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Abstract The problem of vibrations generated in a homogeneous and isotropic elastic half-space by spatially
concentrated forces, known in Seismology as (part of) the Lamb problem, is formulated here in terms of
Helmholtz potentials of the elastic displacement. The method is based on time Fourier transforms, spatial
Fourier transforms with respect to the coordinates parallel to the surface (in-plane Fourier transforms) and
generalized wave equations, which include the surface values of the functions and their derivatives. This
formulation provides a formal general solution to the problem of forced elastic vibrations in the homogeneous
and isotropic half-space. Explicit results are given for forces derived from a gradient, localized at an inner
point in the half-space, which correspond to a scalar seismic moment of the seismic sources. Similarly, explicit
results are given for a surface force perpendicular to the surface and localized at a point on the surface. Both
harmonic time dependence and time δ-pulses are considered (where δ stands for the Dirac delta function).
It is shown that a δ-like time dependence of the forces generates transient perturbations which are vanishing
in time, such that they cannot be viewed properly as vibrations. The particularities of the generation and the
propagation of the seismic waves and the effects of the inclusion of the boundary conditions are discussed, as
well as the role played by the eigenmodes of the homogeneous and isotropic elastic half-space. Similarly, the
distinction is highlighted between the transient regime of wave propagation prior to the establishment of the
elastic vibrations and the stationary-wave regime.

Keywords Lamb problem · Half-space · Vibrations · Eigenmodes

Mathematics Subject Classification 35L05 · 35L67 · 74J05 · 74J15 · 74J70 · 86

1 Introduction

The generation and the propagation of the seismic waves is a basic problem in mathematical Seismology. It
gives information about the processes occurring in an earthquake focus, about the inner structure of the Earth
and the effects the seismic waves have on the Earth’s surface. In addressing this problem, it is convenient
to approximate the Earth by a half-space bounded by a plane surface; by another useful simplification, the
Earth is viewed as a homogeneous and isotropic elastic solid, though the problem may be more complex,
involving, for instance, anisotropic stratified structures, or functionally graded media. Similarly, the seismic
source may exhibit the complex structure of a moving dislocation, a crack or even multiple cracks. Usually,
“elementary” earthquakes are considered, produced by sources localized beneath the Earth’s surface, such that,
for long distances, we may consider point seismic sources, i.e. sources represented by spatial δ-functions, or
derivatives of the δ-functions (where δ stands for the Dirac delta function). A similar representation holds for
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the time dependence of such “elementary” seismic sources. Within such circumstances, the generation and the
propagation of the seismic waves, as well as the vibrations of the elastic half-space, are known as defining the
so-called Lamb problem [1–3]. The recent interest in this old problem is related to the soil–structure interaction
and the effects the seismic waves and, in general, elastic waves, may have upon surface [4–6].

In the complex of physical phenomena involved in the Lamb problem (generation and propagation of
seismic waves, vibrations generated by seismic sources, eigenmodes) a certain particularity exists, related to
the requirement of satisfying the boundary conditions at the Earth’s surface, usually considered a free plane
surface. In general, we may consider elastic waves propagating in the infinite space, or waves guided along
surfaces and satisfying boundary conditions, or vibrations of finite domains. The problem of vibrations of an
elastic sphere was solved as early as 1882 [7–9], and surface waves in an elastic half-space were derived in
1885 [10]. We show here that the problem of elastic vibrations in a homogeneous and isotropic half-space can
be formulated and solved in a general form. We give here a formal solution to this problem, as well as a few
explicit results for some particular cases.

Themethod presented here has a few convenient points. First, we use the decomposition of the displacement
field and the force term in Helmholtz potentials, which obey standard wave equations. This is an important
simplification, because the elementary solutions of these equations are readily available. In order to include the
boundary conditions, we use the Fourier transforms with respect to the coordinates parallel with the surface
(in-plane Fourier transforms). The boundary conditions are most conveniently treated by including in the wave
equations the values of the potentials and their derivatives on the surface. The solution is then determined by
solving a systemof algebraic equations.Weavoid using theFourier transforms along the direction perpendicular
to the surface (or Laplace transforms), which are not directly appropriate for a half-space.

The problem is particularly relevant for seismic waves, where the standard approach is the Cagniard–
de Hoop method [11–14]. Indeed, the particularities related to the Lamb problem are highlighted by the
interpretation of the seismic records. The general structure of any seismic record exhibits a preliminary feeble
tremor, consisting of the primary P- and S-waves, followed by a main shock with a long tail [15,16]. It is
agreed that the main shock and its long tail are related to the surface waves, though the S-wave arrivals bring
an important contribution [17]. The surface waves are guided waves, i.e. solutions of the homogeneous elastic
waves equation with an undetermined amplitude, satisfying boundary conditions. More generally, the solution
is often represented as a superposition of incident and reflected plane waves (which satisfy the boundary
conditions), or a series of various other combinations currently made in this context, related to various types of
waves, like head (or “ lateral” ) waves, cylindrical or conical waves, leaking waves, inhomogeneous, damped
waves, etc. [18–31].

The seismic waves suffer multiple reflections on the Earth’s surface (or on the interfaces of the internal
Earth’s layers), such that a stationary regime of oscillations may set in a finite time interval. The relevant
magnitude of this amount of time is of the order R/c, where R is the radius of the Earth and c is the wave
velocity. For R = 6370km and a mean velocity c = 5 km/s of the elastic waves, we get R/c � 1274 s; this
time interval is much longer than the time taken by the seismic waves to propagate from the source to the
Earth’s surface. The effects of the seismic waves on the Earth’s surface are produced in a time much shorter
than the time needed for attaining a stationary regime of vibrations. It follows that, as regards the effect of
the earthquakes, we are interested primarily in the transient regime of the seismic waves, where the boundary
conditions are practically radiation conditions. An “elementary” earthquake is produced by sources localized
both in space and time. In these circumstances, in a first approximation, the solution consists of primary P- and
S-spherical waves generated by temporal and spatial δ-pulses from the seismic source (or derivatives of the
δ-function). For sources with a finite temporal or spatial extension (or for multiple sources), a structure factor
of the focal region is necessary. The interaction of the primary waves with the surface generates additional
wave sources placed on the surface, which give rise to secondary waves; they are responsible for the main
shock and the long tail recorded in seismograms [32].

2 The problem and its general solution

The equation of the elastic waves in an isotropic body reads [33]

ü − c22�u − (
c21 − c22

)
grad div u = f, (1)
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where u is the displacement, c1 = √
(λ + 2μ)/ρ, c2 = √

μ/ρ are the wave velocities, λ, μ are the Lame
elastic moduli, ρ is the density and f is the force (per unit mass). We consider this equation in the half-space
occupying the region z < 0 and bounded by the plane surface z = 0; the force f is placed inside the half-space.

As it is well known, in the absence of the force (f = 0) the homogeneous equation (1) extended to
the whole space exhibits two types of (“free”) waves: longitudinal waves, propagating with velocity c1, and
transverse waves, propagating with velocity c2 [34–36]. In the half-space, the free equation (1) exhibits a
combination of incident and reflected longitudinal and transverse waves which satisfy the boundary conditions.
Similarly, surface waves (Rayleigh waves) [10,33] may propagate along the surface, being damped along the
direction perpendicular to the surface. They are solutions of the homogeneous equation (1), satisfy the boundary
conditions, have a free (undetermined) amplitude and their dependence on the coordinate perpendicular to the
surface is separated from the dependence of the other two combined coordinates and time. A similar character
may be attributed to other waves which propagate at interfaces, like the well-known Love waves, or Stonely
waves [15,18,37,38]. In addition, we shall show below that other particular solutions are present in the
homogeneous and isotropic elastic half-space, represented by plane waves which propagate along directions
parallel with the surface z = 0; we may call them lateral waves, though the term “lateral” used here has a
different meaning than the same term used in the current seismological literature (see, for instance, Ref. [31]).

We consider now the solutions determined by the force f in the inhomogeneous equation (1) for the half-
space with boundary conditions; these solutions are “forced” vibrations. The force p on the surface, with the
components pi is given by σi z |z=0= −pi , where σi j = ρ

[
2c22ui j + (c21 − 2c22)div uδi j

]
is the stress tensor

and ui j is the strain tensor [33]. We use labels i, j, k . . . = 1, 2, 3 for the coordinates x = x1, y = x2, z = x3,
as well as labels α, β, γ . . . = 1, 2 for the coordinates x = x1, y = x2. The boundary conditions read

∂αu3 + ∂3uα |z=0= − pα

ρc22
, 2∂3u3 + c21 − 2c22

c22
div u |z=0= − p3

ρc22
; (2)

in order to simplify the notations, we replace pi by ρc22 pi .
We use the Helmholtz decomposition for the displacement u and the force f , by introducing

u = grad� + curl a, div a = 0,

f = grad ϕ + curl h, div h = 0. (3)

Equation (1) is transformed in two standard wave equations

�̈ − c21�� = ϕ, ä − c22�a = h, (4)

where the potentials ϕ and h are given by �ϕ = div f , �h = −curl f ; we consider these potentials as known
quantities. Since the time is uniform and the in-plane coordinates (x1, x2) are also uniform, it is convenient to
use time and in-plane Fourier transforms of the form

u(r, z, t) = 1

2π

∫
dωe−iωt 1

(2π)2

∫
dku(k, z, ω)eikr, (5)

where r = (x1, x2) is the in-plane position vector. For simplicity, we use the same symbol for the mutual
Fourier transforms, without any risk of confusion; similarly, sometimes we drop the arguments, which can
easily be read from the context. Equation (4) becomes

�′′ + κ2
1� = −ϕ/c21, a′′ + κ2

2a = −h/c22, (6)

where
κ2
1,2 = ω2/c21,2 − k2; (7)

the prime means the derivation with respect to z; we note that κ1,2 may be either real or imaginary, with either
sign. It is our basic assumption that the Fourier transforms ϕ(k, z, ω) and h(k, z, ω) of the potentials ϕ(r, z, t)
and h(r, z, t) exist.

In order to include in a convenient manner the boundary conditions (2), we introduce the surface values of
the functions and their derivatives in equations, i.e. we write

�′′ + κ2
1� = −ϕ/c21 − �1δ(z) − �0δ′(z),

a′′ + κ2
2a = −h/c22 − a1δ(z) − a0δ′(z), (8)
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where �0 = � |z=0, a0 = a |z=0, �1 = d�/dz |z=0 and a1 = da/dz |z=0; integrating these equations along
a perpendicular of infinitesimal length across the surface z = 0, we check immediately the terms �1δ(z),
a1δ(z); multiplying the equations by z and repeating the procedure, we check the terms�0δ′(z), a0δ′(z). More
formally, we can justify the presence of these singular terms by using the generalized functions (distributions)
�θ(−z) and aθ(−z), where θ(z) = 1 for z > 0, θ(z) = 0 for z < 0 is the step function [39]. The parameters
�1, a1 are not independent of parameters �0, a0.

Making use of the Green functionG = eiκ|z|/2iκ of the one-dimensional Helmholtz equationG ′′+κ2G =
δ(z), we can write immediately the solutions of Eq. (8):

� = − 1

2iκ1c21

∫ 0

−∞
dz′ϕ(z′)

[
eiκ1|z−z′| − eiκ1|z+z′|] + �0eiκ1|z|,

a = − 1

2iκ2c22

∫ 0

−∞
dz′h(z′)

[
eiκ2|z−z′| − eiκ2|z+z′|] + a0eiκ2|z|. (9)

We note the occurrence of the “ reflected” (“image”) Green function eiκ1,2|z+z′|/2iκ1,2 in these formulae.
We can check the transversality condition div a = 0 in Eq. (9) (due to div h = 0), which in Fourier transforms
reads ikαaα + a′

3 = 0; we assume ikαa0α + a13 = 0. It is also worth noting in Eq. (9) that κ1,2 may have either
sign. The derivatives on the surface of these functions are given by

�1 = − 1

c21

∫ 0

−∞
dz′ϕ(z′)eiκ1|z′| − iκ1�

0,

a1 = − 1

c22

∫ 0

−∞
dz′h(z′)eiκ2|z′| − iκ2a0. (10)

We write now the boundary conditions given by Eq. (2) by using the Fourier transforms; to this end, we
need the second derivative �(2) = d2�/dz2 |z=0 on the surface, which can be derived immediately from
Eq. (8): �(2) = −κ2

1�0 − ϕ0/c21, where ϕ0 = ϕ |z=0 (a similar notation will be used for h). The boundary
conditions can now be written as

2κ1k1�
0 + 2k1k2a

0
1 + (

κ2
2 + k22 − k21

)
a02 = q1,

2κ1k2�
0 − (

κ2
2 + k21 − k22

)
a01 − 2k1k2a

0
2 = q2,

(
k2 − κ2

2

)
�0 − 2κ2k2a

0
1 + 2κ2k1a

0
2 = q3, (11)

where

q1 = −p1 − h02/c
2
2 + 2ik1

c21

∫ 0

−∞
dz′ϕ(z′)eiκ1|z′|,

q2 = −p2 + h01/c
2
2 + 2ik2

c21

∫ 0

−∞
dz′ϕ(z′)eiκ1|z′|,

q3 = −p3 + ϕ0/c22 + 2i

c22

∫ 0

−∞
dz′

[
k1h2(z

′) − k2h1(z
′)
]
eiκ2|z′|; (12)

in these equations k1,2 are the components of the vector k = (k1, k2). Equation (11) represents a system of
three equations with the unknowns �0, a01 and a02; a

0
3 is eliminated by the transversality condition div a = 0

(ikαaα + a′
3 = 0); from Eq. (10), it is given by

κ2a
0
3 = kαa

0
α + i

c22

∫ 0

−∞
dz′h3(z′)eiκ2|z′|. (13)
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The solution of the system of Eq. (11) is

�0 = 1

�

[−2κ2
(
κ2
2 + k2

)
(k1q1 + k2q2) + (

κ4
2 − k4

)
q3

]
,

a01 = 1

�

{−2k1k2
(
k2 − κ2

2 + 2κ1κ2
)
q1 + [

4κ1κ2k
2
1

− (
k2 − κ2

2

) (
κ2
2 + k22 − k21

)]
q2 + 2κ1k2

(
κ2
2 + k2

)
q3

}
,

a02 = 1

�

{[−4κ1κ2k
2
2 + (

k2 − κ2
2

) (
κ2
2 + k21 − k22

)]
q1

+2k1k2
(
k2 − κ2

2 + 2κ1κ2
)
q2 − 2κ1k1

(
κ2
2 + k2

)
q3

}
, (14)

where

� = − (
κ2
2 + k2

) [(
κ2
2 − k2

)2 + 4κ1κ2k
2
]

= −ω2

c22

[(
κ2
2 − k2

)2 + 4κ1κ2k
2
]
. (15)

Having known the parameters �0 and a0, the potentials � and a given by Eq. (9) and the displacement
u = grad� + curl a are completely determined; it remains to perform the inverse time and spatial Fourier
transforms. This is the formal general solution to our problem.

3 General time dependence

The displacement u computed from the above formulae includes terms of the general form

f (ω,k)F(ω2,k),
f (ω,k)F(ω2,k)

κ1,2
,

f (ω,k)F(ω2,k)

�
,

f (ω,k)F(ω2,k)

κ2�
, (16)

where the functions f come from both the volume force (via ϕ and h) and the surface force and the functions
F arise from the structure of the wave equations. The κ1 in the denominator arises from the potential �, the
κ2 arises from a03 [Eq. (9)], and � originates in the parameters �0, a0 [Eq. (14)].

A force which generates vibrations includes time harmonic oscillations with a general form

f = f1δ(ω − ω0) + f ∗
1 δ(ω + ω0), (17)

for the function f , where ω0 is the frequency of the force. It is easy to see that, by multiplying the functions
in Eq. (16) by e−iωt and integrating over ω, in order to get the time inverse Fourier transform, we get a time
dependence of the form ∼ cosω0t , as expected; harmonic time oscillations of the force generate harmonic
vibrations.

From a technical standpoint, a δ-impulse time dependence of the force is worth considering; in this case, f
in Eq. (16) does not depend on ω. The denominator � in Eq. (16) brought a double pole ω = 0; this pole does
not contribute to the Fourier transform, since the functions F , F/κ2 are even functions of ω. It is convenient
to change κ1,2 → iκ1,2 in Eq. (16); then we can see that � = 0 implies

(
κ2
2 + k2

)2 − 4κ1κ2k
2 = 0, (18)

which is the well-known dispersion relation of the damped surface waves (Rayleigh waves) [33]; the solution
of this equation is ω0 = c2ξk, where ξ (0 < ξ < 1) is the solution of the Rayleigh equation

ξ6 − 8ξ4 + 8
(
3 − 2c22/c

2
1

)
ξ2 − 16

(
1 − c22/c

2
1

) = 0. (19)

Indeed, the Rayleigh waves are eigenmodes of the homogeneous isotropic elastic half-space, and their
dispersion relation is expected to occur in the denominator of the forced vibrations. As it is well known [33],
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the ratio c2/c1 varies from 1/
√
2 to 0, and the root ξ of Eq. (19) varies approximately from 0.87 to 0.95. We

expand the determinant � in powers of ω − ω0 and get

� = −4ω2
0

c32
�0(ξ)k3(ω − ω0) + · · · , (20)

where

�0(ξ) = ξ

⎡

⎣ξ2 − 2 + 4
(
1 − 2c22ξ

2/c21 + c22/c
2
1

)

√
(1 − ξ2)

(
1 − c22ξ

2/c21
)

⎤

⎦ ; (21)

we can see that terms with � in the denominator in Eq. (16) have a pole ω = ω0. The inverse time Fourier
transforms of such terms gives contributions of the form

g(k)e−ic2ξkt + c.c., (22)

where g is a functionof thewavevectork (wenote that there exists another pole atω = −ω0); these contributions
are harmonic oscillations of the form cos c2ξkt , sin c2ξkt , with frequencies depending on k.

The spatial dependence is more difficult to be computed, in general. On effecting integrals of the form

u =
∫

dk f (k, κ)eikreiκ|z|, (23)

which appear in the inverse spatial Fourier transform, we should be aware of the presence of κ in the integrand
f (k, κ), which must obey the symmetry condition f ∗(−k, −κ) = f(k, κ) in order the function u to be real.
It is more convenient to use the formula

u = 1

2

∫
dkeikr

[
f (k, κ)eiκ|z| + f ∗(−k, κ)e−iκ|z|] , (24)

for such integrals, which does not imply the change of the sign of κ .
A typical spatial dependence is provided by the Sommerfeld–Weyl integral [40]

∫
dk

eikr

κ
eiκ|z|, (25)

which, in this context, leads to terms of the form
∫

dk
eikr

iαk
e−αk|z|e−ic2ξkt , (26)

where α =
√
1 − c22ξ

2/c21 for κ = κ1 and α = √
1 − ξ2 for κ = κ2. The analytic continuation of the

Sommerfeld–Weyl integral gives

1√
S
e−iχ/2, S =

[(
r2 + α2z2 − c22ξ

2t2
)2 + 4α2z2c22ξ

2t2
]1/2

,

tan χ = 2αc2ξ |z| t
r2 + α2z2 − c22ξ

2t2
, (27)

for Eq. (26). We can see that in the limit of long times S → ∞ and χ → 0, i.e. forces with a pulse-like time
dependence do not contribute to vibrations, as expected. It is the transient regime, prior to the establishment
of the stationary vibrations regime, which is relevant for time δ-pulses of perturbations. It is worth noting that
a similar conclusion is reached by using the Cagniard–de Hoop method for the Green functions of the Lamb
problem [3,14].

The vanishing of the denominators κ1,2 in Eq. (16) means ω = c1,2k; in this case a z-dependence does not
exist; the contribution of these terms corresponds to lateral waves, i.e. waves which propagate along directions
which are parallel with the surface z = 0. These modes are particular cases of the incident and reflected plane
waves, with dispersion relations ω2 = c21,2(κ

2
1,2 + k2) [already included in the solution, Eqs. (9) and (11)].
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4 A gradient force: harmonic oscillations

The seismic sources are currently associated with the so-called tensorial representation of the forces, given by

fi = mi j (t)∂ jδ(r)δ(z − z0), (28)

where mi j (t) is the seismic moment and the source is placed at r = 0, z = z0, z0 < 0 (see, for instance,
Ref. [31], 2nd edition, p. 60, Exercise 3.6). We consider here a particular case, where the tensor of the seismic
moment reduces to a scalarm(t); it is easy to see that such an expression for the force may mimic an explosion
source (for a time dependence proportional to δ(t)). We consider also a free surface, i.e. we set pi = 0. In this
case, it is easy to see that the force derives from a potential, f = gradϕ, where the Fourier transform of the
potential ϕ is ϕ = mδ(z − z0); the potential h is zero and

qα = 2ikαm

c21
eiκ1|z0|, q3 = 0; (29)

similarly, the boundary parameters a03 and a
0
α are not zero. Making use of Eqs. (9) and (14), we get immediately

� and �0, a0α; it is convenient to limit ourselves to the surface displacement only, given by

u0α = −2mκ2kα

c21�
eiκ1|z0|,

u03 = v03 + w0
3, v03 = −m

c21
eiκ1|z0|,

w0
3 = −2mk2

(
κ2
2 − k2 − 2κ1κ2

)

c21�
eiκ1|z0|, (30)

where
� = (

κ2
2 − k2

)2 + 4κ1κ2k
2. (31)

If the source is a harmonic oscillation with frequency ω0, of the form m = m0 cosω0t (as for an isotropic
source concentrated at an inner point in the half-space), the surface displacement has the same time dependence
u0(k, t) ∼ m0 cosω0t , where ω in Eq. (30) is replaced by ω0. The Fourier transforms of the term v03 can be
computed by means of the Sommerfeld–Weyl integral [40]

i

2π

∫
dk

eikr

κ
eiκ|z| = eiωR/c

R
, (32)

where κ = √
ω2/c2 − k2 and R = √

r2 + z2; we get

v03(r, t) = − m0

πc21

∂

∂ |z0|
sinω0R0/c1

R0
cosω0t, (33)

where R0 =
√
r2 + z20; we recognize in Eq. (33) a spherical-wave vibration.

In order to estimate the spatial dependence of u0α and w0
3, we note that we are often interested in distances

much longer than the wavelengths c1,2/ω0, such that we may assume k < kc 	 ω0/c1,2 in Eq. (30), where kc
is a cutoff wavevector. Within this approximation, we get

u0α(r, t) � − 4m0c32
(2π)2c21ω

3
0

∂α

∫
dkeikr sin

ω0

c1
|z0| cosω0t; (34)

the integration over a finite range of k in Eq. (34) leads to a function localized over a range of the order
(�r)2 � 1/k2c (if we extend the integration to infinity, we get the function δ(r)).

Within the same short-wavelength approximation, the term w0
3 in Eq. (30) is

w0
3(r, t) � −m0c22(c1 − 2c2)

4πc31ω
2
0

k4c cos
ω0

c1
|z0| cosω0t. (35)
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We can see that for large distances the main contribution to the displacement is

v03(r, t) � −m0ω0

πc31

|z0|
R2
0

cos
ω0R0

c1
cosω0t, (36)

arising from Eq. (33).
In all the cases presented above, the spatial dependence is separated from the harmonic time dependence,

as expected for typical vibrations.

5 A gradient force: δ-pulse time dependence

If the time dependence of the seismic moment is of the form m(t) = m0δ(t), the inverse Fourier transform of
the term v03 given by Eq. (30) can be calculated by using the integral in Eq. (32); it leads to

v03(r, t) = m0

2πc21

∂

∂ |z0|
δ(t − R0/c1)

R0
, (37)

which is the derivative of a propagating spherical wave; since the support of this function is zero, its contribution
to the boundary conditions is zero.

For u0α and w0
3 in Eq. (30), the poles associated with the surface waves are active. With κ1,2 → iκ1,2, the

denominator � in Eq. (30) has poles at ω = ±ω0, where ω0 = c2ξk is the frequency of the Rayleigh surface
waves. The expansion in powers of ω ± ω0 gives

(
κ2
2 + k2

)2 − 4κ1κ2k
2 = ±4

�0(ξ)

c2
k3(ω ∓ ω0) + . . . , (38)

where �0(ξ) is given by Eq. (21); taking the inverse time Fourier transforms in Eq. (30), we get

uα(k, t) = m0c2
√
1 − ξ2

c21�0(ξ)

kα

k2
e−αk|z0| sin c2ξkt,

w0
3(k, t) =

m0c2
(
2 − ξ2 − 2α

√
1 − ξ2

)

c21�0(ξ)

1

k
e−αk|z0| sin c2ξkt, (39)

whereα =
√
1 − c22ξ

2/c21 in the exponent and the prefactors (not to bemistaken for the label of the displacement

component). The inverse spatial Fourier transform of w0
3(k, t) in Eq. (39) implies integrals given in Eq. (26);

we get w0
3(r, t) ∼ 1√

S
sin χ/2, where S and χ are given in Eq. (27) with z replaced by z0; in the limit of large

t the function w0
3(r, t) vanishes.

The inverse spatial Fourier transform of u0α(k, t) given in Eq. (39) can be effected by using the identities

Jα = 1

2π

∫
dk

eikr

k2
kαe

−k|z| = −i∂α J, J = 1

2π

∫
dk

eikr

k2
e−k|z|, (40)

and
∂ J

∂ |z| = − 1

2π

∫
dk

eikr

k
e−k|z| = − 1

R
, (41)

where R = √
r2 + z2; we get

J = − ln (|z| + R) , Jα = i xα

R(|z| + R)
; (42)

making use of R = √
r2 + (α |z0| ∓ ic2ξ t) 2 and replacing |z| by

√
α2z20 + c22ξ

2t2 in Eq. (42), we can see that

u0α(r, t) → 0 for t → ∞, as expected. It is worth noting that in this formulation of the problem the surface
displacement given by u0α(r, t) and w0

3(r, t) is different from zero immediately after the initial moment t = 0,
when the δ(t)-perturbation occurs at the point r = 0, z = z0, z0 < 0 (as expected for a vibrations approach);
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O r

u

ct

Fig. 1 Qualitative behaviour of the surface displacement u = w0
3, u

0
r versus surface distance r for a scalar-moment force and a

free surface [Eq. (43)], displaying the discontinuity at r = ct

this is not so for the spherical wave v03(r, t); hence, we can see that applying the vibrations approach to δ-like
point forces concentrated both in time and space is not an adequate formulation of the problem.

In order to get an insight into the nature of the solution obtained above, we may use the notation c2ξ = c
and the approximation c � c1 (α � 0). The displacement given by Eq. (39) can be represented approximately
as

w0
3 ∼ sgn(r−ct)

|r2−c2t2|1/2 , u0r ∼ r ·sgn(r−ct)
|r2−c2t2|1/2[ct+|r2−c2t2|1/2] , (43)

where u0r is the radial component of the surface displacement. These functions are represented qualitatively
in Fig. 1, where we can see the sudden variation at r � ct , specific of a source localized both in space and
time (∼ δ(r)δ(t)), as well as the vanishing of the solution for long times. The singularity at r = ct arises
from the approximation α −→ 0. A similar behaviour is exhibited by the component v03 [Eq. (37)]. Algebraic
discontinuities as those shown by Eq. (43) have also been obtained by applying the Huygens principle to
secondary waves generated by the surface of a half-space [32].

6 Force on the surface

Let us assume that the volume force is zero (f = 0, ϕ = 0, h = 0) and only the component p3 = p(t)δ(r) of a
surface force localized at r = 0 on the surface z = 0 is non-vanishing. Making use of Eqs. (9), (12) and (14),
we get immediately the components of the displacement

uα(k, ω) = ikα p

�

[(
κ2
2 − k2

)
eiκ1|z| + 2κ1κ2e

iκ2|z|
]
,

u3(k, ω) = − iκ1 p

�

[(
κ2
2 − k2

)
eiκ1|z| − k2eiκ2|z|

]
. (44)

For a harmonic force p(t) = p0 cosω0t , within the short-wavelength approximation described above, we
get

uα(r, z, t) = c22(c1 + 2c2)

(2π)2c1ω2
0

p0∂α

∫
dkeikr

(
cos

ω0

c1
z + cos

ω0

c2
z

)
cosω0t,

u3(r, z, t) = c22 p0
2π2c1ω0

[∫
dkeikr sin

ω0

c1
|z| − 2c22

ω2
0

∫
dkk2eikr sin

ω0

c2
|z|

]

cosω0t, (45)

where the integration is performedover a finite range 0 < k < kc 	 ω0/c1,2. For a time impulse p(t) = p0δ(t),
the contribution to the inverse time Fourier transform comes from the poles of �; in this case, we reach the
same conclusion as above, viz. in the limit t → ∞ the displacement is vanishing.
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7 Static limit

It is worth noting that we are not allowed to take the static limit ω → 0 in the formulation given here for
the Lamb problem, as expected. Indeed, both volume and surface static forces determine a deformation of the
surface z = 0, such that the boundary conditions should be imposed on the deformed surface; it follows that the
boundary conditions imposed here on the surface z = 0 become inadequate in this case. This can also be seen
from the boundary-conditions system of Eq. (11), whose solutions given by Eq. (14) become meaningless in
the static limit, since they include terms like δ(ω)/ω2, or ω2δ(ω)/ω2, arising from � ∼ ω2, κ2

2 + k2 = ω2/c22
and time Fourier transforms of static forces, which are proportional to δ(ω).We note that long-wavelength
asymptotics for soliton-like Lamb and Love waves have been obtained in anisotropic multi-layered media
[41–43].

The static limit exhibits a special problem. We can start, in the present formulation, with Eq. (8) for
potentials and Eq. (11) for the boundary conditions in the static limit, i.e. for ω = 0. Then, we see immediately
that the boundary-conditions system of Eq. (11) is incompatible (its determinant is vanishing). This is due to
the condition div a = 0 which is too restrictive in this case. This particularity of the static limit is related to the
fact that the contributions associated with � and grad div in the equation of static equilibrium are entangled
in the static limit. If we give up this condition, then the boundary-conditions system of Eq. (11) is compatible,
and we may set a03 = 0, for instance (or any other convenient relationship between the four unknowns �0

and a0). Such special features of the static limit can be seen in the well-known Grodskii–Neuber–Papkovitch
approach [44–46] (see also Ref. [47]).

8 Concluding remarks

The problem of elastic vibrations in a homogeneous and isotropic half-space, known usually as part of the Lamb
problem in Seismology, is formulated here in terms of the Helmholtz potentials of the elastic displacement.
The formulation is based on time Fourier transforms, spatial Fourier transforms with respect to the coordinates
parallel to the surface of the half-space and wave equations for generalized functions (distributions), which
include the surface values of the functions and their derivatives. This formulation allows a formal general
solution for the vibrations in the homogeneous and isotropic half-space. Explicit results are given for forced
vibrations generated in the half-space by forces derived from a spatial gradient and concentrated at an inner
point in the half-space; these forces correspond to a scalar seismic moment of the seismic sources. Similarly,
explicit results are given for forces concentrated at a point on the surface of the half-space. Both harmonic
oscillations and δ-like time pulses are considered for these forces. It is shown that time pulses of the δ-
type generate transient perturbations which are vanishing in time; consequently, such perturbations cannot be
properly regarded as vibrations, as expected. For harmonic oscillations, the vibrations of the half-space are
driven by forces, while for a δ-like time dependence of the forces the results are governed by surface (Rayleigh)
and lateral eigenmodes. It is emphasized that the vibrations formulation of the problem is meaningful only for
long times, such that the waves have sufficient time to reach the surface and establish the stationary vibrations
regime.

It is well known that forces concentrated both in time and space (like δ-functions, or derivatives of δ-
functions) generate elastic spherical waves; the boundary conditions are irrelevant for such propagating waves,
due to their vanishing support. Their interaction with the surface generates additional wave sources, which
produce secondary waves; the boundary conditions are included in constructing the secondary-waves sources
[32]. It is this transient regime of propagating waves which is relevant in the “elementary” earthquakes, i.e.
earthquakes which are produced by forces concentrated both in space and time. The original spherical waves
are the primary waves associated with the “ preliminary feeble tremor” [15,16]; the secondary waves generate
the main shock and the long tail, documented by the seismic records. The surface waves, or the lateral waves,
as eigenmodes, have no direct bearing on the vibrations, other than contributing through their dispersion
relations to the perturbations produced by time δ-pulses. As regards the propagating regime of these transient
perturbations, all the eigenmodes of the homogeneous and isotropic elastic half-space have no relevance.
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