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Abstract The displacement caused in an isotropic elastic half-space by a point force lo-
calized on or beneath its surface is calculated here by a new method. These classical prob-
lems are known as Boussinesq and, respectively, Mindlin problems. The motivation for the
present work resides in the fact that the original solutions involve some particular proce-
dures, required by the complexity of the boundary conditions, which may limit their general
application. The solutions presented here are obtained by including in a generalized Poisson
equation the values of the function and its derivatives on the boundary, and by using in-plane
Fourier transforms. This method is general and can be extended to other, similar problems.

Keywords Elastic half-space · Mindlin problem · Boussinesq problem · Generalized
Poisson equation
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1 Introduction

As it is well known, the elastic displacement caused in an infinite body by a localized (point)
force was calculated as early as 1848 by Kelvin [1–3]. The displacement caused by a force
localized in a point on the plane surface of an elastic half-space is known as the Boussinesq
problem [4–6]. Various generalizations of such problems have been worked out [7–11], in
order to estimate the effects of concentrated forces in elastic bodies bounded by closed
surfaces with various boundary conditions. An important recent generalization concerns the
derivation of the Green functions for incremental deformations in infinite incompressible
solids with homogeneous pre-stress and concentrated load (non-linear elasticity) [12, 13].

The displacement of an isotropic elastic half-space caused by a force localized beneath
its surface was tackled as early as 1936 by Mindlin [14, 15], and reworked by him in 1953
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[16]; it is referred to as Mindlin problem. The displacement caused in an isotropic elastic
body by a force localized on or beneath its surface is calculated here by a new method. The
motivation of undertaking the present research is derived from some particular devices used
in the original solutions, which may limit their application to other, similar problems. The
original derivation of the solutions involves the use of the Green theorem and the identifica-
tion of convenient combinations of functions (including Green functions) which satisfy the
boundary conditions (usually, free surface). This method depends on the particularities of
the problem, and it cannot be straightforwardly extended to other, similar problems, like, for
instance, a half-space with fixed surface, or thick plates (where two surfaces are involved),
or problems with cylindrical or spherical geometry. The usual, standard methods of treating
these classical problems are described in a series of books and research articles [17–24]. In
particular, a superposition of the Boussinesq problem and an image force is discussed in Ref.
[23] for the Mindlin problem; a review of the application of analytical methods to boundary-
value problems in elasticity is included in Ref. [24]. The Boussinesq and Mindlin problems,
as well as other related problems (Flamant, Cerruti, Kelvin and Melan problems) are solved
in Ref. [22] by an original, heuristic method, which consists in guessing the solution by
using the underlying symmetries. We derive here the solution by using Fourier transforms
with respect to the coordinates parallel to the plane surface of the half-space, which allow
a convenient inclusion of the values of the functions and their derivatives on the surface
in a generalized Poisson equation. This may be viewed as a general method, suitable for
other, similar problems. It is worth noting that several applications and generalizations of
these problems have been discussed recently, like the extension of the Boussinesq problem
to soils with inhomogeneities [25], contact problems with friction [26, 27], various surface
effects [28–34], etc.

2 General Form of the Solution

Consider the equilibrium equation

�u + 1

1 − 2σ
grad div u = −2(1 + σ)

E
f (1)

for the displacement u in an isotropic elastic body with Poisson ratio σ and Young modu-
lus E, subjected to a body force with density f. The derivatives are taken with respect to the
coordinates x, y, z and the components of the displacement vector u are ux , uy , uz. Simi-
larly, the components of the vector f will be denoted by fx , fy , fz; the same notation will be
used everywhere in this paper for vector components. As it is well known, the solution can
be written with Helmholtz potentials ϕ and h as

u = gradϕ + curl h (2)

with div h = 0; inserting this solution in (1), we get

�b = −2(1 + σ)

E
f, (3)

where

b = 2(1 − σ)

1 − 2σ
gradϕ + curl h. (4)
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Taking the div in (4), we are led to

div b = 2(1 − σ)

1 − 2σ
�ϕ. (5)

The general solution of (5) is

ϕ = 1 − 2σ

4(1 − σ)
(r · b + β), (6)

where r is the position vector of the point with coordinates (x, y, z) and

�β = 2(1 + σ)

E
r · f. (7)

It follows that we can represent the solution as

u = b − 1

4(1 − σ)
grad (r · b + β), (8)

in terms of two functions b and β which satisfy Poisson equations (3) and (7); these func-
tions are sometimes called Grodskii functions or Neuber–Papkovitch potentials [35–37]. For
a force density f = f0δ(r) localized at the origin in an infinite body, by solving (3) and (7)
and using (8), we get the well-known Kelvin solution

u = 1 + σ

8πE(1 − σ)

[
(3 − 4σ)f0

r
+ (r · f0)r

r3

]
, (9)

where f0 is the force and r is the magnitude of r.

3 The Problem and the Solving Method

The problem is to solve the equilibrium equation (1) for an elastic half-space which occupies
the spatial region z < 0, bounded by a plane surface z = 0, and a force localized on or be-
neath its surface. We consider first a force localized beneath the surface (Mindlin problem).
We use the notation r for the position vector of a point having the coordinates (x, y, z) and ρ

for the projection of the vector r on the plane z = 0, corresponding to the coordinates (x, y).
We denote by f0 a force with the components (f0x, f0y,, f0z) localized at the point with the
position vector r0, with the coordinates (0,0, z0), z0 < 0; the density of this force is given
by f = f0δ(r − r0), where δ(r − r0) is the Dirac δ-function. The surface z = 0 is free; con-
sequently, the force (per unit area) with the components pi = −njσij on the surface z = 0,
where n is the unit vector normal to the surface z = 0 (with components (0,0,1)) and σij is
the stress tensor, is vanishing: σiz = 0 for z = 0 (summation over repeated indices is implied
in this notation). As it is well-known [7], the stress tensor is σij = E

1+σ
[uij + σ

1−2σ
ukkδij ],

where uij = 1
2 (∂iuj + ∂jui) is the strain tensor; the boundary conditions read

uxz = uyz = 0, (1 − σ)uzz + σ(uxx + uyy) = 0, z = 0. (10)

The usual method of tackling this problem is to solve the Poisson equations (3) and (7)
for the functions b and β with the boundary conditions given by (10) and to use (8) for
obtaining the displacement. The Poisson equations are solved by using the Green function
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for the Laplacian and the Green theorem. Since the boundary conditions (10) are not simply
Dirichlet or Neumann boundary conditions for the potentials, their inclusion in the Green
theorem requires special elaborations. We give here a different method, which can lead more
directly to solution.

Consider the Poisson equation

�v = g (11)

in the domain D bounded by the closed surface S, where v is the unknown function (the
solution of the Poisson equation) and g denotes the inhomogeneous term. We introduce the
function w = vED , where ED is the characteristic function of the domain D; it is easy to
see, by direct calculations, that

�w = �v · ED − ∂v

∂n

∣∣∣∣
S

δ(n − ns) − v
∣∣
S

∂

∂n
δ(n − nS), (12)

where n is the coordinate along the normal n to the surface and nS is the value of n on the
surface. Making use of (11) we get

�w = g − ∂v

∂n

∣∣∣∣
S

δ(n − ns) − v
∣∣
S

∂

∂n
δ(n − nS) (13)

in the closed domain D. Equation (13) provides a generalized form of the original Poisson
equation (11); the function w, which is the restriction of the function v to the domain D,
is the solution v of the original Poisson equation [38]. Using the Green function G, �G =
−4πδ(r − r

′
), we recover the Green theorem

v(r) = − 1

4π

∫
D

dV
′
G

(
r − r

′)
g
(
r

′)

+ 1

4π

∫
S

dS
′
[
G

(
r − r

′)∂v(r
′
)

∂n
′ − v

(
r

′)∂G(r − r
′
)

∂n
′

]
(14)

from (13), for the restriction of the function v to the domain D (dV
′

and dS
′

denote the
volume and, respectively, area elements).

We apply this method to the Poisson equation (11) for the half-space z < 0 with the
characteristic function θ(−z) and force density f = f0δ(r − r0), where r0 is the position
vector of the point with coordinates (0,0, z0), z0 < 0, where the force is localized; the step
function is θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0. It is convenient to use in-plane Fourier
transforms of the type

v(ρ, z) = 1

(2π)2

∫
dkxdky · ṽ(k, z)eik·ρ, (15)

where the integration is extended to the whole plane of k-vectors ((kx, ky) are the com-
ponents of the vector k). This is a decomposition in plane waves, where k plays the role
of a wavevector; the wavevector k is the argument of the Fourier transform ṽ(k, z), and
k denotes its magnitude. These partial (or mixed) Fourier transformations are performed
only with respect to the in-plane coordinates (x, y) (associated with the vector ρ), while the
perpendicular-to-the surface coordinate z is not affected. As it is well known, the inverse
Fourier transform is

ṽ(k, z) =
∫

dxdy · v(ρ, z)e−ik·ρ, (16)
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where the integration extends to the whole (x, y)-plane ((x, y) are the coordinates of the
position vector ρ). Henceforth, throughout this paper, symbols endowed with a tilde are
Fourier transforms of the type given by (15) and (16). The Poisson equation becomes

�v = f0δ(r − r0) − v(1)δ(z) − v(0)δ
′
(z), (17)

where v(0) = v|z=0, v(1) = ∂v
∂z

|z=0; the superscripts (0) and (1) will be used throughout this
paper for the values of the functions and, respectively, their derivative with respect to z at
z = 0. If we apply the Laplacian to the Fourier transformation given by (15), the deriva-
tives with respect to x and y will give the contribution −k2ṽ for the corresponding Fourier
transform; taking also the Fourier transform on the right in (17), this equation becomes

d2ṽ

dz2
− k2ṽ = f0δ(z − z0) − ṽ(1)δ(z) − ṽ(0)δ

′
(z) (18)

in Fourier transforms, where ṽ(0) = ṽ|z=0, ṽ(1) = ∂ṽ
∂z

|z=0; for the sake of the simplicity we
may omit the arguments (ρ, z) or (k, z), as they can be easily read from the context of the
equations. It is known that the Green function G1 for the Helmholtz equation d2G1/dz2 −
k2G1 = δ(z) in one dimension is G1 = −(1/2k)e−k|z|, such that the solution of (18) reads

ṽ = − 1

2k
f0e

−k|z−z0| + 1

2k
ṽ(1)e−k|z| + 1

2
ṽ(0)e−k|z| (19)

for z < 0; we eliminate ṽ(1) from this equation and get

ṽ = − 1

2k
f0

(
e−k|z−z0| − e−k|z+z0|) + ṽ(0)e−k|z|,

ṽ(1) = f0e
−k|z0| + kṽ(0);

(20)

we recognize here (in the brackets) the Green function for the Helmholtz equation in one
dimension vanishing on the surface z = 0.

We use the representation given by (20) for the solutions b and β of the Poisson equations
(3) and (7) and derive the functions and their derivatives (of the form ṽ(0) and ṽ(1) in (20))
from the boundary conditions; in addition, we note that the second-order derivative on the
surface, denoted by v(2), v(2) = ∂2v

∂z2 |z=0, has the Fourier transform given by is ṽ(2) = k2ṽ(0),

as it follows immediately from (18).
Using the representation given by (20) for the solutions of (3) and (7) we get

b̃ = (1 + σ)

E

f0

k

(
e−k|z−z0| − e−k|z+z0|) + b̃(0)e−k|z|,

β̃ = (1 + σ)

E

|z0|f0z

k

(
e−k|z−z0| − e−k|z+z0|) + β̃(0)e−k|z|;

(21)

in addition, we have the relations

b̃(1) = −2(1 + σ)

E
f0e

−k|z0| + kb̃(0), b̃(2) = k2b̃(0),

β̃(1) = −2(1 + σ)

E
|z0|f0ze

−k|z0| + kβ̃(0), β̃(2) = k2β̃(0).

(22)
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4 Force Perpendicular to the Surface

Now we specialize to the case of a force perpendicular to the surface, i.e., we take f0x =
f0y = 0 and f0z = f0; due to the symmetry of the problem we may also take bx = by = 0.
Using the Fourier transforms, the boundary conditions from (10) are given by

(1 − 2σ )̃b(0)
z − β̃(1) = 0, 2(1 − σ )̃b(1)

z − k2β̃(0) = 0, (23)

whence, by using relations (22), we get

b̃(0)
z = 2(1 + σ)f0

E

[
2(1 − σ)

k
− z0

]
e−k|z0|,

β̃(0) = 4(1 − σ)(1 + σ)f0

E

(
1 − 2σ

k2
− z0

k

)
e−k|z0|.

(24)

Making use of (21), (24) and the Sommerfeld integral [39]

1

2π

∫
dkxdky

eik·ρ

k
e−k|z| = 1

(ρ2 + z2)1/2
, (25)

where ρ is the projection of the position vector r on the plane z = 0, corresponding to the
coordinates (x, y), we get, by inverse Fourier transformation,

bz = (1 + σ)f0

2πE

[
1

r1
+ 3 − 4σ

r2
+ 2z0(z + z0)

r3
2

]
, (26)

where

r1 = [
ρ2 + (z − z0)

2
]1/2

, r2 = [
ρ2 + (z + z0)

2
]1/2

(27)

and ρ is the magnitude of the vector ρ; we can see in (27) the contribution of the “image”
solution corresponding to z0 → −z0. Similarly, we get from (21) and (24)

β = (1 + σ)f0

2πE

[ |z0|
r1

+ (3 − 4σ)|z0|
r2

+ 4(1 − σ)(1 − 2σ)I

]
, (28)

where we define the integral I as

I = 1

2π

∫
dkxdky

1

k2
eik·ρe−k|z+z0|. (29)

In the original solution [16] the function I is replaced by ln(r2 + |z + z0|), which can be
obtained by integration of the derivative ∂I/∂|z + z0| (a minus sign should be included
for the half-space z < 0 in comparison with the half-space z > 0). For the displacement
functions ux , uy , uz given by (8) we need gradβ and, therefore, grad I . The derivatives of
the function I can be calculated directly from (29) by using Bessel functions. For example,
it is easy to get

∂I

∂ρ
= −

(
1 − |z + z0|

r2

)
ρ

ρ2
= − ρ

r2(r2 + |z + z0|) . (30)
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We give here the displacement of the surface z = 0, calculated from (8) by using bz given
by (26) and the derivatives of the function β and function I ; we get

uρ = (1 + σ)f0

2πE

( |z0|
r2

0

+ 1 − 2σ

r0 + |z0|
)

ρ

r0
,

uz = (1 + σ)f0

2πE

[
2(1 − σ) + z2

0

r2
0

]
1

r0
,

(31)

where uρ is the radial component of the displacement (along the vector ρ) and r0 = [ρ2 +
z2

0]1/2. We can see that the radial component of the displacement uρ has a maximum of
the order � f0/E|z0| for distances of the order ρ � |z0|, while the z-component uz of the
displacement attains its maximum value � f0/E|z0| for ρ = 0.

5 Force Parallel to the Surface

We consider now a force parallel to the x-axis f0x = f0, f0y = f0z = 0; due to the symmetry
of the problem we take also by = 0. We introduce the function C = xbx +β and the boundary
conditions (10) become

2(1 − σ )̃b(1)
x + i(1 − 2σ)kxb̃

(0)
z − ikxC̃

(1) = 0,

(1 − 2σ )̃b(0)
z − C̃(1) = 0,

2(1 − σ)(1 − 2σ )̃b(1)
z − (1 − σ)C̃(2) + 4iσ (1 − σ)kxb̃

(0)
x + σk2C̃(0) = 0.

(32)

Making use of the Fourier transform, C̃ = i∂b̃x/∂kx + β̃ and (22), we get the solutions of
the system of (32). The solutions of the boundary conditions (10) are

b̃(0)
x = 2(1 + σ)f0

E

1

k
e−k|z0|,

b̃(0)
z = 2(1 + σ)f0

E

(
1 − 2σ − k|z0|

) ikx

k2
e−k|z0|,

β̃(0) = 2(1 + σ)(1 − 2σ)f0

E

(
1 − 2σ − k|z0|

) ikx

k3
e−k|z0|.

(33)

Hence, by using (21), we get

b̃x = (1 + σ)f0

E

1

k

(
e−k|z−z0| + e−k|z+z0|),

b̃z = 2(1 + σ)f0

E

(
1 − 2σ − k|z0|

) ikx

k2
e−k|z+z0|,

β̃ = 2(1 + σ)(1 − 2σ)f0

E

(
1 − 2σ − k|z0|

) ikx

k3
e−k|z+z0|

(34)



146 B.F. Apostol

and the inverse Fourier transforms

bx = (1 + σ)f0

2πE

(
1

r1
+ 1

r2

)
,

bz = (1 + σ)f0

πE

( |z0|
r2

2

− 1 − 2σ

r2 + |z + z0|
)

x

r2
,

β = (1 + σ)(1 − 2σ)f0

πE

[ |z0|
r2

− (1 − 2σ)

]
x

r2 + |z + z0| ;

(35)

in (35) the function

H = 1

2π

∫
dkxdky

ikx

k3
eik·ρe−k|z+z0| (36)

has been calculated by integrating the derivative ∂H/∂|z + z0|
(H = −x/(r2 + |z + z0|)). The results given in (35) coincide with the original Mindlin’s

results [16], (except for the sign of bz).
Having known the functions bx , bz and β , we can calculate the displacement by using (8).

We give here the displacement uz on the surface z = 0,

uz = (1 + σ)f0

2πE

( |z0|
r2

0

− 1 − 2σ

r0 + |z0|
)

x

r0
(37)

and the asymptotic behaviour of ux , uy on the surface

ux � (1 + σ)(3 − 2σ)f0

4πE

1

|z0| , ρ � |z0|,

uy � (1 + σ)(3 + 2σ)f0

8πE

xy

|z0|3 , ρ � |z0|,

ux � (1 + σ)(1 − σ)f0

πE

1

ρ
, uy � σ(1 + σ)f0

πE

xy

ρ3
, ρ � |z0|;

(38)

for y = 0 and |x| � |z0| we get ux � [(3 − 4σ)(1 +σ)f0/4πE(1 −σ)]/|x|. We can see that
ux has a maximum value of the order � f0/E|z0| for ρ → 0, while uy � xy/|z0|3, uz � x/z2

0
for ρ → 0 and attain a maximum value � f0/E|z0| for ρ of the order |z0|. It is worth noting
that uz has a zero for a distance ρ of the order |z0|.

6 Force Acting on the Surface

We consider now a force f0 with components (0,0, f0) localized at the origin on the surface
z = 0 (Boussinesq problem); its density is given by f = f0δ(ρ). Equations (21) and (22)
for the Grodskii functions are now free of body force, but the surface force appears in the
boundary conditions, which read, in Fourier transforms,

(1 − 2σ )̃b(0)
z − β̃(1) = 0,

2(1 − σ )̃b(1)
z − k2β̃(0) = −4(1 + σ)(1 − σ)f0

E
.

(39)
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Making use of relations (21) and (22), this system of equations is solved immediately, lead-
ing to

bz = −2(1 − σ 2)f0

πE

1

r
,

β = −2(1 − σ 2)(1 − 2σ)f0

πE
I0,

(40)

where r = (ρ2 + z2)1/2 and I0 is the function given by (29) for z0 = 0. From (8) we get the
well-known displacement for the Boussinesq problem [5, 6]

uρ = − (1 + σ)f0

2πE

(
z

r2
+ 1 − 2σ

r + |z|
)

ρ

r
,

uz = − (1 + σ)f0

2πE

[
z2

r2
+ 2(1 − σ)

]
1

r
.

(41)

The case of a force parallel to the surface (Cerruti problem) can be treated in the same
manner.

7 Conclusion

A new method has been introduced in this paper for evaluating the displacement of an
isotropic elastic half-space as caused by a force localized on or beneath the surface. The
original solutions of these problems, known as Boussinesq and, respectively, Mindlin prob-
lems [4, 5, 14–16] include some particular devices, conditioned by the complexity of the
boundary conditions. Other known methods of solving these problems make use of heuris-
tic guesses, based on the symmetries of the problems. The solution given here is obtained
by using in-plane Fourier transforms and by including the values of the functions and their
derivatives on the boundary in a generalized Poisson equation. This method can be extended
to other boundary-value problems, like a half-space with fixed surface [40, 41], or elas-
tic (thick) plates, or elastic bodies with cylindrical or spherical geometry, or to the related
Flamant, Cerruti, or Melan problems [22].
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