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Abstract—The time dependence of the parameter of the

Gutenberg–Richter (GR) magnitude distribution is identified for

foreshock sequences of earthquakes, correlated with the main

shock, by using the geometric-growth model of earthquake focus,

the magnitude distribution of correlated earthquakes and the time-

magnitude correlations, derived recently. It is shown that this

parameter decreases in time in the foreshock sequence, from the

background values down to the main shock. If correlations are

present, this time dependence and the time-magnitude correlations

provide a tool of monitoring the foreshock seismic activity. We

analyze the relevance of such a procedure for the occurrence

moment and the magnitude of a main shock. The limitations of

such an analysis are discussed.

Keywords: Gutenberg–Richter parameters, foreshock–after-

shock sequences, correlated earthquakes, main shock, occurrence

time.

1. Introduction

Recently, Gulia and Wiemer (2019) suggested

that the difference between the parameters (b) of the

Gutenberg–Richter (GR) magnitude distribution of

the aftershocks and the foreshocks can be used to

estimate the occurrence of main shocks. Accompa-

nying earthquake sequences have been analyzed by

these authors for the Amatrice-Norcia earthquakes

(24 August 2016, magnitude 6.2; 30 October 2016,

magnitude 6.6) and the Kumamoto earthquakes (15

April 2016, magnitude 6.5 and 7.3). They found that

the foreshock parameter b is lower than the back-

ground value (e.g., by 10%), while the aftershock

parameter is higher than the background value (e.g.,

by 20%). A similar decrease in the parameter b has

been reported for the foreshocks of the L’Aquila

earthquake (6 April 2009, magnitude 6.3) by Gulia

et al. (2016) and the Colfiorito, Umbria-Marche,

earthquake (26 September 1997, magnitude 6) by De

Santis et al. (2011). The analysis method employed

by Gulia and Wiemer (2019) was recently questioned

(Dascher-Cousineau et al., 2020, 2021; see also Gulia

& Wiemer, 2021). We discuss in this paper the

variability of the GR parameter in sequences of

foreshocks and aftershocks, which may have rele-

vance for estimating the occurrence time and the

magnitude of the main shocks. The method is based

on the correlations which may exist between fore-

shocks and the main shock.

The standard GR magnitude distribution is

PðMÞ ¼ be�bM (moment magnitude M), where the

parameter b varies in the range 1.15-�3.45 (in dec-

imal basis 0.5-�1.5); the mean value b ¼ 2:3 (in

decimal basis b ¼ 1) is usualy accepted as a refer-

ence value (Stein & Wysession, 2003; Udias, 1999;

Lay & Wallace, 1995; Frohlich & Davis, 1993). It has

been shown (Apostol, 2006) that b ¼ br, where

b = 3.45 (in decimal basis 3/2) and r is a parameter

characterizing the earthquake focus (see ‘‘Appen-

dix’’). The parameter r is a statistical parameter,

related to the geometry of the focal region (e.g., the

effective number of dimensions of the focus); it

reflects mainly the structural condition of the focal

region. We expect the parameter r to vary between

r = 1/3 and r = 1, with a mean value r = 2/3

(b ¼ 2:3). The standard cumulative (excedence) GR

distribution (earthquakes with magnitude greater than

M) is PexðMÞ ¼ e�bM; it is used in its logarithmic

form lnNðMÞ ¼ lnNð0Þ � bM, where N(M) is the

Supplementary Information The online version contains sup-

plementary material available at https://doi.org/10.1007/s00024-

023-03399-4.

1 Institute of Earth’s Physics, Magurele-Bucharest MG-6, PO

Box MG-35, Magurele, Romania. E-mail: afelix@theory.nipne.ro

Pure Appl. Geophys. 181 (2024), 27–36

� 2023 The Author(s), under exclusive licence to Springer Nature Switzerland AG

https://doi.org/10.1007/s00024-023-03399-4 Pure and Applied Geophysics

http://orcid.org/0000-0002-9990-9390
https://doi.org/10.1007/s00024-023-03399-4
https://doi.org/10.1007/s00024-023-03399-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s00024-023-03399-4&amp;domain=pdf
https://doi.org/10.1007/s00024-023-03399-4


number of earthquakes with magnitude greater than

M.

According to these standard formulae, an increase

in b indicates the occurrence of more small-magni-

tude earthquakes, which may appear in the aftershock

region, while a decrease in b indicates, compara-

tively, more greater-magnitude earthquakes. A

decrease in b in the foreshock region has been

reported in many instances (see, e.g., Gulia et al.

(2016) and References therein), as well as an increase

in the aftershock region (Gulia et al., 2018). In

principle, a statistical description of the accompany-

ing seismic activity implies a symmetric distribution

in the foreshock–aftershock regions. However, in the

proximity of a main shock, especially after a main

shock, the condition of the seismic region may

change appreciably, such that it is not likely that the

foreshocks and the aftershocks are members of the

same statistical ensemble.

2. Correlations

Earthquakes which occur closely in time and

space, like the earthquake sequence accompanying a

main shock, may be correlated with the main shock

(see ‘‘Appendix’’). The magnitude distribution of the

correlated earthquakes differs from the standard

Gutenberg–Richter distribution discussed above

(Apostol, 2021). Judged by their time-dependence

shape, the first part of the foreshock distribution

indicated by Gulia and Wiemer (2019) may exhibit

correlations, but correlations cannot be definitely

assessed in the aftershocks distribution; a change in

the seismicity conditions may be present for accom-

panying events. We discuss below a possible

relevance of a correlated foreshock sequence for the

occurrence of a main shock.

The earthquake correlations, as identified in

Apostol (2021), are time correlations (or purely

dynamical correlations), purely statistical and time-

magnitude correlations. The time correlations (called

also ‘‘causal’’ correlations) imply a sharing of the

accumulation time. They lead to modified statistical

distributions, as the modified GR distribution given

below. They may appear by a static or a dyamical

stress, a change in the seismicity conditions of the

focal region, a triggering mechanism, etc. We note

that these correlations imply the same statistical

ensemble. Mathematical conditions (constraints)

imposed on the statistical variables give rise to purely

statistical correlations. Time-magnitude correlations,

which are discussed in this paper, are dynamical

correlations arising from the non-linearity of the law

of energy accumulation in the focus. This law allows

an energy sharing between two (or more) earth-

quakes, which makes an earthquake to depend on the

other, i.e. it generates a correlation between these

earthquakes (see ‘‘Appendix’’).

The correlation-modified magnitude distribution

(modified GR distribution, Apostol, 2021) is

PcðMÞ ¼ be�bM 2

ð1 þ e�bMÞ2
; ð1Þ

without other specifications, this distribution includes

the so-called purely dynamical correlations, which

affect mainly the small-magnitude earthquakes. We

expect such correlations to be present mainly in

foreshock sequences. From Eq. (1) we get the cor-

relation-modified cumulative distribution

Pc
exðMÞ ¼ e�bM 2

1 þ e�bM
: ð2Þ

The logarithmic form of this distribution

lnNcðMÞ ¼ lnNð0Þ þ ln 2 � ln 1 þ ebM
� �

ð3Þ

should be compared to the standard logarithmic form

lnNðMÞ ¼ lnNð0Þ � bM: ð4Þ

We can see that the modified GR distributions (Eqs. 1

and 2) differ from the standard GR distributions, as

shown in Figs. 1 and 2. It seems that such a quali-

tative difference has been found for southern

California earthquakes recorded between 1945–1985

and 1986–1992 (Jones, 1994). The difference arises

mainly in the small-magnitude region M.1, where

the distributions are flattened. For instance, in this

region the parameter b of the cumulative distribution

tends to b=2, according to Eqs. (1) and (2) (see

‘‘Appendix’’). This deviation, known as the roll-off

effect (Bhattacharya et al., 2009; Pelletier, 2000), is

assigned usually to an insufficient determination of

the small-magnitude data. We can see that it may also

be due to correlations, at least partially. For large
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magnitudes the logarithmic cumulative distribution is

shifted upwards by ln 2 (Eq. 3), while its slope is very

close to the slope of the standard cumulative GR

distribution (b).

The correlation-modified cumulative distribution

given by Eq. (2) can be used to identify a correlated

sequence of foreshocks. We consider a seismic region

with a background of earthquakes (regular earth-

quakes) extended over a long period of time T,

interrupted from time to time by (rare) big seismic

events. We may assume that some of these large

earthquakes are main shocks in accompanying

sequences of foreshocks (and aftershocks), correlated

with the main shock. For moderate and large

magnitudes we may fit the seismic activity by the

standard cumulative GR distribution given by

Eq. lnNðMÞ ¼ lnNð0Þ � bM. Usually, such fits are

done by using a small-magnitude cutoff, such that the

slope of the distribution (b) is not affected by cor-

related small-magnitude earthquakes [difficulties in

determining the b-parameter by finite sets of data and

the related completeness magnitude are discussed

recently by Marzocchi et al. (2020) and Lombardi

(2021)]. A proper fitting of the full (modified) GR

distribution given by Eq. (3) leads to very small

differences in the parameter b. It is convenient to

introduce the parameter t0 ¼ T=Nð0Þ; its inverse is a

seismicity rate. Due to the small-magnitude cutoff,

this seismicity-rate parameter becomes a fitting

parameter (Apostol, 2021). The standard GR cumu-

lative distribution reads

ln NðMÞ=T½ � ¼ � ln t0 � bM: ð5Þ

By fitting this law to the empirical data we get the

parameters b (and r) and t0. For instance, such a fit,

done for a set of 3640 earthquakes with magnitude

M� 3 which occurred in Vrancea during 1981–2018,

leads to � ln t0 ¼ 11:32 (t0 measured in years) and

b ¼ 2:26 (r = 0.65), with an estimated 15% error.

We note that the value b ¼ 2:26 is close to the ref-

erence value given above (2.3). (The data for Vrancea

have been taken from the Romanian Earthquake

Catalog (2023), http://www.infp.ro/data/romplus.txt.

A completeness magnitude M = 2.2 to M = 2.8 is

usually accepted (Enescu et al., 2008 and References

therein); a more conservative figure would be M = 3.

The magnitude average error is DM ¼ 0:1). A similar

fit, with slightly modified parameters, is valid for

8455 Vrancea earthquakes with magnitude M� 2

(period 1980–2019). This way, we get the parameters

of the background seismic activity for Vrancea (b, r,

t0).

3. Time-Magnitude Formula

Let us assume now that we are in the proximity of

a main shock with magnitude M0, at time s until its

occurence, and we monitor the sequence of correlated

foreshocks. It was shown (Apostol, 2021) that the
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The standard GR distribution P ¼ be�bM (curve a) compared to the

correlation-modified GR distribution Pc, Eq. (1) (curve b)
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The standard cumulative GR distribution lnN ¼ lnNð0Þ � bM
(curve a) compared to the correlation-modified cumulative GR

distribution lnNc, Eq. (3) (curve b) for b ¼ 2:3 and an arbitrary

value lnNð0Þ ¼ 5
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magnitudes of the (correlated) foreshocks M (\M0)

are related to the time s by

M ¼ 1

b
lnðs=s0Þ; ð6Þ

where

s0 ¼ rt0e
�bð1�rÞM0 ð7Þ

is a cutoff time, which depends on the magnitude of

the main shock, the seismicity-rate parameter t0 and

the parameter r ¼ b=b (see ‘‘Appendix’’). The

parameters t0 and r are provided by the analysis of the

background seismic activity. The small threshold

time s0 corresponds to a very short quiescence time

(Ogata & Tsuruoka, 2016) before the occurrence of

the main shock. In addition, the time s should be cut

off by an upper threshold, corresponding to the

magnitude of the main shock (s\s0e
bM0 ). We limit

ourselves to small and moderate magnitudes M in the

accompanying seismic activity, such that the magni-

tude of the main shock may be viewed as being

sufficiently large (in this respect, the so-called purely

statistical correlations discussed by Apostol (2021),

are not included). Equation (6) is derived by ana-

lyzing the time-magnitude correlations predicted by

the geometric-growth model of earthquake focus

(Apostol, 2006, see ‘‘Appendix’’). According to this

model the accumulation time of an earthquake with

energy E is t ¼ t0ðE=E0Þr ¼ t0e
bM , where E0 is a

cutoff energy. By means of this model, Bath’s law is

derived and the occurrence time of the Bath partner is

calculated, as well as the cumulative magnitude dis-

tribution of the accompanying seismic activity.

The distribution given by Eq. (2) indicates a

change in the parameter b of the standard GR dis-

tribution. We denote by B the modified parameter b;

it is given by

e�bM 2

1 þ e�bM
¼ e�BM; ð8Þ

where B is a function of M (B(M)). It is convenient to

introduce the ratio R = B/b (similar to r ¼ b=b given

above), such that Eq. (8) becomes

R ¼ 1

ln h
ln

1

2
1 þ hrð Þ

� �
; ð9Þ

where h ¼ s=s0 from Eq. (6). The parameter R varies

from R = r for large values of the variable h to

R = r/2 for h ! 1 (s ! s0). The function RðhÞ is

plotted in Fig. 3 vs log h for r = 2/3. The decrease of

the function RðhÞ for h �! 1 indicates correlations.

According to Eq. (8), the modified GR parameter

B is given approximately by

BðMÞ ’ b� ln 2

M
; ð10Þ

or

RðsÞ ’ r � ln 2

lnðs=s0Þ
ð11Þ

for a reasonable range of foreshock magnitudes

M[ 1. Equations (9)–(11) show the decrease of the

GR parameter in a foreshock sequence. For instance,

a 10% decrease is achieved for M = 3, or s=s0 ’
3:6 � 104 (b ¼ 2:3, r = 2/3). It is worth noting that

smaller magnitudes occur in the sequence of corre-

lated foreshocks for shorter times, measured from the

occurrence of the main shock (the nearer main shock,

the smaller correlated foreshocks).

On the other hand, the time-magnitude correla-

tions expressed by Eq. (6) lead to s ¼ s0e
bM for the

accumulation time elapsed from the main shock to an

aftershock. This relation shows a change in the seis-

micity conditions, where t0 is replaced by s0 and b is

replaced by b in the regular accumulation time

t ¼ t0e
bM . The magnitude distribution

t0=t
2ð Þdt ¼ be�bMdM, which follows from this

0 1 2 3 4 5 6 7 8

log θ

0

R

r

r/2

Fig. 3
Function RðhÞ vs log h for r = 2/3 (Eq. 9; Apostol & Cune, 2023)
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accumulation time (Apostol, 2006, see ‘‘Appendix’’),

is changed in this case to be�bMdM, which indicates

an increase in the GR parameter (b = 3.45) with

respect to its background value b. Such a deviation

holds up to a cutoff magnitude Mc where the two

distributions become equal, such that we may esti-

mate an average increase in the parameter b as

ðb� bÞ=2b ¼ 25% for b ¼ 2:3. The cutoff magni-

tude is given by be�bMc ¼ be�bMc , whence Mc ¼ 0:36

for r = 2/3, b = 3.45 (b ¼ 2:3). Both these estimated

deviations of the GR parameter for foreshocks and

aftershocks are in quantitative agreement with data

reported by Gulia et al. (2016, 2018) and Gulia and

Wiemer (2019).

The logarithmic law expressed by Eq. (6) for the

time-magnitude correlated foreshocks provides a

means of estimating the occurrence time of the main

shock. Indeed, if we update the slope B of the

cumulative distribution ln½NðMÞ=Nð0Þ� ¼ �BM at

various successive times t (Eq. 8), and if this B fits

Eq. (10), then we may say that we are in the presence

of a correlated sequence of foreshocks which may

announce a main shock at the moment tms ¼ t þ s. (In

particular, the probability of occurrence of a main

shock with magnitude M0 increases in this case by a

factor B
b e

ðb�BÞM0 , where B is the average value of the

parameter B). For practical use it is more convenient

to use directly Eq. (6), which leads to the time

dependence

MðtÞ ¼ 1

b
ln
tms � t

s0

ð12Þ

of the foreshock magnitudes, for ð1 �
rÞtms\t\tms � s0 (0\M\M0). This formula pro-

vides an estimate of the occurrence moment of the

main shock tms from the correlated-foreshock mag-

nitudes M(t) and the background seismicity parameter

s0; the occurrence time is given by

tms ¼ t þ s0e
bMðtÞ: ð13Þ

It is worth noting that the time tms depends on the

magnitude of the main shock, as expected (M0, which

enters s0, Eq. (7)). For instance, a magnitude M

indicates a time s ¼ s0e
bM up to the main shock

(Eq. 6). Let us assume that we are interested in a

main shock with magnitude M0 ¼ 7; then by using

t0 ¼ e�11:32 (years, for Vrancea) and r = 2/3 given

above, we get s0 ¼ 2
3

10�8:42 (years); a foreshock with

magnitude M = 5 would indicate that we are at

s ¼ 2
3

10�8:42107:5 ¼ 0:079 years, i.e. ’ 29 days,

from that main shock. The time tms of the occurrence

of the main shock is obtained from Eq. (12) as a

fitting parameter of the correlated-foreshock magni-

tudes M(t). In practice, it is also convenient to view s0

as a fitting parameter. Since, for moderate magni-

tudes, the variation of the parameter R is small

(Eqs. 10 and 11), we may use the background value

for r in the expression of s0 (e.g., r = 2/3), which

leads to an estimate of the expected main-shock

magnitude M0 from the fitting parameter s0. How-

ever, a reliable estimation of the time tms provided by

Eq. (13) requires a very high slope of the decreasing

magnitudes M(t) in the neighbourhood of tms, which

can only be attained by a special data set, including,

ideally, many small-magnitude foreshocks whose

magnitudes fall rapidly to zero.

4. Discussion and Concluding Remarks

The procedure described above has been applied

to foreshock sequences of a few Vrancea earth-

quakes, l’Aquila, Yangbi (Yunnan) and Izmit

earthquakes. Details of the analysis are given in

Apostol and Cune (2023). For the Vrancea earth-

quake of 30 August 1986, magnitude M = 7.1, the

sequence of foreshocks from 16 to 24 August (seven

earthquakes) indicated the occurrence of a main

shock with magnitude 4.4 on 24 August. For the

Vrancea earthquake of 30 November 2021, with

magnitude M = 3.8, the sequence of foreshocks from

24 to 29 November 2021 (seven earthquakes) indi-

cated a main shock with magitude 4.5 on 1

December. Two magnitude-descending foreshock

sequences were identified for the l’Aquila earthquake

(6 April 2009, local magnitude 5.9), one on 2 April

(seven earthquakes), another on 6 April (five earth-

quakes). The analysis showed the occurence of main

shocks on 3 April and on 6 April, very close to the

occurrence time of the l’Aquila earthquake. Similar

Vol. 181, (2024) Time-Magnitude Correlations and Time Variation of the Gutenberg–Richter Parameter 31



results were obtained for the other two earthquakes in

the above list. On the other hand, there was two big

Vrancea earthquakes on 30–31 May 1990 (M = 6.9-

�6.4) where magnitude-descending foreshock

sequences were absent. An interesting case is the

Norcia earthquake of 30 October 2016, with magni-

tude M = 6.6, which was preceded by a large number

of rapidly succeeding, magnitude-decreasing and

very short foreshock sequences, a few hours before its

occurrence (data from Gulia and Wiemer (2019),

SourceDataFig. 1). All these foreshock sequences

indicate the proximity of a main shock. Particularly

interesting are the sequences M = 2.4 to M = 1 from

6/4/7.76 to 6/12/43.08 (hours/min/sec) and M = 2 to

M = 1.5 from 6/31/19.89 to 6/38/23.49 (the main

shock occurred at 6/40/17.36). Unfortunately, such

sequences are too poor to be useful for quantitative

results.

The application of Eqs. (12) and (13) to fitting the

correlated foreshocks involves certain particularities.

First, we should note that not all the precursory

seismic events are foreshocks correlated with the

main shock. Second, small clusters of precursory

events may exist, which may include second-order

(an even higher-order) correlated earthquakes, i.e.

events which accompany precursory events, accord-

ing to the epidemic-type model [see, for instance,

Ogata (1988, 1998), as well as Helmstetter and Sor-

nette (2003) and Saichev and Sornette (2005)]. These

secondary events have little relevance upon a forth-

coming main shock, such that they may be left aside.

We limit ourselves to the highest foreshocks occur-

ring in short periods of time (though an average

magnitude for each small cluster may also be used).

Third, the relevant part of the logarithmic curve given

by Eq. (12) (or the exponential in Eq. (13)) is its

abrupt decrease in the immediate proximity of tms (of

the order of days for Vrancea), such that the most

relevant foreshock sequence is the one which occurs

in the immediate proximity of the main shock. This

circumstance is related to the very small values of the

parameter t0 and the large magnitude M0, of interest

for the main shock (small values of the parameter s0).

In this regard, a reliable estimation of the parameters

tms and s0 would be conditioned by a rich seismic

activity in the immediate vicinity of the occurrence

moment of a main shock (a very short-time predic-

tion, e.g., of the order of days). This is an ideal

situation, which is not achieved in practice, since the

number of small-magnitude foreshocks is small in the

immediate vicinity of the main shock, precisely due

to decrease of the parameter b (B, R). Therefore, such

fits are necessarily of poor quality.

According to theory, the ‘‘philosophy’’ of our

approach is as follows. We monitor daily (sometimes

even hourly!) the seismic activity in a given seismic

region. We need this continuous surveyance because

the theory implies a short-term prediction. This short-

time character implies necessarily rather short

sequences of earthquakes. Consequently, our proce-

dure is not a standard statistical procedure, which

would require a large set of data. Any time we see a

sequence of earthquakes descending in magnitude,

we fit it with our equations. If that sequence happens

to be a sequence of correlated foreshocks, the fit

would be satisfactory, and the fitting parameters give

the occurrence time of a main shock (if the fit is poor,

very likely the sequence is not correlated). More, if

we know the parameters of the background seismicity

of that region, we are able to predict even the mag-

nitude of the main shock. It may happen that the

prediction fails. This may appear, very likely, by a

change in the structural seismic conditions. It is

reasonable to assume that after a sequence of fore-

shocks the structural conditions may change. Then,

we have a false positive. The seismic activity is

resumed, and we continue our analysis. It may hap-

pen that no sequence descending in magnitude

appears before a main shock (as for Vrancea earth-

quakes of 30–31 May 1990). Then we have a false

negative. As we can see the method may fail, but also

it may succeed, as shown in some cases like those

discussed above.

In conclusion, the GR distributions modified by

correlations in the foreshock region and the time

dependence of the foreshock magnitudes (Apostol,

2021) can be used, in principle, to estimate the

moment of occurrence of the main shock and its

magnitude, although with limitations. The main

source of errors arises from the quality of the fit B(t)

32 B. F. Apostol Pure Appl. Geophys.



vs M(t) (Eq. 10), or, equivalently, the fit of the

function RðhÞ given by Eq. (9), or the fit given by

Eqs. (12) and (13). These fits are necessarily of a

poor quality, due to the abrupt decrease of the func-

tion M(t) near the occurrence time tms of the main

shock (Eq. 12), or, equivalently, the abrupt decrease

of the parameters B(M) and RðsÞ for small values of

the variables M and s. Another source of errors arises

from the background parameters t0 and r (b), which

may affect considerably the exponentials in the for-

mula of the time cutoff s0 (Eq. 7). The procedure

described above is based on the assumption that the

foreshock magnitudes are ordered in time according

to the law given by Eq. (6). However, according to

the epidemic-type model, the time-ordered magni-

tudes may be accompanied by smaller-magnitudes

earthquakes, such that the law given by Eq. (6) may

exhibit lower-side oscillations, and the slope given by

Eq. (11) may exhibit upper-side oscillations. Several

subsets of correlated foreshocks may be identified (in

accordance with the epidemic-type model), as well as

the absence of correlations. In spite of all these lim-

itations, a continuous monitoring of the foreshock

seismic activity by means of the procedure described

in this paper may give interesting information about a

possible main shock. Also, the decrease of the GR

parameter in the correlated foreshock sequences and

its increase in aftershock sequences, as identified in

the previous works (e.g., Gulia and Wiemer (2019)),

as well as in the present one, is a valuable piece of

information.
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Appendix

Geometric-Growth Model

A typical earthquake is characterized by a small

focal region (Apostol, 2006). Since the relevant

distance scale is much larger than the focal dimen-

sion, we may view the focus as a point in an elastic

body. The seismic energy is accumulated in the focal

by the movement of the tectonic plates. This energy

accumulation is described by the continuity equation

oE

ot
¼ �vgradE; ð14Þ

where E is the energy, t denotes the time and v is an

accumulation velocity. Since the focal region is

localized, the derivatives in this equation may be

replaced by ratios of small, finite differences. As an

example, we write DE=Dx instead of oE=ox for the

coordinate x. At the borders of the focus the energy

tends to zero, such that DE ¼ �E. We may assume

that the coordinates of the borders move uniformly,

according to Dx ¼ uxt, etc, where we denote by u a

small velocity of the medium. By using these

assumptions, we get from Eq. (14)

oE

ot
¼ vx

ux
þ vy
uy

þ vz
uz

� �
E

t
: ð15Þ

For a uniform motion the two velocities are equal

(v ¼ u), and we get a coefficient 3 in Eq. (15). If the

motion is one dimensional, the coefficient is 1.

Therefore, the above equation can be written as

oE

ot
¼ 1

r

E

t
; ð16Þ

where the parameter r varies in the range 1/3–1. For a

shearing fault we have ux ¼ vx and uy ¼ 2vy, vz ¼ 0,

because, apart form the x-direction, the energy is

accumulated also along two opposite perpendicular

directions (y-directions), in order to conserve the

mass. We get r = 2/3, which corresponds to the mean
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value b ¼ br ¼ 2:3 (b = 3.45), accepted as the ref-

erence value (see the main text). Therefore, the

parameter r is a statistical parameter, related, mainly,

to the effective number of dimensions of the focus.

The above model is called the geometric-growth

model of seismic energy accumulation.

In order to integrate Eq. (16) we need a cutoff

energy and a cutoff time. Therefore, a small amount

of energy E0 is accumulated in a short time t0. This

energy may be lost in the next time t0, or the

accumulation process may continue. These processes

are called fundamental processes, or E0-seismic

events. From equtaion (16) we get the law of energy

accumulation

t=t0 ¼ ðE=E0Þr: ð17Þ

The energy E may be released in an earthquake,

which occurs after time t.

Gutenberg–Richter Law

It is well known that seismic moment M is related

to the magnitude M through the Hanks-Kanamori

empirical law

lnM ¼ const þ bM; ð18Þ

where b = 3.45 (3
2

for base 10). The seismic moment

can be defined as M ¼
P

ij M
2
ij

� 	1=2

, where Mij is the

tensor of the seismic moment; it is related to the

energy through M ¼ 2
ffiffiffi
2

p
E (Apostol, 2019), such that

Eq. (18) can be written as

lnE ¼ const þ bM ð19Þ

(by using another const). This relation can be cast in

the form

E=E0 ¼ ebM; ð20Þ

where E0 is a cutoff energy. Now, we can make use

of Eq. (17), and get

t ¼ t0e
brM ¼ t0e

bM ; ð21Þ

where b ¼ br. From this equation we derive the

useful relations dt ¼ bt0ebMdM, or dt ¼ btdM. In the

well-known Gutenberg–Richter distribution we have

dP ¼ be�bMdM: ð22Þ

On the other hand, from Eq. (21) we get

dt ¼ bt0ebMdM, or dt ¼ btdM. By using this result,

Eq. (22) becomes

dP ¼ b
t0
t

1

bt
dt ¼ t0

t2
dt: ð23Þ

This is the time distribution of independent earth-

quakes; it gives the probability dP ¼ t0dt=t
2 for an

earthquake to occur between t and t ? dt. Since t is

the accumulation time, this earthquake has energy E

and magnitude M, related by the above formulae. An

equivalent derivation of the time probability can be

obtained from the definition of the probability of the

fundamental E0-seismic events (dP ¼ � o
ot

t0
t dt;

Apostol (2021)).

Correlations: Time-Magnitude Correlations

Two (or more) earthquakes may depend on one

another, by various mutual influences. We say that

those earthquakes are correlated. We limit ourselves

to two-earthquake (pair) correlations, which bring the

main contribution. Two earthquakes may share their

energy; then we have time-magnitude correlations, as

shown below. Also, two earthquakes may share their

accumulation time. Then, we have time correlations

(also called purely dynamical correlations), as shown

in the next Appendix (Apostol, 2021). The statistical

distributions are affected by both these correlations.

Other types of (statistical) correlations may appear,

due, for instance, to additional constraints imposed

upon the statistical variables (for instance, the

magnitudes of the accompanying events be smaller

than the magnitude of the main shock).

An energy E, accumulated in time t, may be

released in two successive earthquakes, with energies

E1;2. The two earthquakes share the seismic energy.

We may write E ¼ E1 þ E2 and

t=t0 ¼ ðE=E0Þr ¼ E1=E0 þ E2=E0ð Þr¼
¼ ðE1=E0Þrð1 þ E2=E1Þr

ð24Þ

(Eq. 17). This equation may bewritten as

t ¼ t1 1 þ ebðM2�M1Þ
h ir

; ð25Þ

where t1 ¼ t0ðE1=E0Þr is the accumulation time of the

earthquake with energy E1 and magnitude M1, and
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M2 is the magnitude of the earthquake with energy

E2. Equation (25) leads to

bðM2 �M1Þ ¼ ln 1 þ s=t1ð Þ1=r�1
h i

; ð26Þ

where t ¼ t1 þ s, s being the time elapsed from the

occurrence of the earthquake 1 until the occurrence of

the earthquake 2. In foreshock–main shock–after-

shock sequence s=t1 � 1, such that we get from the

above equation

M2 ¼ 1

b
ln

s
s0

; s0 ¼¼ rt0e
�bð1�rÞM1 : ð27Þ

We can see that s given by this equation differs from

the accumulation time of the M2-earthquake (com-

pare with Eq. 21). The difference arises from

parameters which depend on the M1-earthquake, as

expected for correlated earthquakes. We may view

the M1-earthquake as a main shock and the M2-

earthquake as a foreshock or an aftershock. These

accompanying earthquakes are correlated to the main

shock. These are the time-magnitude correlations.

Time Correlations

Two earthquakes may share their accumulation

time t ¼ t1 þ t2, such that an earthquake appears in

time t1, followed by another which appears in time t2.

From Eq. (23) the probability density of such an

event is given by

� o

ot2

t0

ðt1 þ t2Þ2
¼ 2t0

ðt1 þ t2Þ3
ð28Þ

(where t0\t1\þ1, 0\t2\þ1). We may pass

in this formula to magnitude distributions

(t1;2 ¼ t0e
bM1;2 ), and get the probability

d2P ¼ 4b2 ebðM1þM2Þ

ebM1 þ ebM2ð Þ3
dM1dM2 ð29Þ

(where 0\M1;2\þ1, corresponding to

t0\t1;2\þ1, which introduces a factor 2 in

Eq. (28)). This is a pair, bivariate statistical distri-

bution (Apostol, 2021). By integrating with respect to

M2, we get the so-called marginal distribution, i.e. the

distribution of a correlated earthquake,

dP ¼ be�bM1
2

1 þ e�bM1ð Þ2
dM1; ð30Þ

By integrating further this distribution from M1 ¼ M

to þ1, we get the correlated cumulative distribution

PðMÞ ¼
Z 1

M

dP ¼ e�bM 2

1 þ e�bM
: ð31Þ

For M � 1 the correlated cumulative distribution

becomes PðMÞ ’ 2e�bM and lnPðMÞ ’ ln 2 � bM.

Therefore, the slope b of the logarithm of the inde-

pendent cumulative distribution (Gutenberg–Richter,

standard distribution e�bM) is not changed (for

moderate and large magnitudes); the distribution is

only shifted upwards by ln 2. For small magnitudes

(M � 1) the slope of the correlated cumulative dis-

tribution becomes b=2 (by the series expansion

PðMÞ ’ 1 � 1
2
bM þ � � � of Eq. 31); this result differs

from the slope b of the standard Gutenberg–Richter

distribution (e�bM ’ 1 � bM þ � � �). The correlations

modify the slope of the Gutenberg–Richter standard

distribution for small magnitudes. This is the roll-off

effect referred to in the main text.
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