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The drag force is well known in fl uid mechanics [1-5]. For 
small velocities (small Reynolds numbers) it is proportional 
to the velocity of the body moving through the fl uid (Stokes 
force), while for larger velocities (higher Reynolds numbers) 
it is proportional to the squared velocity (Rayleigh force). In 
the former case, the energy is dissipated by viscosity, while 
sound waves (including shock waves) are excited in the latter 
case. In potential fl ow, the fl uid mechanics predicts no drag 
(d’Alembert paradox). In viscous fl uids, the Stokes law implies 
the boundary-layer theory. We give in this Note a derivation of 
the drag force by means of molecular kinetics, which provides 
a unitary treatment and avoids the diffi culties of the fl uid 
mechanics (d’Alembert paradox included).

Let us consider a plane solid surface (solid body) placed 
vertically in the y,z -plane and moving horizontally with 
velocity v>0 along the x-axis through an ideal classical gas. 
The energy and momentum conservation laws for an elastic 
collision of the surface with a gas molecule are 

2 2 '2 '2= ,

' '= ,
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Abstract

The drag force in a gas (previously derived by Stokes and Rayleigh) is derived by means of the molecular kinetics (transport equation of the momentum). Two regimes 
of resistance to motion are identifi ed, governed by the relation of the velocity to the thermal (molecular) velocity. They correspond to the molecular movement, for small 
velocities, or to the hydrodynamic motion for high velocities. In the former case sound waves are not excited, and energy is dissipated by viscosity (friction), while in the 
latter case the energy is dissipated by the excitation of the sound waves. Also, the treatment is applied to the plasma. It is shown that in usual plasmas it is unlikely that 
the body motion excites plasmons. 
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where M is the mass of the body, m is the molecular mass, 'v  

is the velocity of the body after the collision, and 
',x xv v  are the 

molecule velocities before and after the collision, respectively. 
We assume that the collisions along the y,z -directions are 
balanced, such that they do not change the states of motion. 
Also, we note that the velocities in equations (1) are algebraic 
(with their sign). From equations (1) we get 
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1 / 1 /
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The momentum (ΔP) and energy (ΔE) changes for the body 
are 

2'= ( ) = ( ) ,
1 /
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Let us consider now those molecules with velocity vx<0 along 
the x-axis. These molecules collide with the body, on the right 
side (x>0). The number of collisions per unit time and the unit 
area is n(v-vx), where n is the gas density. It follows that a force 

per unit area 
2 2= ( ) = ( ) , < 01 1 /

mn
p P n v v v v vx x x

m M
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occurs on the right side of the body; it is directed along with 
the negative x-axis. If we average this force over all velocities 
vx <0, we get the corresponding pressure. Let us consider now 
the molecules with velocity vx >0. For vx >v, they collide with 
the body on the left side; the number of collisions per unit time 
and the unit area is n(vx-v). If vx <v, the body collides with these 
molecules on the right side; the number of these collisions per 
unit time and the unit area is n(v+ vx). It follows that we get the 
pressure 

2 2= ( ) , > ,2 1 /

2 2 2= ( ) , 0 < < ,2 1 /

mn
p v v v vx x

m M

mn
p v v v vx x

m M
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where the average must be taken over the values of vx which are 
indicated in each row of equations (5). These averages imply 
truncated integrals of Gaussians. It is convenient to estimate 
the pressure in two distinct cases: v<<vth and v>>vth, where 

we take for the thermal velocity 
1/2= ( / 2 )v T mth  , T being 

the temperature. For v<<vth we may neglect the second raw in 
equations (5), such that the total pressure is given by adding 
the fi rst row of equations (5) and equation (4). We get 

8
, > 0 , .

1 /

mn
p vv v v vx x thm M
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 In the second case, v>>vth, we may neglect the fi rst row in 
equations (5) and add the second row and equation (4) to get 
the total pressure 
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The fi nal result is 

8
, ,

1 /
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 We can see that in both cases a drag force occurs (opposite 
to the direction of motion). An interpolation formula is 

 2 2 4 .
1 /

mn
p v vvthm M
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We may neglect the ratio m/M in the denominator of 

equation (9) and replace mn it with the mass density ϼ; for 

a macroscopic body the force implies the area A of its cross-
section, such that, for small velocities the drag force is 

8 ;F v Avth                (10)

for a small body with dimension r the effective area is reduced 

by transverse collisions to A=rʌ, where ʌ is the mean free 

path and the force becomes 8F v rvth ; the product ϼʌvth 

is the viscosity η, such that the force is 8r v , which is 

approximately Stokes’ formula [2] -6πrηv for a sphere of radius 
r. For high velocities, the formula was derived by Rayleigh by 
means of the fl uid dynamics [7]. It is worth noting that the 

pressure 
22p v  given by equation (8) v>>vth is four times 

larger than the hydrodynamic pressure 
1 2
2
v .

The drag force is derived here by using molecular kinetics 
(equivalent to transport equation with a macroscopic velocity 
v); the transported quantity is momentum. If we leave aside the 
molecular velocities, as for microscopic, but large, amounts of 
fl uid, we may get Euler’s equation of motion of fl uids (Navier-
Stokes equations). This was the original approach of Stokes 
(who used the empirical viscosity) and Rayleigh. Further on, for 
low velocities, from Euler’s equation, we may get the Navier-
Cauchy equations of elastic motion. For low velocities these 
equations predict sound waves, in particular the hydrodynamic 

sound, with velocity = /c c T c mp v  in an ideal classical gas, 

where cp,v are specifi c heats at constant pressure and volume, 
respectively. We note that c is close to the molecular thermal 

velocity /T m . Sound is a collective excitation, which 

implies local thermal equilibrium, but not a global equilibrium: 
the pressure, the density, and the temperature vary on a global 
scale (it is a mechanical motion compatible with the statistical 
motion; the sound is not a transport phenomenon).

Let us examine fi rst the case v<<vth. Let us assume a local 
displacement u in the gas; we assume that it is suffi ciently 
small to produce a small pressure imbalance δp; since u<< ʌ this 
imbalance is adiabatic, i.e. the molecules do have not enough 
time to collide with each other. This displacement produces 

a small density imbalance = div  u . According to Euler’s 

equation 
1

= grad p


u , we get 

 
2 1

= = ,2
p p

grad div grad div
t s s
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which is the equation of sound propagating with velocity given 

by  2 = /c p s  , where the suffi x S means constant entropy 

(S). Since  / =p s    = ( / ) /c c pp v T  ,  we get the 

sound velocity given above (where).  This is the hydrodynamic 
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sound in an ideal gas. Since it is collisionless, it follows that it 
cannot be excited by the motion of the body through the gas, as 
long as v<<vth. In particular, the density variations produced by 

the sound are 
2 2= = =

c Tp
p c c div div

c mv


   u u , while the 

pressure variation given by equations (8) is = 8
2

T
p v

m
 


 . 

This latter pressure does not produce variations of the density. 
The sound is a local-equilibrium phenomenon, while the drag 
force is caused by friction (viscosity), which, on its short scale, 
is a non-equilibrium phenomenon. The drag force dissipates 
energy, by mechanical work, which, per unit time, can be 
computed from the lost energy given by equations (3).

The situation is different in the regime v>>vth; in this case, 
the body generates variations of the density, and, therefore, 
excites sound waves. It is worth noting that the pressure 

22 v  given by equations (8) in this case does not depend on 

vth, as if the molecular movement would be immaterial. This is 
the hydrodynamic regime. Indeed, let us assume that Vh(r) is 
the characteristic function of the body, where V is the volume of 
the body; the characteristic function of the gas is f(r)=1- Vh(r). 
For a pointlike body, we can take h(r)= δ(r). We are interested 
in the variation δf of this function due to the movement of the 
body, i.e. the variation of the function f(r-vt)=1-Vh(r-vt), where 
t denotes the time. The variation δF of any quantity F associated 
with the body is given by δF=Fδf. The variation of this function 

can be written as = ( )f V gradh t t v r v . As long as v<<vth the 

time δt is much longer than the mean collision time Ʈ, such that 
the equilibrium is restored rapidly, and the variation δf is zero. 
If v>>vth the time δt is much shorter Ʈ, we have an estimate 

= ( )f V gradh t  v r v  for the variation δf. Therefore, we have 

a variation of the pressure 2= (2 ) ( )p v V gradh t   v r v  and 

a variation of the density 

= ( ) = [ ( )].V gradh t V div h t     v r v v r v           (12)

 Since = div  u , where u is the displacement associated 

with the density variations, we get the displacement 

= ( ) ;V h t u v r v                (13)

obviously, this displacement satisfi es the equation 

 
2 2

= 0 ,2 grad
t






u
v u                (14)

or 

2 2
2 = 0 ,2 2

u
v u

t r

 


 
             (15)

where u and r are directed along with the velocity v (and u 
is restricted to the cross-section of the body); this is a shock 
wave. Due to the equilibrium movement, the thickness of the 
tail increases in time with velocity vth/u. The displacement u 
can be expanded in a Fourier series 

1 ( )= ( ) ,3(2 )

i tV d h e



 

kr kvu v k k               (16)

which shows that the disturbance is a superposition of sound 

waves with frequency w=vk =c(v/c)k; since the wavevector is 

localized over a range 1 /k l  , where l is the dimension of 

the body, it follows that the sound extends up to a frequency 
of the order /v l  . The movement of the body in this case 
dissipates energy by exciting sound waves. It is worth noting 
that equations (14) and (15) are hydrodynamic equations, where 
there is no external force: the force exerted by the body on the 
gas is taken by the molecular movement, which determines 
(through Ʈ) the amplitude of the free sound waves.

The above treatment can also be used for plasma. Let us 
assume an ionized gas, and consider only its ionized compo-
nent. The density of the gas and the density of the plasma are 
very low. The electrons (e) have a temperature Te, while the 
ions (i) have a temperature Ti, such that Te>> Ti. Both tempera-
tures are much higher than the Coulomb energy q2/a, where q 
is the electron (ion) charge and a is the mean separation dis-
tance between the particles. The electrons are correlated to 
the ions, through the Debye length, which in this case is very 

large. The corresponding cross-sections are  22= /q Te e e 

,  22= /q Ti i i   and 
4 2 2= / ( )q T Tee i i  ; the mean free-

paths are 
2 3 2 4= ( / ) = /a a a T qe e e e e   , 3 2 4= /a T qi i i   

and  3 2 2 4 2 2= /a T T q T Te ee i i i  ; the mean lifetimes are 

3 4= / = /v a T mT qe e e e e e e   , 
3 4= /a T MT qi i i i   and 

 3 4= /a T T mMT T q T mT T MTe e e ee i i i i i  , where m is 

the electron mass and m is the ion mass. If T mT T MTe e i i  

(which is the most realistic case), then e ee i i i      , 

which shows that the electrons follow rapidly the ion motion, 
which ensures the equilibrium (electron-electron processes are 

immaterial for equilibrium); this is in accordance with the adi-

abatic hypothesis. In the unrealistic case, T mT T MTe e i i  

the electrons lag behind the ions. In this case there exist an 
ionic displacement ui and an electron displacement ue, as well 
as a restoring polarization force which is responsible for a 

plasma frequency given by 
2 2= 4 /0 nq   , where   is the 

reduced ion-electron mass. The ion-electron center of mass 
moves freely, with an ionic displacement coordinate which 
may be estimated as in equation (13); the electron compo-
nent remains to be determined from boundary conditions. The 
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ion-electron relative coordinate is subject to the polarization 
force and is a superposition of waves with frequencies given by 

2 2 2 2= 0 v k   . We note that this is a hydrodynamic regime, 

where the pressure force 22 v , although hydrodynamic, is 

equilibrated by the molecular movement.
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