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Abstract

We analyze the usefulness of the foreshocks in forecasting seismic mainshocks. The analysis is based 
on possible correlations which may exist between foreshocks and mainshocks. Such correlations are 
expressed by a previously established time-magnitude relationship, which indicates the presence of 
an abrupt magnitude-decreasing sequence of correlated foreshocks in the proximity of a mainshock. 
By fitting this formula, we are able to derive the occurrence time of a possible mainshock. Also, we 
can estimate the magnitude of the mainshock, providing we know the parameters of the background 
seismicity of the seismic region. We report here on the application of this procedure to three Vrancea 
(Romania) mainshocks, the l’Aquila (Italy), Yangbi (Yunnan, China) and Izmit (Turkey) earthquakes. 
The limitations of the procedure are discussed. Also, a discussion is included regarding the so-called 
temporal variability of the Gutenberg-Richter parameter in the proximity of a mainshock, as resulting 
from time-magnitude and time-time correlations.

Keywords: Time-magnitude correlations; Foreshocks; Mainshocks; Forecasting; Gutenberg-Richter 
parameter

1. Introduction

The prediction of the big earthquakes is a long standing problem in seismology [see, for instance, Stein and
Wysession, 2003; Udias, 1999; and Jordan et al., 2011; van Stiphout et al., 2010; Gerstenberger et al., 2005]. It is well 
known that seismic mainshocks are accompanied by foreshocks and aftershocks, which are localized in the spatial 
and temporal relative proximity of the mainshocks. After a strong mainshock the focal region and its surroundings 
may be modified, and special, smaller aftershocks may appear [Omori, 1894; Utsu, 1965, Lippiello et al., 2015]. 
Similarly, the energy accumulated in the focal region may be released in advance by some, smaller foreshocks, 
which may announce the occurrence of a mainshock [Seif et al., 2019; Bouchon et al., 2013; Jones and Molnar, 1976, 
1979]. It is reasonable to assume that such anomalous foreshocks and aftershocks, which may exhibit a certain 
connection with the mainshock, should have the hypocentres close to the focus of the mainshock and should occur in 
a restricted time window around the moment of the occurrence time of the mainshock. These accompanying seismic 
events, which are associated with the mainshock in space and time, may exhibit specific patterns in their space, 
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time, magnitude distributions. It seems reasonable to assume that such specific characteristics of the foreshocks 
might be useful in predicting the occurrence of the mainshocks. Obviously, such seismic events are correlated, in 
the sense that the characteristic parameters of an event depend on the characteristic parameters of the other. The 
correlations reflect a possible connection between the accompanying seismic events and the mainshock, as well as 
between themselves.

As important, and reasonable, as this problem may appear (called sometimes the “foreshock hypothesis”, 
see, for instance, Petrillo and Lippiello, 2020; Mignan, 2014), it seems that specific procedures with a practical 
potential of application have not yet led to convincing results. The problem exhibits serious difficulties. Firstly, for 
instance, not all the foreshocks may be correlated to the mainshock; some of them may be regular, background, 
precursory earthquakes. Secondly, the sequence of correlated foreshocks may be interrupted by a sequence of 
regular earthquakes, or by so-called seismic gaps, possibly as a result of unknown local, structural changes in the 
focal region. Thirdly, correlated foreshocks may generate their own sequences of smaller, second-order (and higher-
order) accompanying events, both in advance and after their occurrence, as it is well known from the epidemic-type 
aftershock sequence (ETAS) model [Saichev and Sornette, 2005; Helmstetter and Sornette, 2003; Ogata, 1988, 1998]. 
According to this model every seismic event in the sequence foreshocks-mainshock-aftershocks is correlated to 
every other seismic event in the sequence, and such correlations are hierarchical in their degree of magnitude.

The investigation of the problem was focused on the physical mechanism of occurrence of the foreshocks and 
the mainshocks, which is a difficult problem. On one hand, an astatic pre-slip over an extended area may lead to 
stress accumulation in the focus of the mainshock [Mignan, 2011; Bouchon et al., 2011; Ellsworth and Beroza, 1995; 
Ohnaka, 1992]. An intense seismic activity may occur, followed by a nucleation phase. Also, a random triggering 
of cascading earthquakes is possible, the mainshock included [Felzer et al., 2004; Helmstetter and Sornette, 2003; 
Ogata, 1988]. It was suggested that the mainshock preparation phase is controlled by the fault surface heterogeneities 
and the stress redistribution [Yamashita et al., 2021]. A critical analysis of these two competing models was done 
by Mignan [2014].

On the other hand, the well-known time variation of the Gutenberg-Richter parameter (𝛽) for foreshocks 
(GR parameter), compared to aftershocks and the background seismicity (see, for example, Papazachos, 1975 and 
References therein), was recently documented by Gulia and Wiemer [2019] in some cases. The foreshock parameter 𝛽 
is lower than the background value (e.g., by 10%), while the aftershock parameter is higher than the background 
value (e.g., by 20%; see also Gulia et al., 2018, 2016 and References therein; De Santis et al., 2011). The variation 
of the parameter 𝛽 in the foreshock sequence could be useful in forecasting mainshocks in some cases, though the 
analysis method employed by Gulia and Wiemer [2019] was questioned [Dascher-Cousineau et al., 2020, 2021; see 
also Gulia and Wiemer, 2021].

If existing, the forecasting potential of the foreshocks remains elusive as long as a quantitative description of 
the correlations is not available. Such a quantitative description should relate foreshocks characteristics to the 
time left until to the occurrence of the mainshock. We present in this paper such a quantitative relation between 
the magnitude M of the correlated foreshocks and the time 𝜏 until the occurrence of the mainshock, based on the 
time-magnitude correlations derived recently [Apostol, 2021]. We focus here on the main correlations which may 
connect the foreshocks (and the aftershocks) to the mainshock (and, of course, the mainshock to the foreshocks and 
the aftershocks). We show that such correlations, if present, may increase the Gutenberg-Richter parameter 𝛽 for 
aftershocks, in agreement with some empirical observations. Also, we show that these correlations may be related 
to other type of correlations, called time-time correlations (or purely dynamical correlations [Apostol, 2021]). This 
connection affects the Gutenberg-Richter standard distribution in such a way that, if present, the parameter 𝛽 
decreases for foreshocks, in agreement with some other empirical observations. In general, the time-time 
correlations can be seen most conveniently in the roll-off effect present in the Gutenberg-Richter distribution at 
small magnitudes.

The time-magnitude relation between M and 𝜏 shows an abrupt decrease in magnitudes in the proximity of a 
mainshock (when 𝜏 tends to a small threshold time 𝜏0, see below). As such, the method is valid for a short-, and very 
short-, time forecasting (a circumstance which may question the practical utility of the method). From our tests, 
which we describe below, we may say that the practical procedure consists in monitoring continuously (daily, even 
hourly) the seismic activity in a focal region, prone to a mainshock. If a (relatively short) sequence of foreshocks 
can be fitted reasonably by the M‑𝜏 correlation law given here, we might be in the proximity of a mainshock. We 
can estimate the moment of the occurrence time of the mainshock, and, if we know the background seismicity 
parameters of the region, as described herein, we can even estimate the magnitude of the mainshock. It may happen 
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that the prediction fails, from various, unknown causes, as, for example, local structural changes intervening in 
the focal region (false positive). Also, not all magnitude-decreasing foreshock sequences are correlated foreshocks. 
We cannot say at this moment what is the degree of success of the method. This can only be estimated after a long 
series of tests, done in specific conditions. Also, it may happen that a mainshock occurs without being preceded by 
correlated foreshocks, such that we may have a false negative. However, there exist cases where the method may 
succeed, as shown below.

2. Background seismicity

As it is well known, the background seismic activity is governed by the Gutenberg-Richter (GR) statistical law. 
Its standard cumulative (exceedance) form is , where Pex(M) is the probability of occurrence of an 
earthquake with magnitude greater than M and the GR parameter 𝛽 varies in the range 1.15 to 3.45 (in decimal 
logarithms 0.5 to 1.5); the mean value 𝛽 = 2.3 (in decimal logarithms 𝛽 = 1) is usually accepted as a reference 
value [Stein and Wysession, 2003; Udias, 1999; Lay and Wallace, 1995; Frohich and Davis, 1993]. If the number of 
earthquakes with magnitude greater than M is N(M), out of a total number N0 of earthquakes in a given seismic 
region and a given long time interval T, we may write , where t0 is the inverse of 
a mean seismicity rate. The law is applied with a small-magnitude cutoff which accounts for the completeness 
magnitude of the catalog, or the well-known roll-off effect occurring at small magnitudes [Bhattacharya et al, 2009; 
Apostol, 2021; Pelletier, 2000]. Consequently, the parameter t0 is a fitting parameter, like 𝛽. In its linear-logarithmic 
form the law reads

  (1)

By fitting this law we can extract the parameters t0 and 𝛽 of the background seismicity. We performed such a 
fit for a set of 3640 earthquakes with magnitude M ≥ 3 which occurred in Vrancea during 1981-2018. The resulting 
parameters are –ln t0 = 11.32 (t0 measured in years) and 𝛽 = 2.26 (with an estimated 15% error). We note that the 
value 𝛽 = 2.26 is close to the reference value 2.3 given above. We use these data in the applications to Vrancea 
region, described below. The data for Vrancea have been taken from the Romanian Earthquake Catalog (2023), 
http://www.infp.ro/data/romplus.txt. A completeness magnitude M = 2.2 to M =2.8 is usually accepted for Vrancea 
(a more conservative figure would be M = 3, [Enescu et al., 2008] and References therein), and the magnitude average 
error is ΔM = 0.1. A similar fit, with slightly modified parameters, is valid for 8455 Vrancea earthquakes with 
magnitude M ≥ 2 (period 1980-2019).

3. Foreshocks and aftershocks

Let us focus on the time-energy accumulation formula

  (2)

given in the Appendix A (equation (A4)).
Let us assume that at the moment t1 a mainshock with energy E1 and magnitude M0 occurs. Further, we assume 

that a small energy E is released after a small lapse of time 𝜏, as if the accumulation process continues and the 
mainshock would share a small amount of energy with an aftershock. Also, we may assume that a small amount of 
energy E is accumulated in excess at time 𝜏 before the mainshock, possibly by a local, structural change in the focal 
region, and it is released in advance, at that moment of time; as if the mainshock would share this energy with a 
foreshock, the accumulation process continuing up to the mainshock. In both cases, since  and , we can 
obtain a relation between these two quantities by differentiating equation (2),

  (3)

http://www.infp.ro/data/romplus.txt
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By using the definition of the magnitude, , where b = 3.45 (3/2 in decimal logarithms) is the well-
known Hanks-Kanamori constant (equation (B3)), this equation reads

  (4)

where

  (5)

is a small threshold time which depends on the magnitude of the mainshock (M0) and the parameter of the 
background seismic activity (t0 and r, 𝛽 = br, see Appendix B). The small threshold time 𝜏0 indicates a very short 
quiescence time [Ogata and Tsuruoka, 2016] before (and after) the occurrence of the main shock (𝜏 > 𝜏0). In addition, 
the time 𝜏 should be cut off by an upper threshold, at least for M not to be greater than the magnitude M0 of the 
main shock (M < M0, ). The law given by equation (4) is valid in the proximity of a mainshock for relatively 
small times and magnitudes.

We note that the parameters of the background seismicity for Vrancea region, as discussed above, are –ln t0 = 11.32 
(t0 measured in years) and 𝛽 = 2.26, such that, from , where b = 3.45 (Appendix B), we get r = 2.26/3.45 = 0.65. 
These parameters are used in equation (5) for applications to Vrancea region.

Equation (4) can also be written as

  (6)

This equation tells that the magnitude M of a foreshock, or aftershock, is related to the time 𝜏 left until the 
mainshock, or elapsed after the mainshock, by a formula which depends on the parameters of the mainshock (M0 
in 𝜏0, equation (5)) and the parameters of the background seismicity. This dependence means that the foreshocks 
and the aftershocks are correlated to the mainshock. These are time-magnitude correlations [Apostol, 2021], which 
may also be called energy-energy correlations, since they involve an energy sharing. Together with the meaning 
of the differentiation given above, we may view these correlations as a description of the “physical” processes 
involved in the sequence foreshocks-mainshock-aftershocks. Basically, the mainshock shares its energy with the 
foreshocks and the aftershocks. However, specific features related to the stress accumulation or transfer, and the 
spatial distributions of these processes remain unknown.

4. Methods and results

Equation (6) can also be written as

  (7)

where tms is the occurrence time of the mainshock. This equation can be fitted to the foreshock magnitudes for 
the parameters tms and 𝜏0 (b = 3.45). From 𝜏0 and equation (3), by making use of the parameters of the background 
seismicity (t0, 𝛽, r), we can get the magnitude M0 of the mainshock. Equation (4) is limited by  and a 
higher cutoff which accounts for M < M0 at least ( ).

It is worth noting that the time tms depends on the magnitude of the mainshock, as expected. For instance, a 

magnitude M indicates a time  up to the mainshock. Let us assume that we are interested in a mainshock with 

magnitude M0 = 7; then by using  (years, for Vrancea) and r = 0.65 given above, we get  (years); 
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a correlated foreshock with magnitude M = 5 would indicate that we are at  years, i.e. ≃ 29 
days, from that mainshock.

We note that equation (7) has a very high slope in the neighbourhood of tms, such that a reliable estimation of the 
fitting parameters tms and 𝜏0 can only be achieved by a special data set, which would include, ideally, many small-
magnitude foreshocks with magnitudes falling rapidly to zero. The importance of the small-magnitude foreshocks 
in assessing the foreshock-mainshock occurrence mechanism has been emphasized by Mignan [2014]. This would 
imply a small 𝜏0, which is difficult to attain. Consequently, we expect a systematic under-estimation of the mainshock 
magnitude M0 (small 𝜏0 involves large M0, according to equation (5).

Vrancea is the main seismic region of Romania. Three strong earthquakes occurred in Vrancea, since we have 
reliable recordings: magnitude M = 7.1, 30 August 1986; magnitude M = 6.9, 30 May 1990; magnitude M = 6.4, 
31 May 1990 [Romanian Earthquake Catalog, 2023, http://www.infp.ro/data/romplus.txt]. We have applied the 
fitting procedure described above to the 7.1-earthquake of 30 August 1986 (depth 131 km). This earthquake 
and all its precursory events since 1 August are shown in Fig. 1. All these earthquakes occurred in an area with 
dimensions ≃ 100 km × 80 km (45°-46° latitude, 26°-27° longitude), at various depths in the range 30 km-170 km, 
except for the events of 7-8 August and the 1.6-event of 30 August, whose depths was 5 km-20 km. As shown in 
Fig. 1, we can identify several magnitude-descending sequences, which we fitted by equation (7). For earthquakes 
which occurred in the same day we have used the maximum magnitude (an average magnitude for the days with 
multiple events leads to a fit with larger errors). The fitting parameters are given in Table 1. We note large fitting 
errors, and a systematic under-estimation of the mainshock magnitude.

A particular example is the foreshock sequence from 16 August to 24 August (seven earthquakes), whose fitting 
parameters are tms=24 August,  days and a large rms relative error 0.32. These fitting parameters indicate 
the occurrence of a mainshock with magnitude 4.4 on 24 August. The data of the foreshocks in the sequence 
16-24 August are given in Table 2. We can see that the hypocentres of these foreshocks are placed in an area with 
dimensions ≃ 25 km × 40 km, at depths in the range ≃ 50 km, centered on ≃ 125 km, except for one (24 August) 
placed at depth ≃ 75 km.

Another example is the sequence 7-11 August (four earthquakes), which includes surface foreshocks with closely 
neighbouring hypocentres and depths in the range 20-50 km.

We cannot identify magnitude-descending sequences for the earthquake pair of 30-31 May 1990 (depth 87-91 km). 
This is an example of a false negative of the method.

0 10 20 30
0

2

4

6

8

M

Aug

Figure 1.  Vrancea seismic activity in the period 1 August-31 August 1986 [Romanian Earthquake Catalog, 2023], with 
several fitting curves of foreshock sequences. The fit of equation (7) to data from 16 August to 24 August gives the 
fitting parameters tms = 24 August and 𝜏0 =10–4.76 days. This indicate that we are in the proximity of a mainshock.

http://www.infp.ro/data/romplus.txt
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1986 tms M0 𝝉0 (days) rms relative error

2-11 August 11.02 August 1.37 10–3.21 days 0.13

7-11 11 2.26 10–3.66 0.11

16-23 23.07 5.03 10–5.08 0.33

16-24 24 4.4 10–4.76 0.32

16-27 27.15 3.31 10–4.17 0.35

16-28 29.07 2.9 10–4.00 0.35

20-29 29 1.96 10–3.51 0.27

27-29 29 2.72 10–3.90 0.16

Table 1. Various foreshock sequences for the M = 7.1 Vrancea mainshock, 30 August 1986, fitted by equations (7) and (5).

1986 Lat (°) Long (°) Depth (km) M

16 August 45.58 26.33 148 4.7

17 45.74 26.38 44.5 0.9

17 45.67 26.47 104.8 4.4

20 45.55 26.37 165 2.7

20 45.53 26.57 122.3 3.6

20 45.64 26.67 143.2 3.5

21 45.66 26.54 146.7 3.8

22 45.60 26.70 102 1.9

22 45.62 26.11 31.8 1.9

23 45.69 26.57 140.5 2.7

24 45.75 26.18 74.6 2

Table 2.  The foreshock sequence from 16 August to 24 August 1986, with the position of their hypocentres. For foreshocks 
occurring in the same day the maximum magnitude has been used for fitting.
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The same procedure has been applied to the Vrancea earthquake with magnitude 3.8 (local magnitude 4.1), viewed 
as a mainshock, which occurred on 30 November 2021, where we used the foreshock sequence from 24 November to 
29 November (six earthquakes). We estimate a mainshock with magnitude 4.5 on 1 December ([Apostol and Cune, 
2021]; the data are taken from Romanian Earthquake Catalog, 2023, http://www.infp.ro/data/romplus.txt). All these 
foreshocks occurred within 45.47°-45.73° latitude, 26.26°-26.59° longitude, at depths in the range 90 km-130 km.

-20 -15 -10 -5 0
time(min)

0

1

2

3

M

Figure 2.  Two foreshock sequences, a few minutes before the Izmit earthquake, 17 August 1999, M = 7.6 fitted by the 
time-magnitude correlation equation (7).

We have analyzed the set of precursory events of the l’Aquila earthquake, 6 April 2009 (moment magnitude 6.3, 
local magnitude 5.9), where we identified two magnitude-descending sequences, with earthquakes succeeding 
rapidly at intervals of hours. The first sequence, consisting of seven earthquakes with local magnitudes from 
2.1 to 1.0, occurred on 2 April. The fitting of these data indicates a mainshock approximately 5 hours before the 
earthquake with magnitude 3.0 of 3 April (with a large rms relative error 0.4). The second sequence consists of five 
earthquakes with magnitudes from 1.9 to 1.1, which occurred on 6 April. The fit, with a similar large error, indicates 
the occurrence of a mainshock at the time 01:35; the l’Aquila earthquake occurred at 01:32 (UTC; the last foreshock 
was recorded at 01:20). The data used in this analysis are taken from the Bollettino Sismico Italiano, 2002-2012 
(https://www.earth-prints.org/handle/2122/10183) [2015], in ± 25 km an area around the epicenter of the l’Aquila 
earthquake (42.342° latitude, 13.380° longitude). The lack of the background seismicity parameters 𝛽 and –ln t0 
prevents us from estimating the magnitude of the mainshocks for l’Aquila. We note that the use of local magnitudes 
in equation (7) generates (small) errors.

For the Yangbi (Yunnan, China) earthquake of 21 May 2021, 13.48 hours, with (surface-wave) magnitude Ms = 6.4, 
depth ≃ 5 km, we have identified two magnitude-decreasing sequences of foreshocks, each set located in a small 
spatial region, with an average depth ≃ 5 km ([Zhu et al., 2022], Supplemental Materials, Table S1). The fitting of 
the first sequence of 19 May, from 12.06 hours, Ms = 4.5, to 16.54 hours, Ms = 2.8 (four earthquakes), predicts a 
mainshock on 19 May, 16.9 hours. The second set of foreshocks, on 21 May, from 13/21 hours/minutes, Ms = 5.3, 
to 13/40, Ms = 2.8 (three earthquakes), gives a mainshock on 21 May, 13.66. In both cases the parameter 𝜏0 is very 
small (abrupt decrease in magnitude), with an accelerating seismicity rate in the proximity of the mainshock. The 
fits have a small rms relative error 0.06 and 0.14. (Using equation (7) with the moment magnitude M replaced by 
the magnitude Ms introduces small errors).

A similar analysis has been performed for the Izmit (Turkey) earthquake of 17 August 1999, magnitude M = 7.6, 
depth 15 km ([Ellsworth and Bulut, 2018], Supplementary Information, Table 1). We have analyzed two foreshock 

http://www.infp.ro/data/romplus.txt
https://www.earth-prints.org/handle/2122/10183
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sequences, occurred on 16 August 1999, very close to the hypocentre of the mainshock, from minute 20.1 (M = 2.1) 
to 18.2 (M = 0.9) before the mainshock and from minute 12.2 (M = 2.2) to 2.1 (M = 0.9). These sequences predict a 
mainshock to the minute 18 and the minute 1.47 in advance, with a relatively low seismicity rate (slowly decreasing 
in magnitude) and small rms relative error 0.1 and 0.16. The fitting curves to the two Izmit sequences are shown 
in Fig. 2.

The data of the foreshock sequences used for the Yangbi earthquake and the Izmit earthquake are given in 
Table 3.

5. Discussion and conclusions

5.1 Forecasting

We have presented above a procedure which can be used in short-term forecasting of seismic mainshocks. The 
procedure is based on the correlations which may be present between foreshocks and the mainshock. The presence of 
the correlations has a random character. It is not necessary that they exist always, and we do not know apriori when 
they exist or not. According to the theory, these correlations produce an abrupt magnitude-descending sequence of 
foreshocks in the proximity of a mainshock; we should note that not all magnitude-descending precursory events are 
necessarily correlated foreshocks. Prior to a mainshock (as well as in the subsequent lapse of time) the local seismic 
conditions of the focal region may suffer changes, which are unknown. The theoretical considerations on which 
the present procedure is based assume that all the factors which may intervene remain the same. In particular, one 
component of the procedure – the determination of the magnitude of the mainshock – assumes that the background 
seismicity preserves its statistical parameters. Consequently, the procedure presented above may exhibit important 
limitations. For instance, between the moment of forecasting and the predicted occurrence moment of a mainshock 
the local seismic conditions may change, or the magnitude-decreasing foreshock sequence is not correlated, such 
that we may have a false positive. Similarly, a mainshock may be preceded by uncorrelated foreshocks, which may 
lead to a false negative. Nevertheless, if correlations are present and nothing else changes, we can forecast the 
occurrence time and even the magnitude of a mainshock, by using the abrupt magnitude-decreasing sequence of 

Earthquake: region, date,  
time of occurrence, magnitude

Foreshocks sequences: date, time, 
magnitude

Predicted time 
of occurrence

Yangbi, 21 May 2021,  
13.48, Ms=6.4

19 May: hours 12.06, Ms=4.5;  
hours 12.28, Ms=2.9; hours 13.13, Ms=3.8;  

hours 16.54, Ms=2.8
tms=16.9 (hours)

Yangbi, 21 May 2021,  
13.48, Ms=6.4

21 May: hours/minutes 3/21, Ms=5.3; 
hours/minutes 13/37, Ms=3.4;  
hours/minutes 13/40, Ms=2.8

tms=13.66 (hours)

Izmit, 17 August 1999,  
00:01.44, M=7.6

16 August; time before (minutes):  
20.1, M=2.1; 20, M=1.5; 18.9, M=1.5;  
18.4, M=1.3; 18.3, M=1.1; 18.2, M=0.9

tms=18 (minutes before)

Izmit, 17 August 1999,  
00:01.44, M=7.6

16 August; time before (minutes):  
12.2, M=2.2; 10.1, M=1.5; 8.2, M=1.2;  

7.3, M=1.6; 6.3, M=1.4; 2.1, M=0.9
tms=1.47 (minutes before)

Table 3.  Foreshock time-magnitude sequences for the Yangbi earthquake ([Zhu et al., 2022], Supplemental Materials, 
Table S1), and the Izmit earthquake ([Ellsworth and Bulut, 2018], Supplementary Information, Table 1), and the 
predicted time of occurrence of the mainshock.
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correlated foreshocks which occur in its both spatial and temporal proximity. In some cases these conditions are 
fulfilled, in some other cases they are not. We cannot say apriori which case is which.

5.2 Time variation of the Gutenberg-Richter parameter

Closely related to the time-magnitude correlations described above is the so-called time variation of the 
Gutenberg-Richter 𝛽 parameter. Let us compare equation (4) ( ) with equation (B4) given in Appendix B 
( ). Equation (B4) gives the accumulation time for an independent (background, regular) earthquake 
with magnitude M. Accordingly, equation (4) may be viewed as giving the accumulation time for an independent 
earthquake with magnitude M, in different seismicity conditions, because the parameters 𝜏0 and b in this equation are 
different from the parameters t0 and 𝛽 in the former equation. Obviously, this interpretation applies to aftershocks, 
which may be viewed as independent earthquakes accumulating energy, in different seismicity conditions, following 
the mainshock. Indeed, it is reasonable to assume that after a mainshock the local seismicity conditions of the 
focal region are changed, and the corresponding parameters t0 and 𝛽 are changed into 𝜏0 and b. Although the law 
given by equation (4) holds for foreshocks too, such an interpretation does not hold for foreshocks, because the 
foreshocks occur in advance of the process of accumulating energy in time 𝜏, also, probably, as a result of changes 
in the local structure of the region. It follows that the Gutenberg-Richter parameter 𝛽 (GR parameter) is changed 
for aftershocks into the parameter b > 𝛽.

The corresponding Gutenberg-Richter magnitude distribution  , which follows from the 
accumulation law (see Appendix B), is changed for aftershocks into  , which indicates an 
increase in the GR parameter (b = 3.45) with respect to its background value 𝛽 (e.g., 2.3). We may assume that such 
a deviation is relevant up to a cutoff magnitude Mc where the two distributions become equal, such that we may 
estimate an average increase in the parameter 𝛽 as  for 𝛽 = 2.3. The cutoff magnitude is given by 

 , hence Mc = 0.36 for r = 2/3, b = 3.45 (𝛽 = 2.3). This estimation is in quantitative agreement with 
data reported by Gulia and Wiemer [2019] for the Amatrice-Norcia earthquakes (24 August 2016, magnitude 6.2; 
30 October 2016, magnitude 6.6) and the Kumamoto earthquakes (15 April 2016, magnitude 6.5 and 7.3). These 
authors found that the aftershock parameter is higher than the background value (e.g., by 25%), while the foreshock 
parameter 𝛽 is lower than the background value (e.g., by 10%). Also, a similar decrease in the parameter 𝛽 has been 
reported for the foreshocks of the L’Aquila earthquake (6 April 2009, magnitude 6.3) by Gulia et al. [2016] and the 
Colfiorito, Umbria-Marche, earthquake (26 September 1997, magnitude 6) by De Santis et al. [2011].

In some cases, the aftershocks dominate the seismic activity subsequent to a mainshock. In those cases, a 
determination from empirical data of an increase in the GR parameter of the aftershocks can be achieved by a 
statistical analysis, providing we have a sufficiently large number of (statistically homogeneous) aftershocks. In 
some cases such a situation may not be present, in the sense that we may not have a sufficiently large number of 
events, or other factors, like the background seismic activity, may interfere. Such particularities in the statistical 
analysis of the foreshocks and the aftershocks have been pointed out by Dascher-Cousineau et al. [2020, 2021] (see 
also Gulia and Wiemer [2021]).

We turn now to another type of correlations, which may be relevant in the variability of the GR parameter of the 
accompanying events. Besides sharing energy with the mainshocks, we may view the accompanying seismic events 
as sharing also their accumulation time with the mainshocks. In this case the statistical analysis should reflect the 
time-time correlations, described in Appendix C.

As shown in Appendix C, the correlation-modified magnitude distribution (modified GR distribution, [Apostol, 
2021]) is

  (8)

(equation (C3)); without other specifications, this distribution includes the time-time (or purely dynamical) 
correlations, which affect mainly the small-magnitude earthquakes. From equation (8) we get the correlation-
modified cumulative distribution

  (9)
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The logarithmic form of this distribution

  (10)

should be compared to the standard logarithmic form

  (11)

(equation (1)). We can see that the modified GR distributions (equations (8) and (9)) differ from the standard 
GR distributions. It seems that such a qualitative difference has been found for southern California earthquakes 
recorded between 1945-1985 and 1986-1992 [Jones, 1994]. The difference arises mainly in the small-magnitude region 
M ≃ 1, where the distribution is flattened. For instance, in this region the parameter 𝛽 of the cumulative distribution 
tends to 𝛽/2, according to equations (8) and (9) (see Appendix C). This deviation, known as the roll-off effect 
[Bhattacharya et al., 2009; Pelletier, 2000], is assigned usually to an insufficient determination of the small-
magnitude data. We can see that it may be due to correlations, at least partially. For large magnitudes the logarithmic 
cumulative distribution is shifted upwards by ln 2 (equation (10)), while its slope is very close to the slope of the 
standard cumulative GR distribution (𝛽).

The distribution given by equation (9) indicates a change in the parameter 𝛽 of the standard GR distribution. 
We denote by B the modified parameter 𝛽; it is given by

  (12)

where B is a function of M (B(M)). It is convenient to introduce the ratio R = B/b (similar to r = 𝛽/b given above). We 
may view the earthquake with magnitude M as an earthquake which shares energy with a mainshock of magnitude M0, 

0 1 2 3 4 5 6 7 8
log θ

0

R

r

r/2

Figure 3. Function R(𝜃) vs log 𝜃 for r = 2/3 (equation (13)).
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such that we may use equation (6) for . Equation (12) becomes

  (13)

where  . The use of equation (6) in equation (12) is valid in the proximity of a mainshock, where both time-
magnitude and time-time correlations are present. The parameter R varies form R = r for large values of the variable 
𝜃 to R = r/2 for  ( ). The function R(𝜃) is plotted in Fig. 3 vs log 𝜃 for r = 2/3.The decrease of the function 
R(𝜃) for  indicates correlations.

According to equation (12), the modified GR parameter B is given approximately by

  (14)

or

  (15)

for a reasonable range of magnitudes M > 1. Equations (13)-(15) show the decrease of the GR parameter, as seen in 
some cases in a foreshock sequence. For instance, a 10% decrease is achieved for M = 3, or  (𝛽 = 2.3, 
r = 2/3). This estimation is in quantitative agreement with data reported by Gulia and Wiemer [2019]. It is worth 
noting that smaller magnitudes occur in the sequence of correlated foreshocks for shorter times, measured from 
the occurrence of the mainshock (the nearer mainshock, the smaller correlated foreshocks). The determination of 
such a variation of the parameter 𝛽 from empirical data can be attained in statistically valid conditions, when both 
time-magnitude and time-time correlations are present.
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1. A: Geometric-growth model of energy accumulation in focus

In	Apostol	[2006]	a	typical	earthquake	is	considered,	with	a	small	focal	region	localized	in	the	solid	crust	of	the	Earth.	
The	dimension	of	the	focal	region	is	so	small	in	comparison	to	our	distance	scale,	that	we	may	approximate	the	focal	region	
by	a	point	in	an	elastic	body.	The	movement	of	the	tectonic	plates	may	lead	to	energy	accumulation	in	this	point-like	focus.	
The	energy	accumulation	in	the	focus	is	governed	by	the	continuity	equation	(energy	conservation)

 	 (A1)

where E is the energy, t	denotes	the	time	and	v	is	an	accumulation	velocity.	For	such	a	localized	focus	we	may	replace	
the	derivatives	in	equation	(A1)	by	ratios	of	small,	finite	differences.	For	instance,	we	replace	  by  for the 
coordinate x,	etc.	Moreover,	we	assume	that	the	energy	tends	to	zero	at	the	borders	of	the	focus,	such	that	 , where 
E	is	the	energy	in	the	centre	of	the	focus.	Also,	we	assume	a	uniform	variation	of	the	coordinates	of	the	borders	of	this	
small	focal	region,	given	by	equations	of	the	type	  , where u	is	a	small	displacement	velocity	of	the	medium	in	the	
focal	region.	The	energy	accumulated	in	the	focus	is	gathered	from	the	outer	region	of	the	focus,	as	expected.	With	these	
assumptions	equation	(A1)	becomes

 	 (A2)

Let	us	assume	an	isotropic	motion	without	energy	loss;	then,	the	two	velocities	are	equal,	v = u, and the bracket in 
equation	(A2)	acquires	the	value	3.	In	the	opposite	limit,	we	assume	a	one-dimensional	motion.	In	this	case	the	bracket	in	
equation	(A2)	is	equal	to	unity.	A	similar	analysis	holds	for	a	two	dimensional	accumulation	process.	In	general,	we	may	
write	equation	(A2)	as

 	 (A3)

where r	 is	 an	empirical	 (statistical)	parameter;	we	expect	 it	 to	vary	approximately	 in	 the	 range	 (1/3,1).	We	note	 that	
equation	(A3)	is	a	non-linear	relationship	between	t and E.	The	parameter	r	may	give	an	insight	into	the	geometry	of	the	



2

focal	region.	Also,	it	reflects	the	structural	condition	of	the	focal	region,	by	the	relation	between	the	two	velocities	v and 
u.	We	call	this	model	a	geometric-growth	model	of	energy	accumulation	in	the	focal	region.

It	is	shown	in	Appendix	B	that	the	parameter	r	is	related	to	the	Gutenberg-Richter	parameter	𝛽	and	the	Hanks-Kanamori	
constant b = 3.45	(3/2	in	decimal	logarithms)	through	𝛽 = br.

A	special	attention	is	given	to	shearing	faults,	which	are	typical	earthquake	sources.	The	energy	accumulation	takes	place	
along one direction, say ux = vx,	but	the	mass	conservation	requires,	on	the	average,	a	motion	in	opposite	directions	along,	
say, the perpendicular y-axis	[Apostol,	2019].	This	makes	uy = 2vy	(2	from	the	two	opposite	directions),	which,	together	with	
uz = 0, leads to r = 2/3.	Indeed,	this	is	the	mean	value	of	the	ratio	r = 𝛽/b,	accepted	as	reference	value	(𝛽 = 2.3, b = 3.45,	
r = 2/3,	see	the	main	text).

The	integration	of	equation	(A3)	needs	a	cutoff	(threshold)	energy	and	a	cutoff	(threshold)	time.	During	a	short	time	t0 a 
small	energy	E0	is	accumulated.	In	the	next	short	interval	of	time	this	energy	may	be	lost,	by	a	relaxation	of	the	focal	region.	
Consequently,	such	processes	are	always	present	in	a	focal	region,	although	they	may	not	lead	to	an	energy	accumulation	in	
the	focus.	We	call	them	fundamental	processes	(or	fundamental	earthquakes,	or	E0-seismic	events).	It	follows	that	we	must	
include	them	in	the	accumulation	process,	such	that	we	measure	the	energy	from	E0	and	the	time	from	t0. The integration 
of	equation	(A3)	leads	to	the	law	of	energy	accumulation	in	the	focus

 	 (A4)

The	time	 t	 in	 this	equation	 is	 the	 time	needed	 for	 the	accumulation	of	 the	energy	E,	which	may	be	released	 in	an	
earthquake	(the	accumulation	time).	This	is	the	time-energy	accumulation	equation	referred	to	in	the	main	text.

2. B: Gutenberg-Richter law. Time probability

The	well-known	Hanks-Kanamori	law	reads

 	 (B1)

where 	is	the	seismic	moment,	M	is	the	moment	magnitude	and	b = 3.45	(3/2	for	base	10).	In	Apostol	[2019]	the	relation	
 has been established, where 	(mean	seismic	moment),	Mij	is	the	tensor	of	the	seismic	moment	

and E	is	the	energy	of	the	earthquake.	If	we	identify	the	mean	seismic	moment	with	  we can write

 	 (B2)

(another	const),	or

 	 (B3)

where E0	is	a	threshold	energy	(related	to	const).	Making	use	of	equation	(A4),	we	get

 	 (B4)

where 𝛽 = br.	 From	 this	 equation	we	derive	 the	useful	 relation	 , or .	 If	we	assume	 that	 the	
earthquakes	are	distributed	according	to	the	well-known	Gutenberg-Richter	distribution,

 	 (B5)
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we get the distribution

 	 (B6)

[Apostol, 2006]. This law shows that the probability for an earthquake to occur between t and t + dt is  ; since the 

accumulation	time	is	t, the earthquake has an energy E	and	a	magnitude	M	given	by	the	above	formulae	(equations	(B2)	
and	(B3)).	The	law	given	by	the	equation	(B5)	is	also	derived	[Apostol,	2021]	from	the	definition	of	the	probability	of	the	

fundamental	E0-seismic	events	( ).	We	note	that	this	probability	assumes	independent	earthquakes.

3. C: Time-time correlations

In	general,	if	two	earthquakes	are	mutually	affected	by	various	conditions,	and	such	an	influence	is	reflected	in	the	above	
equations,	we	say	that	they	are	correlated	to	each	other.	Of	course,	multiple	correlations	may	exist,	i.e. correlations between 
three,	four,	etc.	earthquakes.	We	limit	ourselves	to	two-earthquake	(pair)	correlations.	Very	likely,	correlated	earthquakes	
occur	 in	 the	same	seismic	 region	and	 in	 relatively	short	 intervals	of	 time.	The	physical	causes	of	mutual	 influence	of	
two	earthquakes	are	various.	 In	Apostol	 [2021]	 three	 types	of	 earthquake	correlations	are	 identified.	 In	one	 type	 the	
neighbouring	focal	regions	may	share	energy.	Since	the	energy	accumulation	law	is	non-linear,	this	energy	sharing	affects	
the	occurrence	time.	We	call	these	correlations	time-magnitude	correlations	(or	energy-energy	correlations),	as	described	in	
the	main	text.	They	are	a	particular	type	of	dynamical	correlations.	In	a	second	type	of	correlations,	to	be	described	below,	
two	earthquakes	may	share	their	accumulation	time,	which	affects	their	total	energy.	We	call	such	correlations	time-time,	
or	purely	dynamical	correlations.	Both	these	correlations	affect	the	earthquake	statistical	distributions;	in	this	respect,	
they	are	also	statistical	correlations.	Finally,	additional	constraints	on	the	statistical	variables	(e.g.,	the	magnitude	of	the	
accompanying	seismic	event	be	smaller	than	the	magnitude	of	the	main	shock)	give	rise	to	purely	statistical	correlations.

Let	us	assume	that	an	earthquake	occurs	in	time	t1	and	another	earthquake	follows	in	time	t2.	The	total	time	is	t = t1 + t2, 
such	that	these	earthquakes	share	their	accumulation	time,	which	affects	their	total	energy.	These	are	time-time	(or	purely	
dynamical)	correlations.	According	to	equation	(5)	(and	the	definition	of	the	probability),	the	probability	density	of	such	
an event can be obtained

 	 (C1)

(where	  , ).	By	passing	to	magnitude	distributions	( ),	we	get

 	 (C2)

(where	  , corresponding to 	,	which	introduces	a	factor	2	in	equation	(C1)).	This	formula	(which	
is	a	pair,	bivariate	statistical	distribution)	is	established	in	Apostol	[2021].	(We	note	that	there	is	no	restriction	upon	M2 in 
comparison	with	M1,	in	contrast	to	the	time-magnitude	correlations).	If	we	integrate	equation	(C2)	with	respect	to	M2, we 
get	the	distribution	of	a	correlated	earthquake	(marginal	distribution)

 	 (C3)

If	we	integrate	further	this	distribution	from	M1 = M to +∞,	we	get	the	correlated	cumulative	distribution

 	 (C4)
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From	M ≫	1	the	correlated	distribution	becomes	  and  , which shows that the slope 𝛽 
of	the	logarithm	of	the	independent	cumulative	distribution	(Gutenberg-Richter,	standard	distribution	 )	is	not	changed	
(for	large	magnitudes);	the	correlated	distribution	is	only	shifted	upwards	by	ln	2.	On	the	contrary,	for	small	magnitudes	

(M ≪	1)	the	slope	of	the	correlated	distribution	becomes	 	( 	by	a	series	expansion	of	equation	(C4)),	

instead	of	the	slope	of	the	Gutenberg-Richter	distribution	( ).	The	time-time	correlations	modify	the	
slope	of	the	Gutenberg-Richter	standard	distribution	for	small	magnitudes.	This	is	the	roll-off	effect	referred	to	in	the	
main	text.


