potentials). This is a satisfactory approximation as long as
I?ij > ipi. Even in the unfavourable situation of a close contact
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Ry = 1y + ry we still have R > ry;, ry, especially for large particles. For
small particles close to each other, the above approximation is not valid
anymore; in particular many-particle forces appear in this case.

The treatment presented here differs from the standard double-layer
theory by including the boundary conditions arising from all the par-
ticles and by computing the interaction energy for the whole ensemble
(not only for pairs of particles).

3. Dynamics of colloids

The two-particle interaction potentials ®;; exhibit negative minima,
where the particles may accommodate, if the temperature of the
medium is not too high; the position of these minima is of the order
R;j ~ 1/x. This would lead to the stabilization of the colloid. The at-
tractive molecular forces contribute to a small extent, since the equi-
librium energy is an electrostatic energy of the order Q; QJ* /R;j, which,
usually, is higher than the energy of the molecular forces (in absolute
value). The equilibrium configurations (which can be found numeri-
cally from Eq. (18)) indicate a solid phase, in general disordered; for a
large number of identical particles the phase can even be ordered.
However, in general, there are many sets of equilibrium configurations,
differing from one another by small amounts of energy (like an amor-
phous solid), such that there are large fluctuations between various
equilibrium configurations. For higher temperature of the medium the
solid melts, such that we have a liquid colloidal phase [32].

In order to get an insight into the nature of the potentials ®; we use
mean values r2=r2,Q=Q; R= R; and introduce the notation
a =1+ (xn)? (Q* ~ aQ); the potentials ®; can be written as

L2z _ 4= 3) ke
D ~ 27<Q (oc 2 R )e 3 (20)
this potential has a zero for xR = 2(4a — 3)/a® (~ 2 for ¢ ~ 1) and a
minimum for xR ~ 2.73 (a =~ 1), where the potential (energy) is
@) ~ —1072%kQ? ~ —3 x 1072Q?/R. For a qualitative discussion we may
take a mean equilibrium distance between the particles of the order
xR ~ 1 and a minimum energy of the order ®, ~ —Q%R. If Q%R > T,
where T; is the temperature of the medium, we have a transition to the
solid phase; this condition reads also R* = 1/y < Q°/T?, where y is the
particle density; this is the familiar form of the Hardy-Schulze-Ostwald
law [33-35]. We note that xR ~ 1 implies R ~ 1//n, a relation which
has been known since long, both experimentally and theoretically
[36,37].

In contrast with the cohesion theory for solids or plasmas [11-15],
where the charge Q is equal to g (and there exists only one species of
“ijons” - the electrons), in colloid theory Q is a free parameter. Within
the present approximations we may write the ion density as n ~ Q/qR?
and x? ~ (aQ/qR%)(q*/aT) ~ 1/R?* (leaving aside numerical factors like
47/3 or 87); since g*/aT ~ 1, we get an estimation of the equilibrium
mean separation distance of the order R ~ a(Q/q), where a is a distance
of the order of the atomic distance between the ions in the dissociating
molecule (leaving aside the molecular forces). We can see that for large
values of Q the distance R is large, while for small values of the particle
charge Q the distance R is small and the colloid may be flocculated
(coagulated). It is plausible to assume that the charge Q attached to a
particle of radius r, is proportional to the surface of the particle
(r, > ap, where q, is the mean separation distance between the atomic
constituents of the particle). The maximum value of this charge is of the
order Q = q(r3/ap), such that we get R =~ a(rj/aj). We can see that
small particles acquire a small charge and are more prone to aggregate
at small distances (coagulate), while larger particles may be stabilized
at larger distances, as expected.

The condition n ~ Q/qR? reflects the local charge neutrality. At
equilibrium we may take ¢ ~ —10~2 x Q/R (computed above), such
that |qe/T| ~ 1072 x aQ/qR < 1. This inequality holds for any other
distance (not very close to particles). We can see that the first-order
expansion of e9%/T is justified. On the other hand, 6n = 2nqep/T < n; the
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mean charge density nq of the g-ions (concentration) is cancelled out by
the mean charge density — nq of the counter-ions, while the local
change — gdn in the ion charge density screens the particle charges Q
and leads to equilibrium.

It is worth noting that the colloidal stabilization (and coagulation)
are discussed here at thermodynamic equilibrium, where solid and li-
quid phases are identified (and even a gaseous phase at large separation
distance). Let us suppose that initially we have a dispersed colloid, with
a (mean) particle charge Q and a large (mean) separation distance R.
The initial counter-ion density is low and the initial value x, of the
parameter x is small. From Eq. (18) we have a configurational equili-
brium for xRy ~ 1, with an energy minimum of the order — Q%; the
temperature of the medium may be sufficiently high to overpass this
minimum, such that we have a gaseous phase, with an attractive in-
teraction between particles (a non-ideal gas, which obeys a van der
Waals equation [14]; it seems that this equation was highligted for the
first time in Refs. [38,39]). The ensemble may begin to shrink down to
smaller values R of the separation distance, where the parameter x has
an enhanced value, which corresponds to a lower energy. If the tem-
perature of the medium is still higher than this energy minimum, we
have a (thermodynamically-stable) liquid phase; if, on the contrary, the
energy minimum is sufficiently deep, we have a stable solid phase and
we may say that the colloid is stabilized. In the solid phase the mean
separation distance is given by R ~ a(Q/q); if Q is small, the colloid
may even be flocculated (coagulated). At this stage, however, for very
small separation distances, the cohesion theory as described above
breaks down, because there appear many-particle forces, corrections to
the energy minima and, in addition, attractive molecular forces may
bring their important contribution. If the coagulation process is not
very much developed, peptization cannot be excluded, if the charges
are removed, or mechanical means are applied. This holds also for the
stabilized phase, though it is difficult to assess the precise conditions of
reversibility/irreversibility of these phase transitions. (This is so be-
cause this is a statistical problem with interacting particles and the
interaction effects, which should be solved first, are treated only ap-
proximately).

Another example is provided by a dense set of particles which get
dispersed in the medium. At the initial moment the particles release
counter-ions and acquire ionic charges. The counter-ions are placed
initially mainly outside the region occupied by the particle set, and the
particles are dispersed under the action of the Coulomb repulsive
forces. Thereafter, the counter-ionic atmosphere buils up around par-
ticles, which may acquire equilibrium positions (get stabilized), at a
distance governed by the particle charge Q, as described above (with
only one species of counter-ions), or may acquire a liquid phase around
these equilibrium positions, depending on the temperature of the
medium.

4. Concluding remarks

The cohesion theory is employed here to estimate the stability and
aggregation conditions of charged colloids. In contrast with the double-
layer theory, the cohesion theory predicts an attractive force between
colloid particles placed at long distances. The inter-particle equilibrium
distance is estimated by means of the cohesion theory and solid and
liquid phases are identified (even a non-ideal gaseous phase). The
transitions between these phases, or to a flocculated (coagulated)
phase, are discussed. The theory presented here differs from the stan-
dard double-layer theory by including all the particles (not only particle
pairs) in solving the Debye-Huckel (Poisson) equation and computing
the interaction energy.
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of the Romanian Government through Grant PN 19060101/2019.



M. Apostol and L.C. Cune

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

References

[1] A.J. Stone, The Theory of Intermolecular Forces, Oxford University Press, Oxford,
2013.

[2] J. Israelachvili, Intermolecular and Surface Forces, Academic Press, NY, 1929.

[3] B.V. Deryagin, L. Landau, A theory of the stability of strongly charged lyophobic
sols and of the adhesion of strongly charged particles in solutions of electrolytes,
Acta Physicochim. USSR 14 (1941) 633-662.

[4] E.J.V.Verwey, J.Th.G. Overbeek (with collab. of K. van Nes), Theory of the Stability

of Lyophobic Colloids (The Interaction of Sol Particles having an Electric Double

Layer), Elsevier, Leiden, 1948.

D. Myers, Surfaces, Interfaces and Colloids, Principles and Applications, Wiley, NY,

1999.

[6] R.J.Hunter, The Double Layer in Colloidal Systems, in: J.O’.M. Bokris, B.E. Conway,

E. Yeager, (Eds.), The Comprehensive Treatise of Electrochemistry, vol. 1, The

Double Layer, Springer, NY, 1980.

S. Durand-Vidal, J.-P. Simonin, P. Turq, Electrolytes at Interfaces, Kluwer, NY,

2002.

[8] W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions, Cambridge
University Press, 1989.

[9] V. Uskokovic, Theoretical and practical aspects of colloid science and self-assembly
phenomena revisited, Revs. Chem. Eng. 23 (2007) 301-372.

[10] M.B. McBride, A critique of diffuse double layer models applied to colloid and
surface chemistry, Clays Clay Miner. 45 (1997) 598-608.

[11] L.C. Cune, M. Apostol, Ground-state energy and geometric magic numbers for
homo-atomic metallic clusters, Phys. Lett. A 273 (2000) 117-124.

[12] L.C. Cune, M. Apostol, Atomic clusters. Chemical bonds on condensed matter, in: A.
Graja, B.R. Bulka, F. Kajzar, (Eds.), Molecular Low-Dimensional and Nanostructured
Materials for Advanced Applications, Poznan, Poland 2001, NATO Science Series,
Kluwer, Dordrecht, 2002, p. 221.

[13] L.C. Cune and M. Apostol, Theory of atomic clusters. Metallic clusters deposited on
surfaces, in: L.M. Liz-Marzan, M. Giersig, (Eds.), Low-Dimensional Systems: Theory,
Preparation and some Applications, Puszczyekovo, Poland 2002, NATO Science
Series, Kluwer, Dordrecht, 2003, p. 1.

[14] M. Apostol, L.C. Cune, On the stability of a classical plasma, Phys. Lett. A 383
(2019) 1831-1835.

[15] L.C. Cune, Magic pairs and structural transitions in binary metallic clusters, Chem.
Phys. Chem. 13 (2012) 2133-2141.

[5.

—

[7

—

[16]
[17]

[18]
[19]
[20]

[21]

[22]
(23]
[24]
[25]
[26]

[27]
[28]

[29]
[30]

[31]
[32]

[33]
[34]

[35]

[36]
[37]
[38]

[39]

Chemical Physics 531 (2020) 110660

P.-G. de Gennes, Ultradivided matter, Nature 412 (2001) 385.

0.A. Dobrescu, L.C. Cune, M. Apostol, Ferromagnet-superconductor junction,
Roum. Reps. Phys. 60 (2008) 353-359.

S. Kruchinin, Problems and Solutions in Special Relativity and Electromagnetism,
World Scientific, Singapore, 2017.

G. Gouy, Sur la constitution de la charge electrique a la surface d’un electrolyte, J.
Phys. Radium 9 (1910) 457-468.

D.L. Chapman, A contribution to the theory of electrocapillarity, Philos. Mag. 25
(1913) 475-481.

D. Chapot, L. Bocquet, E. Trizac, Interaction between charged anisotropic macro-
molecules: application to rod-like polyelectrolytes, J. Chem. Phys. 120 (2004)
3969-3982.

E. Allahyarov, H. Lowen, S. Trigger, Effective forces between macroions: the case of
asymmetric macroions and added salt, Phys. Rev. E 57 (1998) 5818-5824.

I. Langmuir, The role of attractive and repulsive forces in the formation of tactoids,
thixotropic gels, protein crystals and coacervates, J. Chem. Phys. 6 (1938) 873-896.
D.M.C. MacEwan, Adsorption by montmorillonite and its relation to surface ad-
sorption, Nature 162 (1948) 935-936.

1. Sogami, Effective potential between charged spherical particles in dilute sus-
pension, Phys. Lett. A 96 (1983) 199-203.

I. Sogami, N. Ise, On the elctrostatic interaction in macroionic solutions, J. Chem.
Phys. 81 (1984) 6320-6332.

N. Ise, LS. Sogami, Structure Formation in Solution, Springer, 2005.

M.V. Smaley, Electrostatic interaction in macro-ionic solutions and gels, Mol. Phys.
71 (1990) 1251-1267.

J. Wu, D. Bratko, J.M. Prausnitz, Interaction between like-charged colloidal spheres
in electrolyte solutions, Proc. Natl. Acad. Sci. 95 (1998) 15169-15172.

D.G. Grier, When like-charges attract: interactions and dynamics in charge-stabi-
lized colloidal suspensions, J. Phys.: Condens. Matter 12 (2000) A85-A94.

D.G. Grier, Colloids: a surprisingly attractive couple, Nature 393 (1998) 621.

G.L. Hunter, E.R. Weeks, The physics of the colloidal glass transition, Reps. Progr.
Phys. 75 (2012) 066501 .

H. Schulze, Schwefelarsen in wassriger Losung, J. Prakt. Chem. 25 (1882) 431-452.
W.B. Hardy, On the conditions which determine the stability of irreversible hy-
drosols, Proc. R. Soc. London 66 (1900) 110-125.

W. Ostwald, Elektrolytkoagulation schwach solvatisierter Sole und
Elektrolytaktivitat, Koll. Z. 73 (1935) 301-328; Neuere Ergebnisse und
Anschauungen uber die Elektrolytkoagulation hydrophoren Sole, Koll. Z. 88 (1939)
1-17.

K. Norrish, The swelling of montmorillonite, Disc. Faraday Soc. 18 (1954) 120-134.
M.V. Smaley, Electrical theory of clay swelling, Langmuir 10 (1994) 2884-2891.
I. Langmuir, The nature of adsorbed films of Caesium on Tungsten. Part. I. The
space charge sheath and the image forces, Phys. Rev. 43 (1933) 224-251.

P. Debye, Osmotische Zustandsgleichung und Aktivitat verdunnter starker
Elektrolyte, Phys. Zeit. 25 (1924) 97-107.



