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Abstract We investigate the effect of the surface inhomogeneities (defects) on the propaga-
tion of the elastic waves in a semi-infinite isotropic solid body (half-space). A perturbation-
theoretical scheme is devised for small surface defects (in comparison with the relevant elas-
tic disturbances propagating in the body), and the elastic waves equations are solved in the
first-order approximation. It is shown that surface defects generate both scattered waves lo-
calized (and propagating only) on the surface (two-dimensional waves) and scattered waves
reflected back in the body. Directional effects, wave slowness and attenuation by diffusive
scattering, or possible resonance effects are discussed.
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1 Introduction

There is a great deal of interest in the role played by the surface defects (inhomogeneities)
in a large variety of physical phenomena, ranging from mechanical properties of the elastic
bodies [1, 2], to hydrodynamical flow of microfluids [3], dispersive properties of surface
plasmon-polariton in nanoplasmonics [4], terahertz-waves generation [5] or electronic mi-
crostructures [6, 7]. Giant corrugations have been found on the graphite surface by scanning
tunneling microscopy, due to the elastic deformations induced by atomic forces between tip
and surface [8]. Periodic surface corrugation plays a central role in enhanced, or suppressed,
optical transmission in the subwavelength regime [9], or in highly-directional optical emis-
sion [10]. An appreciable reduction in the thermal conductance has been assigned to the
phonon scattering by surface defects [11]. Stick-slip instability responsible for earthquakes
has been studied, as well as the associated radiation of seismic surface waves [12]. It has
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been recognized that elastic-waves propagation effects may play a central role in the sur-
face defects associated with the cracks occurring in heterogeneous media, like aluminium
alloys, ceramics or rock [13, 14]. The main difficulty in getting more definite results in this
problem resides in modelling conveniently the surface inhomogeneities, such as to arrive at
mathematically operational approaches [15, 16].

We introduce here a model of surface inhomogeneities, whose elastic characteristics are,
in general, distinct from the ones of the underlying (isotropic) elastic half-space (semi-
infinite solid). Such a model may account both for surface roughness and for surface coatings
(in general, non-uniform). It is shown that the elastic waves propagating in the semi-infinite
body (incident on and reflected specularly by the surface) generate a force localized on the
surface, which is responsible for the scattered waves. This force arises mainly from both
the presence of the surface layer and the more-or-less abrupt termination of the solid at
its surface. The scattered waves are of two kinds: localized (and propagating only) on the
surface (two-dimensional waves), and waves scattered back in the body. For an enhanced
distribution of surface defects the waves scattered back in the body may get confined to the
surface (damped surface waves). The method employed in the present paper is based on
a perturbation-theoretical scheme, and the resulting coupled integral equations are solved
in the first approximation with respect to the magnitude of the defects distribution. Multiple
scattering is expected to occur in higher-order approximations. The perturbation method em-
ployed here differs from other perturbation methods. For instance, the perturbation treated
in this paper is partially an intrinsic one, not a purely external one, as in the Born approxi-
mation. The introduction of a surface layer is equivalent to some extent with a double-scale
treatment, so that, in this respect, there is a resemblance with a multi-scale method.

Forward and backward scattering of elastic waves have also been reported in corrugated
waveguides [17]. Great insight has been obtained previously in the coupling of the surface
(Rayleigh) waves to periodic corrugation (grating) [18–20], especially as regards the wave
attenuation, slowing and leaking (outgoing increasing wave), corroborated with band gaps
and stop bands, by using non-perturbational techniques. The reflection and refraction of
elastic (acoustic) waves at a rough surface, or ducts with variable cross-sections, have been
extensively studied, emphasizing the role of the boundary conditions [21–27]. Powerful nu-
merical methods have been developed for such complex problems. A great deal of attention
was given to the coupled modes propagating in elastic waveguides with rough surfaces,
which highlighted a rich phenomenology [28–33]. The interplay between mode dispersion
and surface roughness may lead to a well-defined selectivity in the transmission coefficient
and anomalous backscattering enhancement. Most of such important results are obtained
numerically. Similar results have been reported for sound and ultrasound waves propagating
in fluids [34–38].

In addition to such results, we show here that the surface inhomogeneities may cause lo-
calized waves, propagating only on the surface, which may store a certain amount of energy,
due to the localization effects. Attenuation of crustal waves across the Alpine range has been
reported, which might be associated with the localization of energy in the surface defects
region [39]. The method presented here can be extended to electromagnetic waves, or fluid
waves, propagating in a semi-infinite body with surface defects. It was employed recently
to analyze the elastic waves produced by localized forces in semi-infinite solids [40].

2 Elastic Body with Surface Inhomogeneities

We consider an isotropic elastic body extended boundlessly along the directions r = (x, y)

and limited along the z-direction by a free surface z = h(r), where h(r) > 0 is a function
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to be further specified (roughness function). The body, which may also be termed a semi-
infinite solid (elastic half-space) with a non-planar surface, occupies the region z < h(r). It
is convenient to write the well-known equation for free elastic waves in an isotropic body
[41] as

1

v2
t

ü − �u = m · grad ·div u, (1)

where u(r, z, t) is the displacement field, t denotes the time, vt is the velocity of the trans-
verse waves, m = v2

l /v
2
t − 1 > 1/3 (actually 1) [41] and vl is the velocity of the longitudinal

waves. Indeed, Eq. (1) gives the free transverse waves (div u = 0) propagating with velocity
vt and the free longitudinal waves (curl u = 0) propagating with velocity vl .

For a semi-infinite body with a surface described by equation z = h(r) and extending in
the region z < h(r) the displacement field can be written as

u = (v,w)θ
[
h(r) − z

]
, (2)

where v lies in the (x, y)-plane, w is directed along the z-axis and θ is the step function
(θ(z) = 0 for z < 0, θ(z) = 1 for z > 0). The magnitude of the surface inhomogeneities
(deviation from a plane) is given by the function h(r), which we assume to be very small in
comparison with the relevant wavelengths along the z-directions of the elastic disturbances
propagating in the body. Consequently, we may use the first-order approximation

u = (v,w)
[
θ(−z) + h(r)δ(z)

]
(3)

for Eq. (2), where δ(z) is the Dirac function. This is the usual approximation employed in
the perturbation-theoretical approaches [42–44]. The specific conditions of validity for this
approximation will be discussed on the final results.

We write such a displacement field as

u = u0 + δu0, (4)

where

u0 = (v0,w0)θ(−z), δu0 = (v0,w0)|z=0hδ(z), (5)

and assume that u0 satisfies the wave equation (1)

1

v2
t

ü0 − �u0 = m · grad ·div u0 (6)

with specific boundary conditions at z = 0. This equation describes incident and (specularly)
reflected waves propagating in a semi-infinite solid with a plane surface z = 0. We can
see that δu0 generates a source-term localized on the surface (a force), which can produce
scattered waves. We denote the displacement field associated with these scattered waves
by u1; it satisfies the wave equation

1

v2
t

ü1 − �u1 = m · grad ·div u1 + f

v2
t

, (7)

where the force is given by

f

v2
t

= 1

v2
t

δü0 − �δu0 − m · grad ·div δu0. (8)
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Equations (7) and (8) represent merely a different way of re-writing the wave equation
for a semi-infinite solid with surface defects. For waves localized on the surface the solu-
tion of Eq. (7) is u1 = δu0. Another solutions are given by the waves scattered back in the
body by the surface defects, i.e. waves generated in Eq. (7) by the source term f (a partic-
ular solution of Eq. (7)). We generalize this model of surface defects by assuming that the
roughness is “inhomogeneous”, i.e., it is a homogeneous elastic medium with different elas-
tic characteristics than the plane-surface half-space bulk (for instance, different density and
elastic constants). Therefore, we introduce distinct velocities v̄t,l and denote all the changed
parameters with an overbar (for instance, m̄ = v̄2

l /v̄
2
t − 1). The force is given in this case by

f̄

v2
t

= 1

v̄2
t

δü0 − �δu0 − m̄ · grad ·div δu0, (9)

The results are expressed conveniently by using the relative differences ηt,l = 1 − v2
t,l/v̄

2
t,l .

The displacement field u1 given by Eq. (7) can be written as u1 = (v,w)θ(−z).
We may say that, in the presence of a displacement field u0, the surface inhomogeneities

generate a force f̄, localized on the surface and of the same order of magnitude as the func-
tion h (δu0 ∼ hδ(z)). This force is the difference between the inertial force δü0/v̄

2
t and

the elastic force �δu0 + m̄ · grad ·div δu0; it represents the distinct way the surface follows
the elastic motion in comparison with the bulk. Equation (6) gives the free incident and
reflected waves propagating in a half-space with a plane surface, while Eq. (7) gives the
scattered waves produced by the roughness of the surface, as a consequence of the source
term f̄/v2

t .
It is worth noting that such a model of inhomogeneous surface may correspond either to

a surface whose physical properties have been changed, or to a solid which is homogeneous
everywhere, including its rough surface. Indeed, in the latter case, it is precisely the spatial
variations of the rough surface which affect its elastic properties, viewed as a homogeneous
medium, and render it, in fact, a rough surface which is inhomogeneous with respect to the
bulk.

The above perturbation-theoretical scheme can also be written in a different way, by
recasting equation (1) into an equation involving the velocity vl of the longitudinal waves
and the parameter n = 1 − v2

t /v
2
l = m/(1 + m). Then, Eqs. (6)–(8) become

1

v2
l

ü0 − �u0 = n(−�u0 + grad ·div u0),

1

v2
l

ü1 − �u1 = n(−�u1 + grad ·div u1) + f̄

v2
l

,

(10)

where

f̄

v2
l

= 1

v̄2
l

δü0 − (1 − n̄)�δu0 − n̄ · grad ·div δu0. (11)

We solve Eq. (7) and the second equation (10) for the scattered transverse and, respectively,
longitudinal waves by using the Green function method.

3 Plane Surface

As it is well known, the elementary solutions of Eq. (6), or the first equation (10), (homo-
geneous elastic waves equation) for a half-space with a plane surface are transverse and
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longitudinal plane waves of the form

u0 ∼ (
e±iκ0z, e±iκ ′

0z
)
e−iωt+ik0r, (12)

where both incident (+κ0,+κ ′
0) and reflected (−κ0,−κ ′

0) waves are included, ω is the fre-
quency and k0 is the in-plane wavevector. For div u0 = 0 we get the transverse waves,
propagating with the velocity vt (ω = vtK0, where K0 = (k0, κ0)), with the z-component

of the wavevector κ0 =
√

ω2/v2
t − k2

0 . For curl u0 = 0 we get the longitudinal waves
(through curl · curl u0 = −�u0 + grad ·div u0 = 0), propagating with the velocity vl and

the z-component of the wavevector κ ′
0 =

√
ω2/v2

l − k2
0 (ω = vlK

′
0 and K′

0 = (k0, κ
′
0)). The

transverse waves have two polarizations, one in the propagating plane (the (k0, κ0)-plane),
which we call here the p-wave (parallel wave), another perpendicular to the propagating
plane, which we call here the s-wave (from the German “senkrecht”, which means “perpen-
dicular”). Linear combinations of the plane waves given by Eq. (12) are subject to conditions
imposed on the surface (e.g., free or fixed surface). The p- and s-notation is used in electro-
magnetism. In seismology the longitudinal waves, denoted here by the suffix l, are usually
called primary waves and denoted by P , while the transverse s-waves discussed here are
called shear horizontal waves and denoted by SH. The transverse p-waves discussed here
have not a simple polarization with respect to the surface. It is worth noting that the results
of the perturbation scheme applied here to the integral equations acquire their most simple
and convenient form for longitudinal waves and p- and s-transverse waves as used here.

We derive here these free waves propagating in a half-space with a plane surface by a
different method, which will be used subsequently in deriving the solutions for the scattered
waves (Eq. (7) and the second equation (10)). In order to simplify the notations we omit here
the subscript 0.

The solution of Eq. (6) is written as

u = [
v(z),w(z)

]
θ(−z)e−iωt+ikr. (13)

Introducing this u in Eq. (6) and leaving aside the exponential factor e−iωt+ikr we get

∂2u
∂z2

+ κ2u = S, (14)

where κ2 = ω2/v2
t − k2 and the source S has the components

S(x,y) = −imk
(

ikv + ∂w

∂z

)
θ(−z)

+
(

∂v
∂z

∣∣
∣∣
z=0

+ imkw|z=0

)
δ(z) + v|z=0δ

′(z),

Sz = −m

[
ik

∂v
∂z

+ ∂2w

∂z2

]
θ(−z) + imkv|z=0δ(z)

+ (1 + m)

[
∂w

∂z

∣∣
∣∣
z=0

δ(z) + w|z=0δ
′(z)

]
.

(15)

We can see that the source S, which collects all the contributions from m · grad u and the
derivatives of θ(−z) in �u, acts as an “external force” in Eq. (14). As it is well known, the
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particular solution of Eq. (14) is given by

u(z) =
∫

dz′G
(
z − z′)S

(
z′), (16)

where

G(z) = 1

2iκ
eiκ|z| (17)

is the Green function for Eq. (14) (Green function of the one-dimensional Helmholtz equa-
tion). Making use of the notations v1 = vk/k and v2 = vk⊥/k, where k⊥is a vector perpen-
dicular to k and of the same magnitude k, Eqs. (15)–(17) lead to

v2 = − i

2κ

∂v2

∂z

∣∣
∣∣
z=0

e−iκz − 1

2
v2|z=0e

−iκz (18)

and

v1 = − imk2

2κ

∫ 0

dz′v1

(
z′)eiκ|z−z′| − mk

2κ

∂

∂z

∫ 0

dz′w
(
z′)eiκ|z−z′|

− i

2κ

∂v1

∂z

∣
∣∣
∣
z=0

e−iκz − 1

2
v1|z=0e

−iκz,

(1 + m)w = −mk

2κ

∂

∂z

∫ 0

dz′v1
(
z′)eiκ|z−z′| + imκ

2

∫ 0

dz′w
(
z′)eiκ|z−z′|

− i

2κ

∂w

∂z

∣
∣∣
∣
z=0

e−iκz − 1

2
w|z=0e

−iκz.

(19)

Equation (18) corresponds to the s-wave. It is easy to see that the particular solution given
by Eq. (18) is identically vanishing. Therefore, we are left with the free s-waves given by
Eq. (12), as expected (∼ e±iκze−iωt+ikr).

Let us take the second derivative of Eq. (19) with respect to z and use the identity

∂2

∂z2

∫
dz′f

(
z′)eiκ|z−z′| = −κ2

∫
dz′f

(
z′)eiκ|z−z′| + 2iκf (z) (20)

for any arbitrary function f (z). We get

∂2v1

∂z2
+ κ2v1 = −imk

(
ikv1 + ∂w

∂z

)
,

∂2w

∂z2
+ κ2w = −m

∂

∂z

(
ikv1 + ∂w

∂z

)
.

(21)

We can see that for div(v1,w) = 0, i.e., for ikv1 + ∂w/∂z = 0, we get the free p-waves
(κ = √

ω2/v2
t − k2), according to Eq. (12) (∼ e±iκze−iωt+ikr). Similarly, for curl u = 0, i.e.,

for ikw − ∂v1/∂z = 0, Eq. (21) become

(1 + m)
∂2(v1,w)

∂z2
+ (

κ2 − mk2
)
(v1,w) = 0, (22)
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or, making use of m = v2
l /v

2
t − 1,

∂2(v1,w)

∂z2
+ κ ′2(v1,w) = 0, (23)

where κ ′ =
√

ω2/v2
l − k2, i.e., free longitudinal waves ∼ e±iκ ′ze−iωt+ikr.

The longitudinal waves can also be obtained by noting that the coupled equations (19)
imply the relationship

∂v1

∂z
− ikw = Ce−iκz, (24)

where

C = −1

2

(
∂v1

∂z
− ikw

)∣∣∣
∣
z=0

+ 1

2

(
iκv1 − k

κ

∂w

∂z

)∣∣∣
∣
z=0

. (25)

We use this relationship in one of Eq. (21), and get

∂2v1

∂z2
+ κ ′2v1 = − imκ

1 + m
Ce−iκz. (26)

The particular solution of this equation is vanishing identically, and we are left with free
longitudinal waves. Indeed, Eq. (24) with C = 0 corresponds to curl(v1,w) = 0.

The p-waves are obtained in a similar way, by starting with the first equation (10). Using
u given by an equation similar with Eq. (13) we get

(1 − n)v2 = in(κ ′2 + k2)

2κ ′

∫ 0

dz′v2

(
z′)eiκ ′|z−z′|

− i

2κ ′
∂v2

∂z

∣
∣∣
∣
z=0

e−iκ ′z − 1

2
v2|z=0e

−iκ ′z (27)

and

(1 − n)v1 = inκ ′

2

∫ 0

dz′v1
(
z′)eiκ ′|z−z′| − nk

2κ ′
∂

∂z

∫ 0

dz′w
(
z′)eiκ ′|z−z′|

− i

2κ ′
∂v1

∂z

∣∣∣
∣
z=0

e−iκ ′z − 1

2
v1|z=0e

−iκ ′z,

w = − nk

2κ ′
∂

∂z

∫ 0

dz′v1

(
z′)eiκ ′|z−z′| + ink2

2κ ′

∫ 0

dz′w
(
z′)eiκ|z−z′|

− i

2κ ′
∂w

∂z

∣∣
∣∣
z=0

e−iκ ′z − 1

2
w|z=0e

−iκ ′z.

(28)

It is easy to see, by taking the second derivative with respect to z, that Eq. (27) gives the free
s-waves. Similarly, by taking the second derivative with respect to z, Eq. (28) become

∂2v1

∂z2
+ κ ′2

1 − n
v1 = −ink

∂w

∂z
,

∂2w

∂z2
+ (1 − n)κ2w = −ink

∂v1

∂z

(29)
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(where we have used the identity κ ′2 + nk2 = (1 − n)κ2). On the other hand, from Eq. (28),
we get easily the relationship

∂v1

∂z
+ i

κ2

k
w = C ′

1 − n
e−iκ ′z, (30)

where

C ′ = −1

2

(
∂v1

∂z
+ iκ ′2

k
w

)∣∣
∣∣
z=0

+ 1

2

(
iκ ′v1 + κ ′

k

∂w

∂z

)∣∣
∣∣
z=0

. (31)

Making use of this relationship in Eq. (29) we get

∂2w

∂z2
+ κ2w = − ink

1 − n
C ′e−iκ ′z (32)

and a similar equation for v1. It is easy to see that the particular solution of Eq. (32) is
identically vanishing, so we are left with the free p-waves. Indeed, Eq. (30) with C ′ = 0
corresponds to div(v1,w) = 0.

4 Scattered Waves

We consider now a bulk incident transverse wave and reflected transverse and longitudinal
waves given by

u0 = (
u(1)

0 eiκ0z + u(2)

0 e−iκ0z + u(3)

0 e−iκ ′
0z

)
e−iωt+ik0r (33)

(for z < 0), where the amplitudes u(1,2,3)

0 satisfy the corresponding conditions of trans-
verse and, respectively, longitudinal waves. For instance, in the representation u0 = (v0,w0)

we have k0v(1,2)

0 ± κ0w
(1,2)

0 = 0 (including w
(1,2)

0 = 0 for the s-waves) and κ0v(3)

0 k0/k0 +
k0w

(3)

0 = 0. In addition, the wave given by Eq. (33) must satisfy the conditions at the sur-
face. For instance, for a fixed surface we have u0|z=0 = 0, while for a free surface, we impose
the condition σiz = 0, where σij is the stress tensor (i = x, y, z). All these conditions fix the
amplitudes u(1,2,3)

0 , up to the incidence angle and the amplitude of the incident wave, in terms
of the reflection coefficients and reflection angles, ultimately in terms of the wave velocities
vt,l [41]. For an incident s-wave we have only a reflected s-wave (u(3)

0 = 0), while for an
incident p-wave we have both p- and longitudinal waves. A similar situation occurs for an
incident longitudinal wave, with κ0 and κ ′

0 interchanged in Eq. (33). The displacement δu0

given by Eq. (5) implies u0 for z = 0, so that we may represent this localized contribution
of the u0-wave as

u0|z=0 = (v0,w0)e
−iωt+ik0r, (34)

where v0,w0 include contributions corresponding to various polarizations.
First, we are interested in solving Eq. (7) for the scattered waves, with the force f̄/v2

t

generated by the free waves u0, as given by Eq. (9). We consider a Fourier component of the
form

h(r) = heiqr (35)

for the roughness function, where h is an amplitude (depending on q) and q denotes a
characteristic wavevector (in final results the contribution q → −q must be included). The
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localized displacement δu0 given by Eq. (5) can be written as

δu0 = h(v0,w0)e
−iωt+ikrδ(z), (36)

where k = k0 + q. Making use of this displacement δu0, the force f̄/v2
t given by Eq. (9) can

be computed straightforwardly. Leaving aside the exponential factor e−iωt+ikr, it is given by

f̄(x,y)

v2
t

= −h
[
κ̄2v0δ(z) + v0δ

′′(z) − m̄k(kv0)δ(z) + im̄kw0δ
′(z)

]
,

f̄z

v2
t

= −h
[
κ̄2w0δ(z) + w0δ

′′(z) + im̄kv0δ
′(z) + m̄w0δ

′′(z)
]
,

(37)

where

κ̄ =
√

ω2/v̄2
t − k2 (38)

and

κ =
√

ω2/v2
t − k2 =

√
κ2

0 − 2k0q − q2. (39)

We add the contributions arising from this force (via the Green function of Eq. (14)) to
the rhs of Eqs. (18) and (19) and solve these equations by the procedure described in the
previous section. For instance, Eq. (18) becomes

v2 = − i

2κ

∂v2

∂z

∣∣
∣∣
z=0

e−iκz − 1

2
v2|z=0e

−iκz

− ih

2κ

(
κ̄2 − κ2

)
v02e

−iκz + hv02δ(z). (40)

The displacement v2 given above includes the localized wave

v2l = hv02δ(z)e
−iωt+ikr, (41)

which is a scattered wave propagating only on the surface (two-dimensional wave). The
remaining contribution to Eq. (40) (terms without δ(z)) represents scattered waves reflected
back in the body. We denote this contribution by v2r . Taking the second derivative with
respect to z in Eq. (40) and using the self-consistency condition imposed by this equation
on the displacement on the surface, we get immediately the solution

v2r = − ih

4κ

(
κ̄2 − κ2

)
v02e

−iωt+ikr−iκz. (42)

This is an s-wave, scattered back in the body by the surface roughness. We can see that it is
the distinct elastic parameters of the surface roughness that ensure this scattering (through
κ̄2 − κ2 = −ω2ηt/v

2
t �= 0). The occurrence of the wavevector k = k0 + q in Eq. (42) is

indicative of the selective reflection phenomenon, associated with corrugated surfaces, and
in general, of directional effects.

In likewise manner we get the equations for v1 and w with the force terms given by
Eq. (37). We get the amplitudes for localized waves

v1l = hv01δ(z), wl = h
1 + m̄

1 + m
w0δ(z). (43)
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Equations (21) and (24) remain the same, but the constant C given by Eq. (25) (entering the
relationship (24)) becomes now

C = −1

2

(
∂v1

∂z
− ikw

)∣∣
∣∣
z=0

+ 1

2

(
iκv1 − k

κ

∂w

∂z

)∣∣
∣∣
z=0

− h

2κ

(
κ̄2 − κ2

)
(κv01 + kw0). (44)

Following the same procedure as described in the previous section we get the scattered
waves

v1r = −ih
v2

t

4ω2

(
κ̄2 − κ2

)
(κv01 + kw0)e

−iωt+ikr−iκz

= i

4
hηt (κv01 + kw0)e

−iωt+ikr−iκz (45)

and wr = kv1r/κ . We can see that this represent a p-wave (div(v1r ,wr) = 0, i.e., kv1r −
κwr = 0).

We turn now to the second equation (10) with the force given by

f̄(x,y)

v2
l

= −h
[
(1 − n̄)κ̄2v0δ(z) + (1 − n̄)v0δ

′′(z)

− n̄k(kv0)δ(z) + in̄kw0δ
′(z)

]
,

f̄z

v2
l

= −h
[
(1 − n̄)κ̄2w0δ(z) + (1 − n̄)w0δ

′′(z)

+ in̄kv0δ
′(z) + n̄w0δ

′′(z)
]
.

(46)

By using the procedure described in the previous section we get a localized displacement

vl = h
1 − n̄

1 − n
v0δ(z),wl = hw0δ(z). (47)

We can see, by comparing Eqs. (41), (43) and (47) that the inhomogeneous roughness affects
the localized waves in different ways. For the scattered waves reflected back in the body,
Eqs. (29) and (30) from the previous section remain unchanged, but the constant C ′ given
by Eq. (31) (entering the relationship (30)) becomes

C ′ = −1

2

(
∂v1

∂z
+ iκ ′2

k
w

)∣
∣∣
∣
z=0

+ 1

2

(
iκ ′v1 + κ ′

k

∂w

∂z

)∣
∣∣
∣
z=0

− h

2k

(
κ̄ ′2 − κ ′2)(kv01 − κ ′w0

)
. (48)

We get straightforwardly the reflected waves

v1r = −ih
v2

l k

4ω2κ ′
(
κ̄ ′2 − κ ′2)(kv01 − κ ′w0

)
e−iωt+ikr−iκ ′z

= i

4
hηl

(
kv01 − κ ′w0

)
e−iωt+ikr−iκ ′z (49)
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and wr = −κ ′v1r/k. We can see that this scattered wave is a longitudinal wave
(curl(v1r ,wr) = 0, i.e., −κ ′v1r = kwr ).

According to Eqs. (42), (45) and (49), within the present model of surface roughness we
get waves scattered back in the body only for a rough surface with elastic characteristics
different from those of the body (inhomogeneous roughness, ηt,l �= 0). For a homogeneous
roughness, i.e., for ηt,l = 0, we get only scattered waves localized on the surface, given by

ul = δu0 = h(r)(v0,w0)e
−iωt+ik0rδ(z), (50)

as expected.

5 Discussion

The localized waves have the general form of the incoming wave e−iωt+ik0r modulated by the
roughness function h(r). If q is a characteristic wavevector of this roughness function and
k = k0 + q, the velocity of the localized waves is given by vs = ω/k = vt,lk0/k sin θ , where
θ is the incidence angle of the incoming (transverse or longitudinal) wave. The directional

effects are clearly seen from the presence of k ==
√

k2
0 + 2k0q + q2 in the denominator of

this relation. It is worth noting that for q = ±k0, i.e. for a surface distribution of defects
modulated with the same wavelength as the original u0-wave, there appear scattered waves
with half the wavelength of the original u0-waves (wavevector 2k0) and the whole surface
suffers a vibration (independent of the coordinate r), a characteristic resonance phenomenon
(k = 0). The waves corresponding to the wavevector 2k0 have a velocity ω/2k0, which is
twice as small as the original velocity on the surface. This is indicative of the slowness
phenomenon, associated with rough surfaces.

The q = ±k0 resonance phenomenon is exhibited also by the waves scattered back in the
body. Another resonance phenomenon may appear for ±2k0q + q2 = 0, which is the well-
known Laue-Bragg condition for the X-rays diffraction in crystalline bodies [29, 30, 45]. In
this case, k = k0, κ = κ0 and κ ′ = κ ′

0, and we can see that the scattered transverse (longitudi-
nal) waves are generated only by the transverse (longitudinal) part in the original u0-waves,
as expected, due to the presence of the factors κv01 + kw0 and kv01 − κ ′w0 in Eqs. (45)
and, respectively, (49). For k0 and q antiparallel the scattered wave propagates in opposite
direction with respect to the incident wave.

The results given above hold also for purely imaginary values of the wavevectors κ or κ ′,
when the scattered waves become confined to the surface (surface waves), a situation which
may occur especially for high values of the magnitude q of the characteristic wavevectors
q (q � k0). According to Eqs. (42), (45) and (49), the scattered waves are now damped
(∼ e|κ|z, ∼ e|κ ′ |z) and their amplitudes are proportional to the roughness function h(r). It is
worth noting that these surface waves are generated by the surface roughness.

As it is well known, the energy of the incident wave is transferred to the reflected waves.
In the present case, it is transferred both to the reflected waves as well as to the scattered
waves, including the waves localized on the surface and the waves scattered back in the body.
According to Eqs. (42), (45) and (49) the energy density of the scattered waves reflected
back in the body is proportional to (h/λ̄)2, where λ̄ is a characteristic “wavelength” of these
waves (projection of the wavelength λ on the surface, or on the direction perpendicular to the
surface, or combinations of these). It follows that the validity criterion for our perturbation-
theoretical scheme is h � λ̄. In the limit of small roughness (h → 0), the energy of the
scattering waves (their amplitude) is vanishing. It is worth estimating the energy of the
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waves localized on the surface. For simplicity, we consider a homogeneous roughness, with
the localized waves given by

(vl ,wl) = h(v0,w0)δ(z)e
−iωt+ikr (51)

(according to Eq. (50)) and choose the wavevector k directed along the x-axis. The validity
condition for these waves is obtained by assuming that the distribution of the surface defects
extends over a distance of the order of hm = maxh(r) and use the representation δ(z) 	
1/hm for the δ-function. Then, the perturbation calculations are valid for h̄ � hm, where h̄

is the average (mean value) of the function h(r). This means that the surface distribution
of defects has only a few spikes. As it is well known, the (elastic) energy density (per unit
mass) can be expressed as

E /ρ = v2
t

(
u2

ij − u2
ii

) + 1

2
v2

l u
2
ii , (52)

where uij = (1/2)(∂ui/∂xj +∂uj/∂xi) is the strain tensor. In our case, we use for computing
this strain tensor the displacement given by Eq. (51). The strain tensor includes factors
proportional to δ(z) and δ′(z), and the energy density includes factors proportional to δ2(z)

and δ′2(z). The leading contribution come from δ′2(z)-terms:

E /ρ = h2

2

(
v2

t v2
0 + v2

l w
2
0

)
δ′2(z), (53)

giving a surface energy (per unit mass)∼ hmE /ρ. Making use of the representation δ′2(z) 	
1/h4

m, this surface energy is proportional to h2/h3
m, while the corresponding energy of the

incident wave goes like hm/λ2; the ratio of the two quantities is of the order of h2λ2/h4
m.

We can see that this ratio may acquire large values, even for h � hm (perturbation criterion
satisfied), for λ � hm. Therefore, the surface waves may store an appreciable amount of
energy, as a result of their localization. This phenomenon is related to the discontinuities
experienced by the strain tensor along the direction perpendicular to the surface.

6 Particular Cases and Concluding Remarks

From Eqs. (42), (45) and (49) we can get the reflection coefficients, related to the energy, of
the waves scattered back in the body. Their general characteristic is the directionality effects.
The derivation of these coefficients is complicated in the general case, where we should fix
the amplitudes of the original u0-waves according to the nature of these waves and the
boundary conditions. Another complication arises from the fact that we should “renormal-
ize” the amplitudes of the reflected original u0-waves such as to include (accommodate) the
scattered waves in the boundary conditions (a procedure specific to theoretical-perturbation
calculations). We limit ourselves here to give the reflection coefficients for a few particular
cases.

First, one of the simplest case is an original s-wave, described by

u0 = 2(0, u0,0) cosκ0z · e−iωt+ik0r, (54)

where k0 is directed along the x-axis. Making use of Eq. (52), the energy density (per unit
mass) of the incident wave in Eq. (54) is E0/ρ = ω2u2

0. We must compute the projections
v01,2 of the amplitude of this wave on k = k0 +q and k⊥. Introducing the angle α between q
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and k0, we get v01 = 2u0q sinα/k and v02 = 2u0(k0 + q cosα)/k (and, of course, w0 = 0).
We can see, from Eqs. (42), (45) and (49), that an incident s-wave produce both s- and
p-scattered transverse waves as well as a scattered longitudinal wave, due to the surface
inhomogeneities. Making use of these equations we compute easily the amplitudes of these
waves and get the reflection coefficients

Rs = ηt

hω2

4v2
t κk

(k0 + q cosα), Rp = ηt

hωq

4vtk
sinα, Rl = ηl

hωq

4vlk
sinα. (55)

The energy density carried on by these waves is given by Es,p,l/E0 = R2
s,p,l . We stress upon

the complicated direction-dependence (angle α) of these reflection coefficients, included
both in κ and k. The formulae given by Eq. (55) become more simple for normal incidence
(k0 = 0).

For normal incidence there is another simple case concerning longitudinal waves de-
scribed by

u0 = 2(0,0, u0) cosκ ′
0z · e−iωt , (56)

where κ ′
0 = ω/vl . The energy density per unit mass of this incident wave is E0/ρ = ω2u2

0.
According to Eqs. (42), (45) and (49), the scattered waves in this case are a p-wave and a
longitudinal wave. Their reflection coefficients are much more simple now,

Rp = ηt

hωq

4vtκ
, Rl = ηl

hωκ ′

4vlq
. (57)

The squares of these coefficients give the fraction of energy carried on by these waves.
It is worth stressing that all the above formulae are valid only for κ, k, q �= 0 (non-

vanishing denominators).
We can see from the above particular cases, as well as from the general equations (42),

(45) and (49), that the total amount of energy carried on diffusively by the waves scattered by
the surface roughness implies sums of the form

∑
q |h(q)|2f (q), where h(q) is the Fourier

transform of the roughness function h(r) and f (q) are specific functions corresponding to
the waves’ nature (factors implying k, κ , κ ′, etc). Qualitatively, in order to maximize this
energy, it is necessary, apart from particular cases of gratings (one, or a few wavevectors q),
to include as many Fourier components as possible, i.e. the surface should be as rough as
possible in order to have a good attenuation, a reasonably expected result.

In conclusion, we may say that we have introduced a model of inhomogeneous surface
distribution of defects for a semi-infinite isotropic elastic body and solved the wave equa-
tions for the elastic waves scattered by this surface roughness in the first-order approxima-
tion with respect to the magnitude of the defects distribution. The scattered waves are of two
kinds: waves localized (and propagating only) on the surface, given by Eqs. (43) and (47),
and scattered waves reflected back in the body by the surface inhomogeneities, both trans-
verse, as given by Eqs. (42) and (45), and longitudinal, as given by Eq. (49). The latter may
become confined to the surface (damped surface waves) for an enhanced roughness (large
wavevectors q). The reflected waves are absent for a homogeneous roughness (ηt,l = 0),
where only the localized waves survive.
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