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Abstract
The entropy of earthquakes is derived by using the Gutenberg–Richter statistical distributions. Both canonical and micro-
canonical earthquake distributions are given, and Einstein’s fluctuation formula is deduced for earthquakes. The seismic 
activity of Vrancea in the period 1980–2019 is analyzed, for earthquakes with magnitude greater than two, and the results 
are compared with the theoretical results. It is shown that the parameter of the magnitude distribution exhibits a tendency 
of increasing with time, due to the accumulation of small-magnitude earthquakes, interrupted from time to time by ruptures 
towards smaller values, caused by earthquakes with greater magnitudes. These variations do not obey the normal distribu-
tion of the fluctuations. The (small) time variations of the distribution parameter provide a measure of the departure of the 
seismic activity from an equilibrium process. For Vrancea, these deviations are very small (up to 1% per year).
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Introduction

As it is well known, the seismic activity is viewed as an 
open-system non-equilibrium statistical process, in the sense 
that the energy released by earthquakes is not transformed 
into tectonic energy which would produce other earth-
quakes (at least not directly, or integrally). Consequently, it 
is important to estimate the departure of this process from 
equilibrium, in order to have more information about the 
rate of the seismic activity in a given region and a given 
period of time. The most convenient tools of characterizing 
a statistical process are the entropy and the probability den-
sity. We derive here the entropy of earthquakes, in terms of 
the parameter of the Gutenberg–Richter magnitude distribu-
tion, and use it as a reference point for the seismic activity 
in Vrancea in the period 1980–2019, for 8455 earthquakes 
with magnitude M ≥ 2 . We find that the rate of increase in 
the seismic activity in this space–time window is extremely 

small, and the fluctuations are, practically, absent (or, at 
least, they do not obey the usual Gaussian distribution).

The entropy of earthquakes has been introduced in seis-
mology from Statistical Physics, as a measure of the disor-
der produced by the seismic activity in a given region and 
a given time interval (Berrill and Davis 1980; Shen and 
Mansinha 1983; De Santis et al. 2011). Also, the entropy 
is viewed as a measure of the information content (Main 
and Burton 1984; Masinha and Shen 1987). The maximum 
entropy principle has been employed in earthquake recur-
rence relationships (Dong et al. 1984) and earthquake hypo-
centre distributions (Nicholson et al. 2000). The statistical 
entropy characterizes a statistical ensemble. In equilibrium 
the distribution function does not change in time. If the time 
dependence is very slow, we say that the process is in quasi-
equilibrium. Also, a (quasi-) equilibrium statistical process 
may exhibit fluctuations, which obey a Gaussian distribu-
tion. Deviations of the entropy from its (quasi-) equilibrium 
value indicate a non-equilibrium state. In this connection, 
the time dependence of the entropy of earthquakes is of 
primary interest, it being related more to Physical Kinet-
ics approaches, or the information theory (Shannon 1948; 
Wiener 1948). Abrupt variations in the time dependence of 
the entropy (singularities of its derivative) are associated 
with a criticality regime, occurring near large-magnitude 
earthquakes (e.g. De Santis et al. 2019). We show here, by 
analyzing a large set of earthquakes of Vrancea region, that 
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the fluctuations are, practically, absent (or, at least, they do 
not obey the usual Gaussian distribution), the data indicating 
a steady departure from equilibrium, although very small. 
The steady decrease in the entropy is due to the occurrence 
of many small earthquakes, interrupted from time to time 
by rather large ruptures towards higher values, due to larger 
earthquakes.

The statistical analysis is based on a few general hypoth-
eses. First, we view the seismic activity as a sequence of 
independent earthquakes with various magnitudes. The sta-
tistical ensemble should be as large as possible, with a large 
set of data recorded in a long period of time. We assume that 
the earthquake occurrence can be described by a statistical 
distribution in magnitude. We leave aside any possible cor-
relations between earthquakes, like triggering or blocking 
effects, as well as possible correlations between foreshocks, 
aftershocks and main shocks. As discussed below, the cor-
relations affect mainly the small-magnitude earthquakes, 
which are left aside in our analysis. The earthquake distri-
bution may exhibit fluctuations. It is claimed that such fluc-
tuations have been identified in yearly variations of global 
earthquake populations (Main and Al-Kindy 2002), looking 
as quasi-periodic variations (these results are obtained for 
rather small-sized samples). The existence of a time-inde-
pendent statistical distribution implies a statistical equilib-
rium. The statistical equilibrium is characterized by (quasi-) 
stationarity, i.e. the statistical distribution may exhibit only 
slow variations, at most, in long periods of time. The param-
eter of the fluctuation distribution changes correspondingly 
in such a long-time seismic activity. The slow variations of 
the equilibrium may give the possibility to identify the vari-
ation tendency by relatively short-time sampling of the data. 
This short-time seismic activity may be affected by fluctua-
tions, so we are led to analyze the fluctuation distribution. 
The analysis of a large number of earthquakes with magni-
tude M ≥ 2 (8455 earthquakes), which occurred in Vran-
cea during the time interval (years) 1980–2019 indicates a 
departure from equilibrium, as expected. In particular, the 
variations of the statistical distribution do not obey the fluc-
tuations normal distribution. The reason for this behaviour 
originates in the fact that the seismic activity is fed continu-
ously by the tectonic energy, such that the statistical ensem-
ble is not in (quasi-) equilibrium (at least over the analyzed 
periods of time), though the deviation from equilibrium is 
very small.

The technical means of analyzing a statistical process and 
its fluctuations is the entropy. We derive in this paper the 
Gutenberg–Richter statistical distribution in magnitude for 
a canonical ensemble by using the standard method of maxi-
mizing the entropy under the constraint of a fixed mean mag-
nitude. This constraint characterizes the tectonic loading and 
the energy release by seismic activity. Similarly, by using the 
standard method of a microcanonical statistical ensemble, 

we derive the fluctuations normal distribution (known as 
Einstein’s fluctuation formula). The parameter of this for-
mula is precisely the parameter of the Gutenberg–Richter 
distribution. The rate of change in time of the parameter 
of this distribution provides a measure of the departure of 
the seismic activity from equilibrium. For Vrancea, in the 
analyzed time periods, we find a very small deviation, and, 
practically, the absence of fluctuations.

Gutenberg–Richter statistical distributions

The Gutenberg–Richter magnitude probability

is well known in Seismology; in Eq. (1) M denotes the earth-
quake magnitude and � is a parameter. The statistical vari-
able M takes all possible values, i.e. from 0 to ∞ . The valid-
ity of this formula is checked by fitting the empirical data, 
over a limited range of magnitudes. As it is well known, the 
lack of completeness of the seismological catalogs intro-
duces a cutoff for small magnitudes; for large magnitudes 
the probability density given above falls off rapidly to zero. 
Originally, this law was derived from empirical observa-
tions. Indeed, it is well documented by statistical analysis 
(Gutenberg and Richter 1944, 1956; Richter 1958; Bullen 
1963) that the number of earthquakes N(M) with magnitude 
greater than M is given by

(cumulative, or exceedance, distribution); hence, 
dN∕N(M) = −�dM , and the density of magnitude prob-
ability (Ranalli 1969) is

If the total, large, number of earthquakes N(0) occurs in a 
long time T, we can define the seismicity rate 1∕t0 , where 
N(0) = T∕t0 , and Eq. (3) becomes

or

hence, we may define a mean recurrence time

for the earthquakes with magnitude M.

(1)P(M) = �e−�M

(2)lnN(M) = lnN(0) − �M

(3)
ΔN

N(0)ΔM
= �e−�M .

(4)
t0ΔN

TΔM
= �e−�M ,

ΔN

T
=

�ΔM

t0
e−�M ,

(5)ln

(

ΔN

T

)

= ln

(

�ΔM

t0

)

− �M;

(6)tr =
T�ΔM

ΔN
= t0e

�M .
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Equations (1), (3) and (5) define statistical distributions. 
They may be called Gutenberg–Richter statistical distribu-
tions. The deviation from the mean value of the statistical 
variable (magnitude M) is the standard deviation

it follows that the deviation of the mean recurrence time 
given by Eq. (6) is �tr∕tr = 1 , which implies an error of the 

order 
�

�

M2

�1∕2

−M

�

∕M =
√

2 − 1 , at least.

At the same time, the magnitude was introduced in Seis-
mology as a logarithmic measure of the energy released 
by an earthquake. More precisely, it is assumed that the 
energy E of an earthquake with magnitude M is given by 
E∕E0 = ebM , or

where E0 is an energy cutoff and b =
3

2
ln 10 = 3.45 , by 

convention ( ln 10 ≃ 2.3 ) (Utsu and Seki 1955; Utsu 1969). 
Later, the energy was related to the magnitude of the seis-
mic moment, and the earthquake magnitude entering Eq. (8) 
was called moment magnitude (Kanamori 1977; Hanks and 
Kanamori 1979). Equations of the type (8) may be called 
Hanks–Kanamori (or Gutenberg–Richter) law. As we can 
see, they have a definition character.

The statistical Gutenberg–Richter distributions in time, 
energy and magnitude have been derived from a geomet-
rical-growth model of accumulation of energy in the focal 
region (Apostol 2006a, b; the exact relationship between 
energy and the magnitude of the seismic moment was 
established in Apostol 2019a). According to this model 
the relation between the parameters � and b is � = br , 
where the parameter r is related to the number of effective 
dimensions of the focal region and the rate of energy accu-
mulation. For a uniform pointlike focal region r = 1∕3 , 
for a two-dimensional focal region r = 1∕2 , while for a 
one-dimensional region r tends to unity. Very likely, the 
parameter r varies in the range 1∕3 < r < 1 , which entails 
a variation 1

2
ln 10 < 𝛽 <

3

2
ln 10 i.e. 1.15 < 𝛽 < 3.45 ). 

According to the theory of energy accumulation in the 
focal region, the relationship between the accumulation 
time t and the accumulated energy E is

This relationship leads to a frequency of events 1∕(1 + t∕t0) , 
a time probability

(7)�M =
(

M2 −M
2
)1∕2

=

(

−
�M

��

)1∕2

=
1

�
= M;

(8)lnE = lnE0 + bM,

(9)1 + t∕t0 =
(

1 + E∕E0

)r
.

(10)P(t)dt =
1

(

1 + t∕t0
)2

dt

t0
, 0 < t < ∞

and energy and magnitude probabilities

Since in the law E∕E0 = ebM the energy is measured from 
E0 , we may omit the unity in Eq. (9), which becomes

this equation leads to the Gutenberg–Richter statistical dis-
tributions P(M) = �e−�M (Eqs. 1, 11).

Fitting the data

The Gutenberg–Richter magnitude distribution given by 
Eqs. (1), (2) and (5) is widely used to fit data. By such a 
fitting we derive the parameters � (and, therefore, r) and 
t0 (seismicity rate). An important problem in such fitting 
procedures is the choice of the data. The data and the fitting 
parameters depend on the seismic region, the time period 
and the cutoff parameters.

In the region of small magnitudes, the data may exhibit 
a smaller slope, i.e. a smaller parameter � . This roll-off 
effect in the Gutenberg–Richter distribution is usually 
assigned to the insufficiency in the determination of the 
small-magnitude data. The problem of the small-magnitude 
cutoff (completeness of earthquake catalogs) enjoys many 
discussions, especially in connection with the aftershocks 
and foreshocks sequences (Lombardi 2002; Marzocchi and 
Sandri 2003; Console et al. 2003). It was shown recently 
that the roll-off effect may arise, at least partially, from 
earthquake dynamical correlations (Apostol 2020). We 
note that the Gutenberg–Richter distribution ∼ e−�M cor-
responds to independent events, in the sense that the distri-
bution for the sum M = M1 +M2 of two magnitudes is the 
product of the distributions of the individual magnitudes, 
e−�M = e−�(M1+M2) = e−�M1e−�M2 . This property may indicate 
that the correlations are ineffective. This may be the case for 
moderate and large magnitudes, but for small magnitudes 
there is a departure from the Gutenberg–Richter law, and 
the correlations are effective. Indeed, the small-magnitude 
earthquakes are more affected by correlations.

On the other hand, for large magnitudes, the data distri-
bution is uncertain. It is difficult to include high-magnitude 
earthquakes in a statistical analysis, because they are rare 
events and may not belong to a statistical ensemble. How-
ever, their minor weight in the statistical ensemble does not 
affect the results too much.

An analysis of a large set of global earthquakes with 
5.8 < M < 7.3 (  ΔM = 0.1 )  indicates � = 1.38 (and 

(11)
P(E)dE =

r

(1+E∕E0)
1+r

dE

E0

, 0 < E < ∞

P(M)dM = 2r
𝛽ebM

(1+ebM)
1+r dM, 0 < M < ∞.

(12)t∕t0 ≃
(

E∕E0

)r
= e�M;
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1∕t0 = 105.5 per year), corresponding to r = 0.4 , a value 
which suggests an intermediate two/three-dimensional 
focal mechanism (Bullen 1963). Equations (1), (2) and (5) 
have been fitted to a set of 1999 earthquakes with magni-
tude M ≥ 3 ( ΔM = 0.1 ), which occurred in Vrancea between 
1974 and 2004 (31 years) (Apostol 2006a, b). The mean val-
ues of the fitting parameters are − ln t0 = 9.68 and � = 1.89 
( r = 0.54 ). The same fit has been done for a set of 3640 
earthquakes with magnitude M ≥ 3 which occurred in Vran-
cea during 1981–2018 (38 years). The fitting parameters for 
this set are − ln t0 = 11.32 and � = 2.26 ( r = 0.65 ) (Apos-
tol 2019b). The fitting values given above have an error of 
approximately 15%. The data for Vrancea have been taken 
from Romanian Earthquake Catalog ROMPLUS (2018, 
updated). The analyzed earthquakes occurred in Vrancea 
within 45◦−46◦ latitude and 26◦−27◦ longitude. The magni-
tude of completeness of the ROMPLUS Catalog is assumed 
to be M = 2 , starting 1980. The magnitude errors in this 
catalog are ΔM = 0.1 . It is easy to see that the error in the 
parameter � is Δ�∕� = 2ΔM∕Mmax , where Mmax is the maxi-
mum magnitude included in analysis; for ΔM = 0.1 and 
Mmax = 6 we get Δ�∕� = 0.03.

In decimal logarithms the parameter � reads � = br =
3

2
r . 

Since 1∕3 < r < 1 , this parameter varies in the range 
1∕2 < 𝛽 < 3∕2 . Usually, the average value � =

3

2
r = 1 

( � = 2.3 in natural logarithms) is currently used as a ref-
erence value, corresponding to r = 2∕3 (Lay and Wallace 
1995; Udias 1999; Stein and Wysession 2003). We note that 
this value is close to � = 2.26 ( r = 0.65) given above for 
Vrancea.

Entropy of earthquakes

Let us assume that a region is loaded with seismic energy. 
This energy is released in time, by a sequence of earthquakes 
with various magnitudes M. We may associate a statistical 
distribution �(M) to this seismic activity. The probability 
density �(M) should be normalized,

and the mean magnitude should be a constant,

this condition corresponds to the original load of energy, 
which is well determined. We may view a continuous load-
ing, and a continuous energy release, because the statisti-
cal distributions imply a large set of data, which may be 
viewed as being continuously distributed. Since we deal here 
with a large set of data, we may use a continuum model of 

(13)∫
∞

0

dM�(M) = 1,

(14)∫
∞

0

dM ⋅M�(M) = M;

magnitude distribution. Also, we note that we use the magni-
tude as statistical variable, because, it being a dimensionless 
number, it is suitable to label the states. We may assume that 
the continuous regime of releasing energy through earth-
quakes is well determined and characterized by the mean 
magnitude M . If the region is “free” , or “isolated”, i.e. it 
is not subject to external influences, and the earthquakes 
are independent events, it is reasonable to assume that the 
release of the seismic energy will be completed in a suf-
ficiently long period of time, i.e. in the conditions given 
above, the amount of released energy is the same (and, 
practically, equal to the load) for all the realizations of the 
statistical ensemble. Consequently, we seek a functional of 
� which attains its extremum value for a certain function � ; 
this � corresponds to the seismic activity in that region. Let 
us introduce the functional

and look for its extremum value under the conditions (13) 
and (14). The parameters � and � are determined from Eqs. 
(13) and (14). From the first-order variation

we get immediately

and, by Eq. (14),

(and −1 − � = ln � ). We can see (Eq. 17) that we recover 
the Gutenberg–Richter magnitude distribution given by Eq. 
(1). The quantity S is called the entropy of the earthquakes. 
It characterizes the seismic activity of a seismic region in a 
given interval of time. This seismic activity proceeds in such 
a manner as to maximize the entropy; indeed, the second-
order variation of Eq. (15) is

which shows that S is maximal with respect to � , for � given 
by Eq. (17). We may say, according to Statistical Physics, 
that this maximal S corresponds to the statistical seismic 
activity in that region and in that period of time. We note 
that the entropy defined in this way is a measure of the dis-
order produced by independent statistical events. In Sta-
tistical Physics the distribution given by Eq. (17) is called 

(15)
S = −∫

∞

0

dM ⋅ � ln � − �

[

∫
∞

0

dM ⋅ �(M) − 1

]

− �

[

∫
∞

0

dM ⋅M�(M) −M

]

,

(16)∫
∞

0

dM(− ln � − 1 − � − �M)��(M) = 0

(17)�(M) = �e−�M

(18)M =
1

�

(19)∫
∞

0

dM ⋅ (−1∕𝜌)[𝛿𝜌(M)]2 < 0,
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canonical distribution, or Gibbs distribution (Landau and 
Lifshitz 1980).

Making use of the distribution given by Eq. (17), we get 
from Eq. (15) the entropy

(or S = 1 − ln � for �M = 1 ). We can see that

according to Eq. (18). Equation (20) provides a relation 
between entropy and the parameters of the earthquake dis-
tribution (see also De Santis et al. 2011). The procedure used 
here to derive the entropy of earthquakes is very useful in 
deriving also the fluctuation distribution, which is another 
relevant characteristics of a statistical ensemble.

In Eq. (20) we can view � and M as independent varia-
bles, such that 

(

�S∕�M
)

�
= � and dS = �dM . This latter 

relation (which defines an “equilibrium” transformation, 
where �M = 1 ) indicates the physical meaning of the 
entropy: its changes are proportional to the changes in the 
mean magnitude. We note that in equilibr ium 
�, S, M = const . In practice, it is convenient to employ 
finite-difference variations for an equilibrium transforma-
tion, written as ΔS = �ΔM = −

1

�
Δ� ; if Δ� = 0 , then ΔS = 0 

and we have, over that variation interval, an equilibrium 
(reversible) process. If the variation in time of the parameter 
� is very slow, the transformation is called adiabatic (and the 
process is a quasi-equilibrium process). We use the finite-
difference variation of the entropy in the end section, in the 
discussion concerning Fig. 2.

Shannon entropy

The entropy given by Eq. (15), which implies a probability 
density, is called the Boltzmann–Gibbs entropy (Landau and 
Lifshitz 1980). From Eqs. (15) and (18) we get

(for �M = 1 ), where � = �e−�M . If we view the entropy S 
as a measure of the disorder degree, then it should be posi-
tive, a condition which entails the inequality 𝛽 < e = 2.72 
(we note that this condition is satisfied for Vrancea, where 
� = 2.26 ). Such a condition is well known in Statistical 
Physics (it is called the classical limit of the ideal gas). If 
the density of small-magnitude earthquakes is excessively 
large, this inequality may be violated; in this case, the events 

(20)S = �M − ln �

(21)
(

�S

��

)

M

= 0,

(22)

S = −∫
∞

0

dM ⋅ � ln � = −∫
∞

0

dM ⋅ �e−�M(ln � − �M) = 1 − ln �

corresponding to M ⟶ 0 should correspond to what is 
called “ordered” events in Statistical Physics.

The above description offers the opportunity to extend the 
analogy between the seismic activity and the behaviour of a 
thermodynamic ensemble. From equation dS = �dM , derived 
above, we can view the parameter � as the inverse of a tem-
perature T = 1∕� and the mean magnitude M as the thermo-
dynamic energy. The equation becomes dM = TdS , where TdS 
is the “heat” of the seismic activity; this equation leads to a 
Helmholtz free energy F = M − TS = −T ln T =

1

�
ln � . This 

thermodynamic behaviour is preserved down to the low tem-
perature Tc = 1∕e ( �c = e ). For lower temperatures, the ther-
modynamic state must be reconstructed. We may assume a 
zero entropy S = S0 = 0 for T < Tc ( 𝛽 > 𝛽c = e ) and a non-
vanishing entropy S = 1 − ln � = 1 + lnT  for T > Tc ; then, 
the derivative �S∕�T  has a discontinuity at T = Tc , similar 
with a phase transition.

In empirical studies the Shannon entropy is often used, 
which implies a discrete summation over point-process prob-
abilities pn . The Shannon entropy is defined as

for a discretization with the step � the probabilities are given 
by

where Mn = n� . The Shannon entropy is always positive (or 
zero). Since we deal here with a large set of data, it is more 
convenient to use a continuum model of magnitude distri-
bution. Therefore, it is important to establish the relation 
between the Boltzmann–Gibbs entropy and the Shannon 
entropy in the limit � ⟶ 0 . Also, we note that we do not 
compare directly the entropy to the empirical data; instead, 
we derive the parameter � of the Gutenberg–Richter dis-
tribution from fitting the data, and discuss its implications 
upon the entropy. This is the most direct approach of extract-
ing information from data, because it gives access to the 
central concept of probability density.

The direct calculation of the summation in Eq. (23) leads to

the series expansion being valid in the limit �� ⟶ 0 . We 
can see that

where S is given by Eq. (22) (De Santis et al. 2019). In the 
limit � ⟶ 0 the Shannon entropy increases indefinitely, 

(23)Σ = −

∞
∑

n=0

pn ln pn;

(24)pn =
(

1 − e−��
)

e−n�� ,

(25)
Σ = − ln

(

1 − e−��
)

+
��

e�� − 1

= 1 − ln(��) +
3

8
(��)2 +⋯ ,

(26)Σ = S − ln � +⋯ ,
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which makes it inconvenient for a continuum model (leav-
ing aside the ambiguity in defining the step � ). On the 
other hand, since we are interested only in variations of the 
entropy, we may leave aside the constant (and indefinite) 
contribution − ln � . In this sense, the Shannon entropy is 
equivalent with the Boltzmann–Gibbs entropy, the latter 
being sometimes called the differential form of the for-
mer. For S ≪ 0 ( 𝛽 ≫ 𝛽c = e ) the probability density is 
�(M = 0) = � and 𝜌(M > 0) ≃ 0 . This indicates an accumu-
lation of earthquakes on the state defined by M = 0 . In this 
case, according to Eq. (26) the parameter � should go to zero. 
We may assume that all pn = 0 for n > 0 and p0 = �� = 1 . 
Then, the entropy is Σ0 = −�� ln(��) = 0 = S0 . However, in 
the region M ⟶ 0 the correlations are effective, the events 
are not independent anymore, and the above formulae of the 
entropy are not valid.

The connection given by Eq. (26), between a discrete 
summation and its integral, is a general phenomenon known 
as the Euler–MacLaurin corrections (Abramowitz and Ste-
gun 1964). Indeed, the transition from a summation to the 
integral of a function f(x) is done according to the formula

I f  we  apply  th i s  fo r mula  to  t he  func t ion 
f (M) = −� ln � = −�e−�M(ln � − �M) , we get

which, in the limit �� ⟶ 0 , is the relation given in Eq. 
(26). A similar relationship exists between the continuum 
and discrete normalization conditions,

Fluctuations

The definition (15) may lead to another viewpoint as regards 
the entropy. We may view the seismic activity as consisting of 
a sequence Mi , i = 1, 2,… ,N , of magnitudes, each realized by 
Ni random, independent processes (in Statistical Physics this is 
Boltzmann’s hypothesis of the so-called molecular chaos); the 
probability �i of each of these processes is �i = 1∕Ni . We may 
define the entropy si = − ln �i = lnNi and the average entropy 
si = −Ni�i ln �i = lnNi = si . It follows that the probability �i is 
given by �i = e−si = e−si . In Statistical Physics this distribution 
is called the microcanonical distribution, and si = si is called 
microcanonical entropy (Gibbs 1902). Obviously, this entropy 

(27)∫
∞

0

dxf (x) = �

∞
∑

n=0

f (�n) −
1

2
�f0) +

1

12
�2f

�

(0) +⋯ .

(28)S = Σ(�� ⟶ 0) + ln � +
1

2
�� ln(��) +⋯ ,

(29)
∫

∞

0

dM ⋅ �e−�M = ��

∞
∑

n=0

e−��n −
1

2
�� −

1

12
(��)2 +⋯ = 1.

is maximal under the condition of normalized probabilities �i : 
�i is a constant for each Mi . We may use �i = �e−�Mi , and get 
the microcanonical entropy

Since the processes are independent and random, irrespec-
tive of their magnitude, their probability �m is given by

whence the entropy

where N is the number of the i-processes. We can see that S, 
given by Eq. (32) is the canonical entropy given by Eq. (20). 
The microcanonical probability

is the value of the canonical probability for the mean 
magnitude.

In equilibrium the entropy is maximal ( (�S∕��)
M
= 0 , 

Eq.  21); therefore, we may have small variations 
ΔS =

1

2
(�2S∕��2)

M
(Δ�)2 = (Δ�)2∕2�2 . This variation is 

positive. It indicates the tendency of reaching equilibrium. 
Introducing this variation in entropy in Eq. (33), the prob-
ability �m gives the fluctuation probability

(properly normalized). We can see that the statistical ensem-
ble may have fluctuations, whose measure is the standard 
deviation

given by the normal distribution in Eq. (34). This is Ein-
stein’s fluctuation formula (Einstein 1909). If, in a distri-
bution Me−�M , we may view the parameter � as a statisti-
cal variable, then we get the standard deviation �� = 1∕M , 
which coincides with Eq. (35) for �M = 1 . A similar analysis 
can be made for the canonical distribution �e−�M , leading 
to fluctuations �M = 1∕� = M . Various realizations of the 
statistical ensemble (in the same conditions) exhibit fluc-
tuations, i.e. for another sampling, i.e. for another region, 
or another period of time, with the same mean magnitude, 
i.e. for another realization of the statistical ensemble, the 
entropy may fluctuate. We note that the Gutenberg–Richter 
distribution is a distribution in magnitude (Eq. 17), while 
the normal law given by Eq. (34) is a distribution in the 

(30)si = si = �Mi − ln �.

(31)�N
m
=
�

i

�i = e−
∑

i si ,

(32)S = − ln �m =
1

N

∑

i

si = �M − ln �,

(33)�m = e−S = �e−�M ,

(34)�f =
1

√

2��

e
−

(Δ�)2

2�2

(35)�� =
[

(Δ�)2
]1∕2

= �
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parameter � of the Gutenberg–Richter distribution. Also, we 
note that the fluctuations are variations of the mean values. 
Standard deviations as large as the mean value indicate a 
serious limitation of the information we may get from sta-
tistical analysis of earthquake distributions. In addition, the 
“same conditions” requirement of the fluctuation formula 
(known as the “null hypothesis”) may not be fulfilled; for 
instance, over a similar period of time, the geological condi-
tions of the seismic region may change, or the accuracy of 
the measured magnitudes may differ.

We note that the parameter � may depend on the time in 
these formulae. Then, the variation of the entropy is given 
by ΔS = −

1

�
Δ� , over corresponding intervals of time varia-

tions. The fluctuations distribution remains valid in this case 
(since �M = 1 ), and an analysis of this distribution may give 
the parameter � and, consequently, its variation. If the pro-
cess would be a (quasi-) equilibrium process, we may expect 
an opposite variation of � in the next period of time, such 
that Δ� = 0 and ΔS = 0.

Analysis of Vrancea seismic activity

Let us assume that we fitted the Gutenberg–Richter dis-
tribution (e.g. the cumulative distribution, Eq. 2) to data 
gathered over a long period of time t0 for a given region. 
At the moment of time t0 we have the fitting parameter �0 . 
For a sufficiently long period of time t0 we may assume that 
this seismic activity is statistically well defined. Let us take 
(at random) the next moments of time ti , i = 0, 1, 2,… ,N 
and update the fitting to get the parameters �i . If the time 
intervals ti+1 − ti are sufficiently small (but still as large as to 
have a measurable seismic activity in each) we may expect 
that the variations Δ�i = �i+1 − �i are fluctuations. For a suf-
ficiently large N we may fit their distribution with the normal 
law given by Eq. (34). Thus, we get the fitting parameter 
� . If � = �0 (within the fitting errors), the seismic equilib-
rium has not changed. If � ≠ �0 the equilibrium has changed 
over the period tN − t0 . Consequently (in the absence of an 
external agent), we may expect a tendency to recover the 
equilibrium over the next period of time t2N+1 − tN+1 . Such 
an information might be regarded as a short-time predic-
tion. For instance, if 𝛽 < 𝛽0 , we may expect in the next time 
interval a decrease in the mean magnitude, i.e. the number 
of earthquakes with low magnitudes will increase, and high-
magnitude earthquakes are not likely. On the contrary, if 
𝛽 > 𝛽0 , then we may expect an increase in the number of 
earthquakes with higher magnitude. We note that an increase 
(decrease) in � amounts to a decrease (increase) in equilib-
rium entropy S = 1 − ln � (Eq. 20).

It may happen that the distribution of the parameter 
changes Δ�i is not a normal distribution. Then, the ensemble 

is not in equilibrium in the time period tN − t0 . Under the 
equilibrium hypothesis, we may expect an evolution towards 
equilibrium in the next period. For instance, if the distribu-
tion of the variations Δ�i is shifted towards higher values, 
i.e. if the parameters �i show a tendency to increase, we may 
expect a decrease in these parameters in the next period, i.e. 
an increase in the mean magnitude.

It is worth noting that the discussion given above is valid 
under the main assumption of independent seismic events. 
If correlations exist, the entropy formulae derived above do 
not apply. A special case in this connection is the short-term 
foreshock (and aftershock) activity. The accompanying seis-
mic activity obeys, approximately, the Gutenberg–Richter 
magnitude distribution (Kisslinger 1996), and a decrease in 
the parameter � , observed for the foreshock activity, was 
interpreted as an increase in entropy (De Santis et al. 2011). 
Moreover, recently it was shown that a real-time discrimina-
tion between foreshocks and aftershocks might be attained 
by monitoring the variations in the parameter � (Gulia and 
Wiemer 2019).

If the correlations are included, we expect a change in the 
distribution. In this case, the formulae given above for the 
entropy are not valid anymore. It was shown that the change 
caused by correlations in the Gutenberg–Richter distribution 
affects mainly the small-magnitude region (Apostol 2020). 
For moderate and large earthquakes the distribution pre-
serves its independent-event form ∼ e−�M , which ensures the 
validity of the entropy formulae used here. Small-magnitude 
earthquakes ( M < 2 ) are excluded from our analysis.

Also, we note that the practical application of the proce-
dure described above depends on the choice of the (long) 
time period t0 , the (short) time intervals ti+1 − ti and the 
(large) number N of these intervals. This choice can only 
be made in close connection with the particular character 
of the seismic activity in the given region and in the given 
(long) time period.

The description given above is not supported by data, 
at least for Vrancea region, in the analyzed time periods. 
The parameter � is quasi-uniformly increasing in time, at 
a slow rate, due to the accumulation of small-magnitude 
earthquakes. This quasi-uniform tendency is interrupted 
from time to time by large-magnitude earthquakes, which 
decrease suddenly the parameter � (there is no evidence for 
foreshocks and aftershocks). Two examples of short-time 
variations of beta are given in Fig. 1 for Vrancea seismic 
activity. The time t0 is from January 1st 1980 to December 
31st 2009, with 5391 earthquakes with magnitude greater 
than 2. The Gutenberg–Richter fit to these data gives 
�0 = 2.125 (error 15% ). We have updated the parameter � for 
each week of the year 2010 (Fig. 1, panel a). We can see that 
this parameter increases continuously over this whole year 
(due to the accumulation of small-magnitude earthquakes). 
A similar procedure was used for each of the next years up 
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to 2019 (8455 earthquakes with M ≥ 2 in the whole period 
1980−2019 , taken from Romanian Earthquake Catalog 
ROMPLUS (2018, updated). In some years the continuous 
increase in the parameter � is disrupted by the occurrence of 
greater-magnitude earthquakes, like in the year 2011 (Fig. 1, 
panel b). Such variations of the parameter � cannot be fit-
ted by a normal distributions, and, therefore, they cannot be 
viewed as fluctuations. We can only say, very imprecisely 
and qualitatively, that after a period of small-magnitude 
seismic activity it is likely to follow a few earthquakes with 
greater magnitude, and vice versa, which is a useless, com-
mon-sense expectation. Rigorously speaking, the seismic 
activity is not in (quasi-) equilibrium, because the tectonic 
energy source feeds it continuously. We expect this behav-
iour to have a general character. We note that such abrupt 
variations in the parameter � (and an abrupt increase in the 
entropy) have been reported by De Santis et al. (2011) for the 
accompanying seismic activity of the L’Aquilla earthquake 
(magnitude 6.3, 6 April 2009) and the Colfiorito earthquake 
(magnitude 6, 26 September 1997).

The overall variation of the parameter � is a slow increase 
in time, which may suggest a quasi-equilibrium adiabatic 
process. In the neighbourhood of a greater earthquake 
the parameter � suffers an abrupt variation. A qualitative 
sketch of the typical variations of the parameter � for a 
time interval (t1, t2) which includes a main shock (MS) at 
the moment tMS is given in Fig. 2. After a (slight) increase 
the parameter � suffers an abrupt decrease Δ�1 , possibly in 
a foreshock (f) region, down to the main shock, followed 
by an abrupt increase Δ�2 which may include, possibly, an 
aftershock region (a). We can see that the total variation 
Δ� = Δ�1 + Δ�2 = 0 , such that we may say that over this 
region there exists an equilibrium process ( ΔS = 0 ). Such 
a qualitative behaviour is shown in Fig. 1 for Vrancea and, 

also, is reported by De Santis et al. (2011) and Gulia and 
Wiemer (2019). The latter reference suggests to use the pre-
cursory decrease in the foreshock region, distinct from an 
increase in the aftershock region, as a real-time prediction 
of a main shock.

There exists another interpretation of the sudden vari-
ation of the parameter � in the vicinity of a large-magni-
tude earthquake, where the continuous variable is the time 
t (Fig. 1, panel b). Indeed, the sudden jump in the param-
eter � indicates a time derivative ��

�t
= Δ�1�(t − tMS) , with 

the notations in Fig. 2. This abrupt variation induces a 
similar variation in the time derivative of the entropy 
�S

�t
= −

Δ�1

�1
�(t − tMS) . The singularity indicated by the func-

tion �(t − tMS) is associated with a phase-transition singu-
larity, which would correspond to a critical regime (see, 

Fig. 1   Short-time (weeks) continuous (panel a, year 2010) and discontinuous (ruptures, panel b, year 2011) variations of the parameter � for 
Vrancea (Romanian Earthquake Catalog ROMPLUS (2018, updated)

β

t1 tMS t2

MS

(f) (a)
∆β1

∆β2

tO

Fig. 2   A qualitative sketch of the variation of the parameter � ver-
sus time t around the moment t

MS
 of the occurrence of a main shock 

(MS), possibly including a foreshock region (f) and an aftershock 
region (a). The total variation of the parameter � in the time intervals 
(t1, tMS

) and (t
MS
, t2) is zero ( Δ�1 + Δ�2 = 0 ), indicating an equilib-

rium process (constant entropy, ΔS = 0)
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e.g. De Santis et al. 2019). However, this is not a thermo-
dynamic interpretation of the singularity, because the con-
tinuous parameter is the time, not the temperature T = 1∕� , 
which has also a jump (it is discontinuous) at tMS.

The absence of fluctuations in the seismic activity ana-
lyzed here raises an interesting question. In Statistical 
Physics the fluctuations are analyzed for an ensemble con-
sisting of a large number N ≫ 1 of sub-ensembles (sub-
systems). The standard deviation �� = � computed in Eq. 
(35) corresponds to one sub-ensemble. The sub-ensemble 
method is convenient for an extensive ensemble (like a gas 
of N particles). The seismic activity lacks this extensive 
property. However, we may view the successive updates of 
the parameter � described above as a series of N distinct, 
random, independent realizations of our ensemble, such 
that the average value of the parameter � is given by

with the mean value B = � . We note that these assumptions 
imply the statistical equilibrium. The mean square deviation 
of B is

which can be written as ΔB2 =
1

N
 Δ�2  ; hence, we find 

�B∕B =
√

ΔB2∕B =
1

√

N

�

��∕�
�

 , where we may take �� = � 
and � = � . We can see that the relative fluctuation of B is 
vanishing for large N and the dispersion of the variables �i 
is �� =

√

Δ�2 = � . This corresponds to the normal (Gauss-
ian) distribution given by Eq. (34) (this result is also known 
as the central limit theorem). If the normal distribution 
changes in time, under the assumption of (quasi-) statistical 
equilibrium, we would have the possibility to do a predic-
tion, as discussed above. From the discussion given above 
we see that this picture is not supported by data. The values 
�i of the parameter � exhibit a slight, uniform increase in 
time, interrupted by disparate, apparently random abrupt 
decreases. This behaviour suggests a non-equilibrium 
process.

The time variation of the parameter � of the Guten-
berg–Richter distribution may be used as a quantitative 
measure of the departure from equilibrium of a given seis-
mic activity. For example, from Fig. 1 we can estimate 
a variation ≃ 1% for � during the year 2010 and ≃ 0.5% 
for year 2011. The latter is smaller, due to the occur-
rence of two large earthquakes in 2011, which lowered 
the parameter � (1 May 2011, magnitude 4.9 and 4 Octo-
ber 2011, magnitude 4.8). Similar values are obtained for 
other years, which may indicate that the seismic activity 

(36)B =
1

N

N
∑

i=1

�i,

(37)ΔB2 =
1

N2

N
∑

i,j=1

Δ�iΔ�j =
1

N2

N
∑

i=1

Δ�2
i
,

in Vrancea has a rather steady character, with a constant 
rate of change in time of the magnitude distribution, over a 
long period. Although these figures are very small, and we 
might be tempted to assign a quasi-equilibrium character 
to the seismic activity, such a conclusion is not supported 
by the lack of fluctuations; the existence of the fluctuations 
is a necessary element for the statistical (quasi-) equilib-
rium. However, if we view the small-earthquake increase 
in the parameter � together with the decrease brought 
about by larger earthquakes as long-period quasi-oscilla-
tions over a long period of time (including a large set of 
data), then we may assume that these quasi-oscillations are 
fluctuations. Such quasi-oscillations have been identified 
previously on the data corresponding to 3640 earthquakes 
with magnitude M ≥ 3 which occurred in Vrancea dur-
ing 1981−2018 (Apostol 2019b). Also, it seems that such 
quasi-oscillations have been seen by Main and Al-Kindy 
(2002), although on small-sized samples. From this per-
spective, long-period quasi-oscillations in the parameter 
� , corroborated with a small, overall increase, might lead 
to assuming that the seismic activity may be approximated 
by a quasi-equilibrium process over such very long periods 
of time. However, we note that the steady increase in the 
parameter � and its disparate ruptures are not easily dis-
tributed on a normal Gaussian.

Concluding remarks

The Gutenberg–Richter statistical distribution in magnitude 
is derived for a canonical ensemble by the standard proce-
dure of maximizing the entropy. By assuming the seismic 
activity as consisting of a sequence of random, independent 
earthquakes with various magnitudes, the corresponding 
microcanonical ensemble is examined by standard methods 
and the fluctuations normal distribution is derived for earth-
quakes (Einstein’s fluctuation formula). These results are 
tested by an analysis of 8455 earthquakes with magnitude 
M ≥ 2 , which occurred in Vrancea during the time inter-
val (years) 1980−2019 . The analysis indicates a departure 
from equilibrium, with a slight increase in the parameter 
� ( 0.5%−1% per year) and the absence of the fluctuations 
(at least in the usual Gaussian form of their distribution). 
The seismic activity is fed continuously by the tectonic 
energy and, consequently, it cannot be viewed, rigorously, 
as a (quasi-) equilibrium statistical ensemble. The Guten-
berg–Richter distribution is shifted continuously towards 
small-magnitude earthquakes, with random re-arrangements 
caused by higher-magnitude earthquakes.
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