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Abstract This paper presents the solution of an
inverse problem in Seismology, which aims at deriv-
ing the seismic source parameters from P and S seis-
mic waves. In particular, the paper gives the deduction
of the seismic-moment tensor. The problem is tack-
led in this paper under three particular circumstances.
First, we use the amplitude of the far-field (P and
S) seismic waves as input data. We use the analyti-
cal expression of the seismic waves in a homogeneous
isotropic body with a seismic-moment source of ten-
sorial forces, the source being localized both in space
and time. We assume that the position of the seis-
mic source is known. The far-field waves provide
three equations for the six unknown parameters of
the general tensor of the seismic moment, such that
the system of equations is under-determined. Second,
the Kostrov vectorial (dyadic) representation of the
seismic moment for a shear faulting is used. This rep-
resentation relates the seismic moment to the focal
displacement in the fault and the orientation of the
fault (moment-displacement relation); it reduces the
seismic moment to four unknown parameters. Third,
the fourth missing equation is derived from the energy
conservation and the covariance condition. The four
equations derived here are solved and the seismic
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moment is determined, as well as other parameters of
the seismic source, like focal volume, focal slip, fault
orientation, and duration of the seismic activity in the
source. It turns out that the seismic moment is trace-
less, its magnitude is of the order of the elastic energy
stored in the focal region (as expected), and the solu-
tion is governed by the unit quadratic form associated
with the seismic-moment tensor (related to the magni-
tude of the longitudinal displacement in the P wave).
A useful picture of the seismic moment is the conic
represented by the associated quadratic form, which is
a hyperbola (seismic hyperbola). This hyperbola pro-
vides an image for the focal region: its asymptotes
are oriented along the focal displacement and the nor-
mal to the fault. Also, the special case of an isotropic
seismic moment is presented. Numerical examples are
provided for this procedure, and the limitations are
discussed.

Keywords Seismic source · Inverse problem ·
Seismic waves · Seismic moment · Elasticity ·
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1 Introduction

The determination of the seismic source parameters
aims at getting information about the nature and the
structure of the forces acting in earthquake’s focus
from measurements of the seismic waves at dis-
tances far away from the earthquake focus (at Earth’s
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surface). Particularly interesting in this context is the
determination of the seismic-moment tensor. This is
currently called the inverse probem in Seismology. We
present here the solution of the inverse problem in
Seismology by means of the P and S seismic waves
propagating in a homogeneous isotropic body with
localized tensorial forces, the Kostrov vectorial repre-
sentation of the seismic moment for a fault (moment-
displacement relation) and the energy conservation
together with the covariance condition. The energy
conservation is derived by equating the energy car-
ried by the far-field seismic waves and the mechanical
work done by forces in the focal region.

The seismic moment and the seismic energy are
basic concepts in the theory of earthquakes (Bath
1968; Ben-Menahem and Singh 1981; Udias 1999;
Aki and Richards 2009). The seismic moment has
emerged gradually in the first half of the twentieth
century, the first estimation of a seismic moment being
done by Aki in (1966). The relations between the
seismic moment, seismic energy, the mean displace-
ment in the focal region, the rate of the seismic slip,
and the earthquake magnitude are recognized today
as very convenient tools for characterizing the earth-
quakes (Brune 1968; Kostrov 1974; Kostrov and Das
1988).

Seismic-moment tensors are routinely determined
from teleseismic data for stronger earthquakes (with
magnitude higher than 5; Dziewonski and Ander-
son 1981, Sipkin 1982, Kawakatsu 1995). Regional
data are needed for smaller earthquakes, especially
long-period waveforms (Bernardi et al. 1995; Giar-
dini 1992). Also, the simultaneous inversion of body
and surface waves is used (Honda and Seno 1989),
as well as intermediate-period surface waves (Arvids-
son and Ekstrom 1998). Most conveniently, syn-
thetic seismograms with fitting parameters (like, for
instance, location coordinates) are compared with data
recorded from several stations. The determination of
the seismic-moment components Mij (i, j = 1, 2, 3)
is performed by using information provided by far-
field seismic waves at different locations and times
(Gilbert 1973; Saikia and Herrmann 1985; Jost and
Herrmann 1989; Shomali and Slunga 2000; Shomali
2001; Ekstrom et al. 2012; Vallee 2013), or free oscil-
lations of the earth, long-period surface waves, sup-
plemented with additional information (the so-called
constraints, Ben-Menahem and Singh 1981 and ref-
erences therein). Besides noise, the information used

in these procedures may reflect particularities of the
structure of the focal region and the focal mechanism
which are not included in equations, like the structure
factor of the focal region, both spatial and temporal,
or deviations from homogeneity and isotropy. In addi-
tion, waves measured at different locations (or times)
may lead to overdetermined systems of equations for
the unknowns Mij , and the solutions must be “com-
patibilized.” A proper procedure of compatibilization
may lead to redundant equations, if the covariance of
the equations is not ensured. The covariance is under-
stood in this paper as the invariance of the form of
the equations to translations and rotations (indepen-
dence of the reference frame). We may add that the
normal modes of the pure free oscillations do not
imply a source of waves, while surface waves, having
sources on the surface, have an indirect connection to
the body waves generated in the focal region. Surface
displacement in the main shock of an earthquake is
often used, which, also, has an indirect relevance for
the earthquake source and mechanism.

We present here a way of determining (analytically)
the seismic moment for a shear faulting (as well as
for an isotropic source) by using the P and S far-field
waves generated by a time-localized tensorial point
source in a homogeneous isotropic body. Though the
solution presented here has rather a theoretical char-
acter, it may serve as an instance of the difficulties
presented by the inverse problem and may throw light
upon the complex relationships which exist between
earthquake characteristics and various parameters of
the seismic source. The waves produced by extended
sources imply additional information regarding the
spatial and temporal structure factors; the inverse
problem in this case is a more complex problem,
which remains beyond the aim of the present paper.

The data considered in the present paper (input
parameters) are the position of the focal source, the
displacement vectors produced by the P and S seismic
waves measured at Earth’s surface and material con-
stants of the body (density, wave velocities). The infor-
mation provided by these data is the magnitude of the
longitudinal (P -wave) displacement (one parameter)
and the transverse-wave displacement vector (S-wave,
two parameters; we assume that the direction of the
earthquake focus is known). These data provide three
independent parameters, related to the six components
of the seismic moment by three equations. They may
be viewed as a minimal set of independent data. On
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the other hand, according to Kostrov representation,
the seismic moment is characterized by its magnitude
and the fault orientation and the fault slip, which are
two mutualy perpendicular unit vectors. This infor-
mation includes four independent parameters. We can
see, on the one hand, according to Kostrov represen-
tation, that only four out of six components of the
seismic moment are independent and, on the other
hand, we need a fourth equation in order to deter-
mine the four independent components of the seismic
focus. We provide in this paper the fourth equation,
which is the equation of energy conservation together
with the covariance condition. The covariance con-
dition reduces the four independent components of
the seismic moment to three, which makes possible
the determination of the seismic moment from the
seismic-wave displacement. Also, we show that an
image of the forces acting in the focal region and the
geometry of the fault can be obtained by a so-called
“seismic hyperbola.” A similar procedure is presented
for an isotropic seismic source.

2 Basic assumptions

It is widely assumed that typical tectonic earthquakes
originate in a localized focal region (focus), with
dimensions much shorter than the distance to the
observation point (and the seismic wavelengths). The
tensorial seismic force density

Fi = Mij∂j δ(R − R0) (2.1)

is used for the seismic focus (Ben-Menahem and
Singh 1981; Aki and Richards 2009; Apostol 2017a)
where Mij is the tensor of the seismic moment, δ

is the Dirac delta function and R0 is the position of
the focus (hypocentre). We assume that the position
R0 is a known parameter. The labels i, j denote the
Cartesian axes and summation over repeating suffixes
is assumed (throughout this paper). The seismic ten-
sor Mij is a symmetric tensor, which, in general, has
six components. It may be decomposed into double-
couple (shear faulting) and dipole components and an
isotropic component; departure from double-couple
components reflects a complex shear faulting, tensile
faulting, volcanic morphology, etc. (Ben-Menahem
and Singh 1981; Zahradnik et al. 2008a, b, Frohlich
1994; Julian et al. 1998; Ross et al. 2015). The force

given by Eq. (2.1) is a generalization of the double-
couple representation of the seismic force. Indeed, let
us assume a force density F(R) = fg(R), where f is
the force and g(R) is a distribution function; a point
couple associated with a force acting along the ith
direction can be represented as

fig(x1 + h1, x2 + h2, x3 + h3) − fig(x1, x2, x3)

� fihj ∂jg(x1, x2, x3) , (2.2)

where hj , j = 1, 2, 3, are the components of an
infinitesimal displacement h; xi , i = 1, 2, 3, are
the coordinates of the position R and ∂j denotes
the derivative with respect to xj . The force moment
(torque) tij = fihj is generalized in Eq. (2.2) to a
symmetric tensor Mij , which is the seismic moment
entering Eq. (2.1); in addition, the distribution g(R)

can be replaced by δ(R − R0) for a spatially local-
ized focal region. The δ-function used in Eq. (2.1) is
an approximation for the shape of the focal region. In
Eq. (2.1) the focus is viewed as being localized over a
distance of order l (volume of order l3), much shorter
than the distance R to the observation point (l � R),
according to the δ-function representation.

The seismic moment depends on the time t ; we
may write Mij (t) = Mijh(t), where h(t) is a posi-
tive function, localized at t = 0, which includes the
time dependence of the seismic moment; we assume
max[h(t)] = h(0) = 1 and denote by T the (short)
duration of the seismic activity of the source; the time
T is much shorter than any time of interest, such that
we may view the function h(t) as being represented
by T δ(t). The particular case h(t) = T δ(t) is called
an elementary earthquake (Apostol 2017a).

For a homogeneous isotropic body the seismic
waves generated by the tensorial force given by
Eq. (2.1) are governed by the equation of the elastic
waves

üi − c2t �ui − (c2l − c2t )∂idivu

= 1

ρ
Mij (t)∂j δ(R) , (2.3)

where ui are the components of the displacement vec-
tor u, cl,t are the velocities of the longitudinal and
tranverse waves, ρ is the density and R is the position
vector drawn from the focus (taken as the origin of the
reference frame) to the observation point. The solution
of this equation (Ben-Menahem and Singh 1981; Aki
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and Richards 2009; Apostol 2017a) can be written as
u = un + uf , where

un
i = − 1

4πρc2t

Mij xj

R3
h(t − R/ct )

+ 1

8πρR3

(
Mjjxi + 4Mijxj − 9Mjkxixj xk

R2

)
·

·
[
1

c2l

h(t − R/cl) − 1

c2t
h(t − R/ct )

]
(2.4)

is the near-field displacement (R comparable with l)
and

u
f
i = − 1

4πρc3t

Mij xj

R2 h′(t − R/ct ) − 1
4πρ

Mjkxixj xk

R4 ·

·
[

1
c3l

h′(t − R/cl) − 1
c3t

h′(t − R/ct )

]

(2.5)

is the far-field displacement (R � l). The near-field
region is defined by distances R of the order l, while
the far-field region is defined by distances R much
larger than l. The short duration T of the seismic event
(duration of activity of the focus) enters Eqs. (2.4)
and (2.5) through h(t) and the derivative h′(t), which
is of the order 1/T . The displacement vectors given
by Eqs. (2.4) and (2.5) include the longitudinal wave
(denoted by suffix l), propagating with velocity cl , and
the transverse wave (suffix t), propagating with veloc-
ity ct ; in the far-field region the displacement vectors
of the longitudinal wave (P wave) and the transverse
wave (S wave) are mutually orthogonal (this is not so
for the l, t-waves in the near-field region). As long
as the function h(t) may be viewed as a localized
function, the magnitude of the displacement vectors
varies as 1/R2 for the near-field wave and 1/R for
the far-field waves. Their direction is determined by
the tensor of the seismic moment Mij (in particu-
lar the vector with components Mijxj ). The far-field
waves given in Eq. (2.5) are shell spherical waves
with a thickness of the order �R � cl,tT . A super-
position of forces given by Eq. (2.1), localized at
different positionsR0 and different times, corresponds
to a structured focus, and the elementary displace-
ment given by Eqs. (2.4) and (2.5) gives access to the
structure factor of the focal region (Apostol 2017a).

3 Far-field seismic waves

It is convenient to introduce the notations

Mi = Mijnj , M0 = Mii , M4 = Mijninj , (3.1)

where n is the unit vector along the radius drawn from
the focus to the observation point (observation radius),
xi = Rni , and hl,t = h(t − R/cl,t ); henceforth, we
consider the unit vector n as a known vector. M0 is
the trace of the seismic-moment tensor and M4 is the
quadratic form associated to the seismic-moment ten-
sor, constructed with the unit vector n; we call it the
unit quadratic form of the tensor. The vectorM can be
called the “projection” of the tensor along the focus-
observation point direction (observation direction).

Making use of these notations, the seismic waves
given by Eqs. (2.4) and (2.5) can be decomposed into
l- and t-waves, written as un = un

l + un
t ,

un
l = hl

8πρc2l R
2
[(M0 − 9M4)n + 4M] ,

un
t = − ht

8πρc2t R
2
[(M0 − 9M4)n + 6M] , (3.2)

and uf = uf
l + uf

t ,

uf
l = − h′

l

4πρc3l R
M4n , uf

t = h′
t

4πρc3t R
(M4n − M) .

(3.3)

For numerical purposes, we take the “maximum devi-
ation” of the near-field diplacement un

l,t (with its sign)
for t = R/cl,t , i.e., we take hl,t (0) = 1. Equally well,
we can take the average values of the vectors un

l,t over
the support T of the functions hl,t , or �R, which is of
the order cl,tT . Henceforth, hl,t in Eq. (3.2) are under-
stood as hl,t (0) = 1. The functions h′

l,t are scissor-like
functions (“double-shock” functions), with two sides
with opposite signs (corresponding to t > 0 or t < 0),
extending over T , or the distance �R; their “maxi-
mum deviations” are of the order±1/T ; for numerical
estimations, it is convenient to introduce the notations
vl,t = uf

l,t /T h′
l,t and take the “maximum deviation”

of these functions (with their sign), on any side of
the functions h′

l,t , the same side for vl and vt (vl,t

may depend on the side of the functions h′
l,t , since the

functions hl,t (t) are not necessarily symmetric with
respect to t = 0). Similarly, we can take the average
values of vl,t over any side of the functions h′

l,t (the
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same for vl and vt ). We consider that the displace-
ment vectors vl,t are accessible experimentally. We
take them as input data for our problem. The ampli-
tude vector of the P wave is represented by the vector
vl , while the amplitude vector of the S wave is repre-
sented by the vector vt . Making use of these notations,
Eq. (3.3) become

vl = − 1

4πρT c3l R
M4n, vt = 1

4πρT c3t R
(M4n − M) .

(3.4)

We note that the vectors R2un
l,t and Rvl,t depend on

the density ρ, the duration T , the seismic moment and
the elastic coefficients of the body (velocities of the
elastic waves); if local deviations from this pattern are
observed, the body is not locally homogeneous and
isotropic (or the focus is not localized, or the seismic
event is more complex).

The displacement in the far-field waves is deter-
mined by three independent parameters: the mag-
nitude of the vectors vl,t (two parameters) and the
direction of the transverse vector vt (one parameter).
Consequently, we may view the equations

M = −4πρT R
(
c3l vl + c3t vt

)
, (3.5)

derived from Eq. (3.3), as three independent equations
for the six unknown components Mij of the seismic
moment; by multipling by ni and summing over i, we
get the first equation (3.3),

M4 = Mijninj =−4πρT Rc3l (vln) = −4πρT Rc3l vl ,

(3.6)

which is not independent of the three equations written
above. We view vl,t as (known) quantities measured
experimentally, and ρ, R, cl,t as known parameters;
duration T will be determined shortly. A simple obser-
vation would show that for given displacements vl,t

and given T we may solve equations (3.5) and get the
three independent components of the seismic moment
Mij.. Unfortunately, leaving aside that the other three
components are left as free parameters by such a
procedure, the measurement of the duration T from
�r/cl,t , where �r is the projection of �R on Earth’s
surface, is dependent on the local frame, and, conse-
quently, it does not provide a suitable input data for
covariant equations.

We note in Eqs. (3.5) and (3.6) the consistency
(compatibility) relation M2 > M2

4 , derived from

v2t > 0 (vl,t denote the magnitudes of the vectors vl,t ).
The problem discussed in this paper consists in deter-
mining the tensor Mij from the displacement vl,t in
the far-field (P and S) waves, making use of addi-
tional, model-related, information. The model we use
is provided by the fault geometry of the focal zone.
We can see that only three components of the seis-
mic moment Mij are independent. We determine the
seismic-moment tensor by means of the vectors M
and n (experimentally accessible). The special case of
an isotropic moment is presented. We note that (3.4)
are manifestly covariant. Also, we note that having
knownM and M4 we can have access to the near-field
diplacement given by Eq. (3.2), provided we know
M0.

4 Energy of earthquakes

If we multiply (2.3) by u̇i and perform summation
over the suffix i, we get the law of energy conservation

∂

∂t

[
1

2
ρu̇2i + 1

2
ρc2t (∂jui)

2 + 1

2
ρ(c2l −c2t )(∂iui)

2
]

−ρc2t ∂j (u̇i∂jui) − ρ(c2l − c2t )∂j (u̇j ∂iui)

= u̇iMij (t)∂j δ(R) . (4.1)

According to this equation, the external force
performs a mechanical work in the focus
(u̇iMij (t)∂j δ(R) per unit volume and unit time). The
corresponding energy is transferred to the waves (the
term in the square brackets in Eq. (4.1)), which carry
it through the space (the term including the div in
Eq. (4.1)). It is worth noting that outside the focal
region the force is vanishing. Also, the waves do
not exist inside the focal region. Therefore, limiting
ourselves to the displacement vector of the waves, we
have not access to the mechanical work done by the
external force in the focal region. This circumstance
arises from the localized character of the focus.

In the far-field region, we can use the decompo-
sition u = ul + ut into longitudinal and transverse
waves, where curlul = 0 and divut = 0; this
decomposition leads to

∂el,t

∂t
+ cl,t divsl,t = 0 , (4.2)

where

el,t = 1

2
ρ

(
u̇

f
l,ti

)2 + 1

2
ρc2l,t

(
∂iu

f
l,tj

)2
(4.3)
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is the energy density and

sl,ti = −ρcl,t u̇
f
l,tj ∂iu

f
l,tj ; (4.4)

cl,t sl,ti are energy flux densities per unit time (energy
flow). From Eq. (4.2) we can see that the energy is
transported with velocities cl,t (as it is well known).
The volume energy E = ∫

dR(el + et ) is equal to the
total energy flux

� = −
∫

dtdR (cldivsl + ctdivst )

= −
∫

dt

∮
dS (clsl + ct st ) . (4.5)

Making use of Eq. (3.3) and taking h′′ = −1/T 2 as
an order-of-magnitude estimate, we get

E = � = 4πρ

T
R2

(
clv

2
l + ctv

2
t

)
; (4.6)

this relation gives the energy released by the earth-
quake in terms of the displacement measured in the
far-field region and the (short) duration of the earth-
quake. From Eq. (3.4) we get the relation

E = 1

4πρc5t T
3

[
M2 −

(
1 − c5t /c

5
l

)
M2

4

]
(4.7)

between energy and the seismic moment.

5 Geometry of the focal region

Let us consider a point torque tij = fihj , where hj

are viewed as infinitesimal distances and fi denote the
components of a force f; the force f originates in a vol-
ume force density ∂jσij , where σij is the stress tensor;
the latter can be expressed as σij = 2μuij + λukkδij ,
where μ and λ are the Lame coefficients (c2l = (2μ +
λ)/ρ, c2t = μ/ρ), uij = 1

2 (∂jui+∂iuj ) is the strain
tensor and u, with components ui , is the displacement
vector (Landau and Lifshitz 1986). The components
of the force can be written as

fi =
∫

dr∂kσik

= μ

∫
dr∂2k ui + (μ + λ)

∫
dr∂k∂iuk

= μ

∮
dS · sk∂kui +(μ + λ)

∮
dS · sk∂iuk , (5.1)

where the r-integration is performed over the focal
volume surrounded by the surface S and s is the
unit vector normal to this surface. In order to get the

torque we multiply Eq. (5.1) by hj and use �uk

�xi
hj =

�ukδij = ukδij , where uk is the displacement on the
surface. These equalities follow from the point-like
nature of the torque. We note that u here is the focal
displacement, which is distinct from the displacement
in the waves. It follows

tij = μS · sjui + (μ + λ)S · skukδij , (5.2)

where the overbar denotes the average over the sur-
face with area S. This relation acquires a useful form
for a localized (plane) fault. We assume that the fault
focal region includes two plane-parallel surfaces, each
with (small) area S, separated by a (small) distance
d, sliding against one another. The focal area is deter-
mined by two (small) lengths l1,2, S = l1l2. In general,
the lengths l1, l2, d are distinct; in order to ensure
the compatibility with the localization provided by the
δ-function (used in deriving the waves), we assume
l1 = l2 = d = l. For such a model of localized fault
the product sjui may be replaced by 2sjui , where the
vector s is the unit vector normal to the fault (we note
that the integration over the surfaces perpendicular to
the fault is zero, due to the opposing (sliding) displace-
ments). In view of the small extension of the focal
region, we may drop the average bar over ui . In addi-
tion, this model of fault-slip implies skuk = 0, i.e., the
normal to the fault s and the focal displacement (fault
slip) u are mutually orthogonal vectors. In order to dis-
tinguish the focal displacement from the displacement
in the seismic waves, we attach the superscript 0 to the
focal displacement. The seismic moment is obtained
by symmetrizing the expression given by Eq. (5.2); we
get the seismic moment

Mij = 2μS
(
siu

0
j + sju

0
i

)
= 2μSu0

(
siaj + aisj

)
,

(5.3)

where we introduce the unit vector a along the direc-
tion of the focal displacement; we write ui = u0ai ,
where u0 is the magnitude of the focal displacement
and a2i = 1. We can see that the seismic moment
is represented in Eq. (5.3) by two orthogonal vectors
(as = 0): the unit vector a along the focal displace-
ment u0 and the unit vector s, which gives the orien-
tation of the fault. This is the moment-displacement
relation derived by Kostrov (1974) and Kostrov and
Das (1988) for the slip along a (point-like) fault sur-
face (see also Ben-Menahem and Singh 1981, Aki and
Richards 2009); it can be called a vectorial, or dyadic,
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representation of the seismic moment. We note the
invariant M0 = Mii = 0, which shows that the seis-
mic moment in this representation is a traceless tensor.
This particularity gives access to the near-field waves
(Eq. (3.2)), which become

un
l = hl

8πρc2l R
2

(4M − 9M4n) ,

un
t = − 3ht

8πρc2t R
2

(2M − 3M4n) (5.4)

(M and M4 are given by Eqs. (3.5) and (3.6)). In
addition, we note the relations M0

4 = Mij sisj = 0
and M0

i = Mij sj = 2μSu0ai ; the former relation
shows that the quadratic form associated to the seis-
mic moment in the focal region is degenerate (it is
represented by a conic), while the latter relation shows
that the “force” in the focal region is directed along
the focal displacement; both relations are expected
from the Kostrov construction of the tensor of the fault
seismic moment (Fig. 1).

The relations M0 = 0 and M0
4 = 0 reduce the

number of independent parameters of the tensor Mij

from six to four, a circumstance which can be checked
directly on Eq. (5.3).

It is worth noting an uncertainty (indeterminacy) of
the dyadic construction of the seismic-moment tensor.

We can see from Eq. (5.3) that the seismic moment
is invariant under the inter-change s ←→ a. This
means that from the knowledge of the seismic moment
Mij we cannot distinguish between the two orthogonal
vectors s and a (fault direction and fault slip). Another
symmetry of the seismic moment given by Eq. (5.3)
is s ←→ −a (and s ←→ −s, a ←→ −a), which
means that we cannot distinguish between the signs of
the vectors s and a (as expected from the construction
of the seismic moment in Eq. (5.3)); this uncertainty
is shown in Fig. 2.

In Eq. (5.3) the seismic moment is determined by
four parameters: three components of the displace-
ment vector u0 and one component of the (transverse)
unit vector s. By using this vectorial representation,
the number of independent parameters of the seis-
mic moment is reduced from six to four. We have,
up to this moment, only the three equations (3.5) for
these unknown parameters. The considerations made
above for the vectorial representation of the seis-
mic moment provide another equation, relating the
mechanical work W done in the focal region to the
magnitude of the focal diplacement.

Indeed, from Eq. (4.1) the mechanical work in the
focal region is given by

W =
∫

dt

∫
dRu̇0i (t)Mij (t)∂j δ(R) ; (5.5)

Fig. 1 A focal-fault
cross-section with area S

(dimension l, focus F ); s is
the unit vector normal to the
fault and a is the unit vector
of the focal displacement
(in the plane of the fault);
the seismic-moment tensor
Mij is represented by the
rectangular hyperbola with
the axes along the vectors s
and a
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Fig. 2 Two couples of
sliding displacements (u0)
and two orthogonal
orientations (s) in a fault
focal region, illustrating the
indeterminacy in the
Kostrov construction of the
seismic moment; F denote
the forces which give the
torque

we may assume u̇0i (t) = ḣ(t)u0i , and, since Mij (t) =
Mijh(t), we get

W = 1

2

∫
dRu0i Mij ∂j δ(R) . (5.6)

In this equation we may view the function δ(R) as
corresponding to the shape of the focal surface, such
that we may replace ∂j δ(R) by sj / l4; using V = l3

for the focal volume, we get W � 1
2l u

0
i Mij sj . Here,

we may take approximately u0 for l, which leads to
W � 1

2aiMij sj . Therefore, making use of Eq. (5.3),
we get W � μSu0 = μV ; we can see that the
mechanical work done in the focal region is of the
order of the elastic energy stored in the focal region,
as expected. By equating W with energy E (and �)
given by Eq. (4.6), we get

μV = 4πρ

T
R2

(
clv

2
l + ctv

2
t

)
, (5.7)

which can also be written as

V = 4π

c2t T
R2

(
clv

2
l + ctv

2
t

)
. (5.8)

Equation (5.8) gives the volume of the focal region
in terms of the displacement in the far-field seismic
waves (provided duration T is known); the seismic
moment given by Eq. (5.3) can be written as

Mij = 2μV
(
siaj + aisj

)
, (5.9)

where μV can be inserted from Eq. (5.7). It remains
to determine the vectors a and s by using Eq. (3.5) and
the covariance condition, in order to solve completely
the problem. We note that the elaborations done in
Eq. (5.1) can be circumvented, in fact, since the torque
can be immediately inferred from tij = fihj by fi �
2μSu0i / l and hj � lsj ; we get tij � 2μV aisj .

We note here the representation

u0ij = 1

2

(
siaj + aisj

) = 1

4μV
Mij (5.10)

for the focal strain, which follows immediately from
the considerations made above on the geometry of
the focal region. This equation relates the focal strain
to the seismic moment; it may be used for assess-
ing the accumulation rate of the seismic moment from
measurements of the surface strain rate (Ward 1994;
Savage and Simpson 1997).

It is worth noting that the estimations made above
may be affected by errors in the numerical factors (of
the order unity); such errors are related to the param-
eters T , l, the estimation of the derivatives ∂j δ, the
assumption l1 = l2 = d = l, the volume V = l3,

etc. These errors affect the volume V in Eqs. (5.8) and
(5.9). The errors in the seismic-moment parameters,
especially those related to noise, have been analyzed
recently (Mustac and Tkalcic 2016).
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6 Determination of the seismic source parameters

Making use of the reduced moment mij = Mij/2μV

and mi = Mi/2μV = Mijnj /2μV , Eq. (5.9) leads to

si(na) + ai(ns) = mi ; (6.1)

using Eqs. (3.5) and (5.7), the components mi of the
reduced moment are given by

mi = −T 2

2R
· c3l vli + c3t vti

clv
2
l + ctv

2
t

. (6.2)

We solve here the Eq. (6.1) for the unit vectors a
and s, subject to the conditions

s2i = a2i = 1 , siai = 0 . (6.3)

Since M0 = 0 and M2 > M2
4 , we have m0 = mii = 0

and m2 > m2
4 (where m4 = mijninj and m2 = m2

i ).
From Eq. (6.2) we have mi < 0. The compatibility
condition m2 > m2

4 can be checked immediately from
Eq. (6.2) (it arises from v2t > 0). We write Eq. (6.1) as

αs + βa = m , (6.4)

where we introduce two new notations α = (na) and
β = (ns). We assume that the vectors s, a and n lie in
the same plane, i.e.,

βs + αa = n . (6.5)

This condition determines the system of equations and
ensures the covariance of the solution; Eq. (6.5) is the
covariance condition. From Eqs. (6.4) and (6.5), we
get

2αβ = m4 , α2 + β2 = m2 = 1 . (6.6)

The equality m2 = 1 (covariance condition) has
important consequences; it implies M2 = (2μV )2,
such that we can write the seismic moment from
Eq. (5.9) as

Mij = M
(
siaj + aisj

) ; (6.7)

it follows the magnitude of the seismic moment(
Mij

2
)1/2 = √

2M (Silver and Jordan 1982); M

is the magnitude of the “projection” of the seismic-
moment tensor along the observation radius. In addi-
tion, from E = W = μV (5.6) we have E =
M/2 = (

Mij
2
)1/2

/2
√
2. The magnitude

(
Mij

2
)1/2 =√

2M = 2
√
2E may be used in the Hanks-Kanamori

relation lg
(
Mij

2
)1/2 = 1.5Mw + 16.1 (decimal loga-

rithm), which defines the magnitude Mw of the earth-
quake (Hanks and Kanamori 1979; Gutenberg and

Richter 1956); in terms of the earthquake energy this
relation becomes lgE = 1.5(Mw−lg 2)+16.1 (where
lg 2 � 0.3). We note that an error of an order of magni-

tude in the seismic moment (M ,E,
(
Mij

2
)1/2

) induces
an error � 0.3 in the magnitude Mw.

Further, from Eq. (6.2), the equality m2 = 1 can be
written as

T 4

4R2
· c6l v

2
l + c6t v

2
t(

clv
2
l + ctv

2
t

)2 = 1 , (6.8)

which gives the duration T in terms of the displace-
ments vl,t measured at distance R. Inserting T in
Eq. (5.8), we get

V 2 = 8π2R3

c4t

(
clv

2
l + ctv

2
t

) (
c6l v

2
l + c6t v

2
t

)1/2
(6.9)

and the magnitude of the seismic moment and the
energy of the earthquake

M = 2E = 2μV

= 2πρ(2R)3/2
(
clv

2
l + ct v

2
t

)1/2 (
c6l v

2
l + c6t v

2
t

)1/4
(6.10)

in terms of the displacements vl,t measured at
distance R. In addition, eliminating R2 between
Eqs. (5.8) and (6.8) we can express the focal volume
as

V = πT 3

c2t
· c6l v

2
l + c6t v

2
t

clv
2
l + ctv

2
t

. (6.11)

The solutions of the system of Eq. (6.6) are given by

α =

√√√√1 +
√
1 − m2

4

2
, β = sgn(m4)

√√√√1 −
√
1 − m2

4

2
(6.12)

and α ←→ ±β, α, β ←→ −α, −β. Making use
of Eqs. (6.2) and (6.8), the parameters mi and m4 are
given by

mi = − c3l vli + c3t vti(
c6l v

2
l + c6t v

2
t

)1/2 , m4 = − c3l (vln)(
c6l v

2
l + c6t v

2
t

)1/2 .

(6.13)

Finally, we get the vectors

s = α

α2 − β2
m − β

α2 − β2
n ,

a = − β

α2 − β2
m + α

α2 − β2
n ; (6.14)
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from Eqs. (6.4) and (6.5); these solutions are symmet-
ric under the operations s ←→ a (α ←→ −β) and
s ←→ −a (α ←→ β, or α, β ←→ −α, −β). The
seismic moment given by Eq. (6.7) is determined up
to these symmetry operations.

We can see that the seismic-moment tensor given
by Eq. (6.7) is determined by M (Eq. (6.10)) and the
vectors s and a given by Eq. (6.14), with the coeffi-
cients α, β given by Eq. (6.12); the vector n is known
and the vector m and the scalar m4 are given by the
experimental data (Eq. (6.13)). Equations (6.14) are
manifestly covariant.

The eigenvalues of the seismic moment given by
Eq. (6.7) are ±M (we leave aside the eigenvalue
zero); the corresponding eigenvectors w are given by
aw = ±sw, which imply mw = ±nw; the vec-
tors w are directed along the bisectrices of the angles
made by s and a, or m and n (w ∼ s ± a). The
associated quadratic form Mijxixj = const is a rect-
angular hyperbola in the reference frame defined by
the vectors s and a; by using the coordinates u = sx
and v = ax in Eq. (6.7), the equation of this hyper-
bola is uv = const/2M . Actually, in the local frame
(coordinates xi), the quadratic form Mijxixj = const

is a degenerate hyperboloid, consisting of a family
of parallel hyperbolas displaced along the third axis
(perpendicular to the u- and v-axes). Making use of

Eqs. (6.7) and (6.14), this quadratic form can also be
written as

2ξη − m4

(
ξ2 + η2

)
= const , (6.15)

where the coordinates ξ = mixi and η =
nixi are directed along the vectors m and n,
respectively. The asymptotes of this hyperbola

are ξ = m4η/

(
1 +

√
1 − m2

4

)
and η =

m4ξ/

(
1 +

√
1 − m2

4

)
(corresponding to the asymp-

totes u = (αξ − βη)/(α2 − β2) = 0 and v =
(−βξ + αη)/(α2 − β2) = 0) (Fig. 3).

Finally, by making use of Eq. (6.14) in Eq. (6.7),
we get the solution for the seismic moment

Mij = M

1−m2
4

[
minj + mjni − m4

(
mimj + ninj

)]
,

(6.16)

where M is given by Eq. (6.10) and mi, m4 are given
by Eq. (6.13); the focal strain is u0ij = Mij/2M
(Eq. (5.10)). In Eq. (6.16) there are only three inde-
pendent components of the seismic tensor, according
to the equations mijnj = mi (mij = Mij/M): it is
assumed that the vectors n and m are known (6.13)
from experimental data, such that these equations can

Fig. 3 The hyperbola of
the displacement (a) in the
fault plane (fault direction
s) at the focus (F ), seen
from the local frame L
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be viewed as three conditions imposed upon the six
componentsMij . Also, we can see that there exist only
three independent components of the seismic tensor
Mij from the conditions M0 = Mii = 0, Mij sj si = 0
(or Mijaiaj = 0) and m2

i = 1. The later equality
arises from the covariance condition, which, together
with the energy conservation, determines the duration
T of the seismic activity in the focus, the volume V of
the focal region and the magnitude parameterM of the
seismic moment. Equation (6.16) solves completely
the inverse problem.

7 Isotropic seismic moment

An isotropic seismic moment Mij = −Mδij is an
interesting particular case, since it can be associ-
ated with seismic events caused by explosions (e.g.,
Knopoff and Randall 1970; Minson and Dreger 2008;
Patton and Taylor 2011). In this case the transverse
displacement is vanishing (un,f

t = 0), M = −Mn,
M4 = −M and vl = (R/clT )un

l (Eqs. (3.2) and
(3.4)); from Eqs. (3.5) and (4.6), we get

M = −4πρT Rc3l vl , E = 4πρR2

T
clv

2
l (7.1)

we can see that vln > 0 corresponds to M > 0
(explosion), while the case vln < 0 corresponds to an
implosion. The focal zone is a sphere with radius of
the order l, and the vectors s and a are equal (s = a)
and depend on the point on the focal surface; the
magnitude of the focal displacement is u0 = l. The
considerations made above for the geometry of the
focal region lead to the representation

Mij = −2V (2μ + λ)δij = −2ρc2l V δij , (7.2)

where V = Sl denotes the focal volume and S is the
area of the focal region (we note that tij changes sign
in Eq. (5.2)). Similarly, the energy is E = W = 1

2M

(M > 0), such that, making use of Eq. (7.1), we get
clT = √

2Rvl ,

M = 2πρc2l (2Rvl)
3/2 = 2ρc2l V , (7.3)

and the focal volume V = π(2Rvl)
3/2. These equa-

tions determine the seismic moment and the volume
of the focal region from the displacement vl mea-
sured at distance R. A superposition of shear faulting
and isotropic focal mechanisms cannot be resolved,

because the longitudinal displacement vl includes
indiscriminately contributions from both mechanisms.

8 Numerical examples: validity and limitations

We include here a numerical example, for the earth-
quake with magnitude Mw = 4.6, which occurred
on March 14, 2018, in Vrancea (Romania, latitude
45.67◦, longitude 26.58◦) at 139-km depth (Institute
of Earth’s Physics, Magurele, Romania, http://www.
infp.ro/). The displacement, estimated from measure-
menta made at Bucharest, is vl = 5 × 10−2 cm and
vt = (2.7, 2.6, −1) × 10−2 cm (this displacement
is one of the main sources of experimental errors; we
estimate 20% an error). According to the theoretical
description presented in this paper, we get Mw = 4.3,
V = 2.9 × 1010 cm3 and the tensor of the seismic
moment (in units 1022 erg)

Mij =
⎛
⎝ −0.35 1.52 −2.04

1.52 1.35 −0.41
−2.04 −0.41 −0.98

⎞
⎠ (8.1)

(for density ρ = 5.5 g/cm3 and velocities cl =
3 km/s, ct = 7 km/s). The coordinates of the inter-
sections of the vectors s (fault orientation) and a with
Earth’s surface are latitude 40.64◦, 45.5◦ and lon-
gitude 29.28◦, 25.1◦, respectively. We can see that
the computed magnitude (4.3; 0.2 error) is close to
the reported magnitude (4.6). The errors of the input
data (displacement and coordinates of the focus) cause
often a discrepancy between the direction of the lon-
gitudinal displacement (vector vl) and the direction of
the focus (vector n), which reflects itself in deviations
from the perpendicularity between the displacement
vectors vl and vt . In this case the angle made by these
two vectors may differ by up 10◦ (or more) from
90◦.

Another numerical example is the earthquake with
magnitudeMw = 6 of October 27, 2004, Vrancea (lat-
itude 45.84◦, longitude 26.63◦), depth 105-km depth.
The displacement estimated at Bucharest is vl =
0.28 cm and vt = (−0.39, −0.35, 0.45) cm. We get
the magnitudeMw = 5.4, a seismic tensor of the order
1023 erg (except for the component M33 = −6.23 ×
1021 erg) and a focal volume V = 1.17 × 1012 cm3.
These estimations are affected by errors, which arise
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mainly from the local variability of the amplitude of
the P and S seismic waves and the inherent noise. The
solution given here to the seismological inverse prob-
lem has only a theoretical character. Nevertheless, it
may serve both as an example of a mathematically
elegant solution and a rapid way for a rough estimate
of the seismic moment and parameters of the seismic
source. In addition, it may throw light upon the com-
plex connections between the earthquake effects and
the seismic-source parameters.

It is worthwhile emphasizing the validity condi-
tions and the limitations of the procedure presented
here for solving the inverse seismological problem.
The solution is valid for a seismic focus (seismic
source) localized both in space and time. The solution
makes use of far-field P and S seismic waves com-
puted for a homogeneous isotropic body with local-
ized tensorial forces and measured at an observation
point on Earth’s surface. It is assumed that the posi-
tion of the focal source is known. The known (input)
parameters are the vector from the seismic source to
the observation point (unit vector n and radius R),
Earth’s density ρ, the velocities cl,t of the P and S

waves, the amplitude of the longitudinal (P wave) dis-
placement vl and the amplitude of the transverse (S
wave) displacement vector vt . All these input parame-
ters are, in principle, measurable (can be determined),
of course with errors. A statistical analysis of errors
is necessary, such that the results are given with their
own errors. For instance, it is sufficient, in principle,
to measure the wave amplitudes only at one location,
but it is advisable to measure them at several loca-
tions and compute the mean value and the error of the
results. A typical error is related to the measured lon-
gitudinal displacement vector vl , which, often, is not
directed along the vector n, or/and is not perpendicular
to the measured transverse vector vt . Although only
the magnitude vl is needed, it is necessary to check
these compatibility conditions of the input quantities
vl,t and n. Another source of errors arises from the
position of the focal source (especially the depth of
the focus); an optimization of the accuracy related to
this parameter is possible (it will be given in a forth-
coming paper). Finally, although the sensitivity of the
measurement of the wave amplitudes is, usually, suf-
ficiently high (three or four decimal digits in cm),
appreaciable errors may occur in practice in estimat-
ing these amplitudes from a seismogram, caused by
the irregular pattern exhibited by the seismic records.

9 Discussion and concluding remarks

We can summarize the results as follows. Making
use of the longitudinal displacement vl and the trans-
verse displacement vt , measured at Earth’s surface
(amplitudes of the P and S waves) , we compute the
magnitude parameter M from Eq. (6.10) and the vec-
tor m and the scalar m4 from Eq. (6.13); then, from
Eq. (6.16) we get the seismic momentMij . The energy
released by the earthquake is E = M/2 and an esti-
mate of the focal volume is given by V = M/2ρc2t
(M/2μ, Eqs. (5.9) and (6.7)). An estimation of the
duration T of the seismic activity in the focus is pro-
vided by Eq. (6.8). The focal slip is of the order
V 1/3 and the focal strain is of the order Mij/2M

(Eq. (5.10)). From the magnitude
(
Mij

2
)1/2 = √

2M
of the seismic moment, we may estimate the magni-
tude Mw of the earthquake by means of the Hanks-
Kanamori relation. A similar procedure holds for an
isotropic seismic moment (preceding Section).

Making use ofm and m4 in Eq. (6.14), we compute
the normal s to the fault plane and the unit slip vec-
tor a in the fault plane; the quadratic form associated
to the seismic moment is a degenerate hyperboloid
which reduces to a hyperbola in the (s, a)-plane with
asymptotes along the vectors s and a. This hyperbola
is tighter (closer to the origin) for higher M .

It is often convenient to have a rough estimation
of the order of magnitude of the various quantities
introduced in this paper. To this end we use a generic
velocity c for the seismic waves and a generic vec-
tor v for the displacement in the far-field seismic
waves. Equation (6.8) (which is m2 = 1) gives cT �√
2Rv, which provides an estimate of the duration T

in terms of the displacement measured at distance R.
The focal volume can be estimated from Eq. (5.8) as
V � π (2Rv)3/2 � π(cT )3, as expected (dimen-
sion l of the focal region of the order cT ; the rate of
the focal slip is l/T � c). Also, from Eq. (6.10) we
have the energy E � μV � M/2 � 2ρc2V , where

M is related to the magnitude
(
M2

ij

)1/2 = √
2M of

the seismic moment (and the magnitude of the vector
Mijnj ). From Eq. (5.10) we get a focal strain of the
order unity, as expected. In addition, we can see the
relationship lg v = Mw + const .

In conclusion, it is shown in this paper that the
displacement in the far-field P and S seismic waves,
which includes information about the structure of
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the focal region, can be employed, in principle, to
determine the seismic-moment tensor for a fault slip,
localized both in space and time (the inverse prob-
lem in Seismology), and all the relevant parameters of
the seismic source. The vectorial (Kostrov) represen-
tation of the seismic moment (dyadic representation)
for a shear faulting is written with four (unknown)
parameters; one is the magnitude of the focal dis-
placement, while the other three define the spatial
orientation of the seismic tensor (orientation of the
fault and the displacement direction). These unknown
parameters are determined from the three equations
relating the far-field displacement to the seismic ten-
sor and the equation which relates the energy released
in the earthquake (and carried by the seismic waves)
to the focal displacement (and the fault focal volume),
via the mechanical work done in the focal region,
together with the covariance condition. The solution
of the resulting system of equations makes the graph-
ical representation of the quadratic form associated
to the seismic-moment tensor, which is a hyperbola
(hyperboloid), to offer a (three-dimensional) image of
the focal region. The asymptotes of the hyperbola give
the direction of the focal displacement and the orien-
tation of the fault (seismic hyperbola). The solution
presented here provides also a reasonable character-
ization of a localized fault slip, the geometry of the
focal region (which leads to Kostrov representation)
and the displacement in the far-field seismic waves
provides reasonable estimations of the fault focal vol-
ume, focal strain, duration of the seismic activity and
the energy of the earthquake and magnitude of the
seismic moment. Also, the special case of an isotropic
seismic moment is presented. More complex situa-
tions, like a superposition of point-like faults, or a
combination of point-like faults and isotropic and
dipole components imply more than four unknowns
in the seismic tensor; since we have only four equa-
tions, the inverse problem in such cases is undeter-
mined, within the present procedure. The procedure
presented in this work makes use of manifestly covari-
ant expressions of the data for determining the seismic
moment.

Finally, we note that a similar deduction of the
seismic-moment tensor can be done by using the
(quasi)-static displacement at Earth’s surface (Apos-
tol 2017b); since it implies a specific treatment, its
presentation is deferred to a forthcoming publication.
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