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a b s t r a c t

A new method is introduced for estimating the effects of the inhomogeneities on the propagation of the
elastic waves in isotropic bodies. The method is based on the Kirchhoff electromagnetic potentials. It
is applied here for estimating the effect of a static density inhomogeneity, either extended or localized,
on the elastic waves propagating in an infinite, or a semi-infinite (half-space) body. For a semi-infinite
body the method leads to coupled integral equations, which are solved. It is shown that such a density
inhomogeneity may renormalize the waves velocity, or may even produce dispersive waves, depending
on the geometry of the body and the spatial extension of the inhomogeneity. The method can be extended
to other types of geometries or inhomogeneities, as, for instance, those occurring in the elastic constants.

© 2010 Elsevier Ltd. All rights reserved.

The effect of the inhomogeneities on the propagation of the
elastic waves in structures with special, restricted geometries has
always enjoyed a great deal of interest (Baker and Copson, 1950;
Ewing et al., 1957; Henneke, 1972; Achenbach, 1973; Richards and
Frasier, 1976; Amstrong, 1980; Rokhlin et al., 1986; Wu, 1989;
Mandal, 1991; Jackson and Ivakin, 1998; Cai et al., 2000; Rathore et
al., 2003). Apart from its practical importance in engineering, the
problem is particularly relevant for the effect the seismic waves
may have on the Earth’s surface (Bullen, 1976; Aki and Richards,
1980; Ben-Menahem and Singh, 1981; Albuquerque and Mauriz,
2003; van Manen et al., 2005; Sepehrinia et al., 2008). The propaga-
tion of elastic waves in bodies with finite, special geometries, like,
for instance, a semi-infinite space, poses certain technical prob-
lems. We present herein a new method of dealing with elastic
waves in isotropic media, borrowed from electromagnetism. The
method is based on Kirchhoff retarded potentials for the wave
equation. In the present paper we analyze the change produced
in the eigenfrequencies of the elastic modes by static density inho-
mogeneities of a certain spatial extent, distributed in an infinite, or
a semi-infinite (half-space) isotropic body.

As it is well known (Landau and Lifshitz, 2005), the propagation
of the elastic waves in an isotropic body is governed by the equation
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of motion

�ü = ��u + (� + �)grad · divu, (1)

where � is the body density, u is the field displacement and � and
� are the Lame coefficients. We leave aside the external forces and
write this equation in the form

1

v2
t

ü − �u = q · grad · divu, (2)

where vt =
√

�/� is the velocity of the transverse waves, q =
v2

l
/v2

t − 1 and vl =
√

(� + 2�)/� is the velocity of the longitudinal
waves. As it is well-known, for reasons of stability, the inequality
q > 1/3 (actually q > 1 for real bodies) holds. A particular solution
of Eq. (2) is given by the well-known Kirchhoff potential (Born and
Wolf, 1959, Chapter II, p. 73)

u(R, t) = q

4�

∫
dR′ grad · divu(R′, t − |R − R′|/vt)

|R − R′| . (3)

Indeed, making use of Fourier transforms and using also the well-
known integral∫

dR
eiKR+iωR/vt

R
= − 4�v2

t

ω2 − v2
t K2

, (4)
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we get the eigenvalue equation

(−�ω2 + �K2)ū = −(� + �)(Kū)K, (5)

where ω denotes the frequency, K is the wavevector and ū(K, ω) is
the Fourier transform of u(R, t). One can check immediately that Eq.
(5) gives the well-known transverse and longitudinal elastic waves
propagating in an infinite isotropic body.

For a semi-infinite body extending over the region z > 0, with a
free surface in the (x, y)-plane z = 0, we use

u → u�(z) = (v, u3)�(z) (6)

for the displacement field, where �(z) = 1 for z > 0, �(z) = 0 for z <
0 is the step function, v is the (x, y) in-plane component and u3 is the
normal-to-surface component of the displacement (directed along
the z-coordinate). We note that we employ in fact distributions (in
the sense of generalized functions) like �(z) or ı(z), etc., instead of
usual functions. For the function u in u�(z) (defined over the entire
space) we use Fourier transforms of the type

u(r, z; t) =
∑

k

∫
dωũ(kω; z)eikre−iωt, (7)

where R = (r, z) and ũ(kω; z) is the (partial) Fourier transform of
u(r, z; t) with respect to r and t. The divergence occurring in Eq. (3)
can then be written as

divu =
(

divv + ∂u3

∂z

)
�(z) + u3(0)ı(z), (8)

where we can see the occurrence of the surface term u3(0) = u3(z =
0). The gradient can be computed similarly, by using the Fourier
transform given by Eq. (7).

We assume a certain region in the body, whose shape and exten-
sion is described by a function g(r, z), where the density of the body
is modified according to

� → � + �g(r, z). (9)

We employ Eq. (9) for describing an inhomogeneity in the body. It
is easy to see that this change in density introduces a new source
term in Eq. (2), which can be written as

− 1

v2
t

g(r, z)ü(r, z; t) =
∑

k

∫
dω

ω2

v2
t

h̃(kω; z)eikre−iωt, (10)

where

h̃(kω; z) =
∑

k1

g̃(k − k1, z)ũ(k1ω; z). (11)

Consequently, Eq. (3) becomes

u(R, t) = q

4�

∫
dR′ grad · divu(R′, t − |R − R′|/vt)

|R − R′|

− 1

4�v2
t

∫
dR′ g(r′, z′)ü(R′, t − |R − R′|/vt)

|R − R′| . (12)

Making use of the representations given above, and after per-
forming conveniently a few integrations by parts, Eq. (12) can be
simplified appreciably. The intervening integrals can be performed
straightforwardly. They reduce to the known integral (Gradshteyn
and Ryzhik, 2000)∫ ∞

|z|
dxJ0(k

√
x2 − z2)eiωx/vt = i


0
ei
0|z|, (13)

where J0 is the Bessel function of the first kind and zeroth order and


0 =
√

ω2

v2
t

− k2. (14)

We get the system of coupled integral equations

ṽ(kω; z) = − iqk
2
0

∫
0

dz′kṽ(kω; z′)ei
0|z−z′ |

− qk
2
0

∂

∂z

∫
0

dz′ũ3(kω; z′)ei
0|z−z′ |

+ iω2

2v2
t 
0

∫
0

dz′h̃‖(kω; z′)ei
0|z−z′ | (15)

and

ũ3(kω; z) = − q

2
0

∂

∂z

∫
0

dz′kṽ(kω; z′)ei
|z−z′ |

+ iq

2
0

∂2

∂z2

∫
0

dz′ũ3(kω; z′)ei
|z−z′ |

+ iω2

2v2
t 
0

∫
0

dz′h̃3(kω; z′)ei
0|z−z′ |, (16)

where h̃‖ is the in-plane component of the vector h̃ defined by Eq.
(11) and h̃3 is its component along the z-direction. The details for
deriving these equations are given in Appendix A.

It is convenient to introduce the notations ṽ1 = kṽ/k, ṽ2 =
k⊥ṽ/k, and similar ones for the vector h̃, where k⊥ is a vector per-
pendicular to k, kk⊥ = 0, and of the same magnitude k. Under these
conditions Eq. (15) for ṽ2 reduces to

ṽ2(kω; z) = iω2

2v2
t 
0

∫
0

dz′h̃2(kω; z′)ei
0|z−z′ |. (17)

This equation corresponds to the transverse wave polarized
perpendicular to the plane of propagation (it is known in elec-
tromagnetism as the s-wave, from the German “senkrecht” which
means “perpendicular”). Taking the second derivative with respect
to z in this equation we get

∂2ṽ2

∂z2
= −
2

0 ṽ2 − ω2

v2
t

h̃2. (18)

Here, it is worth noting the non-invertibility of the (second) deriva-
tive and the integral in Eq. (17), as a result of the discontinuity in the
derivative of the function ei
0|z−z′ | for z = z′. In Eq. (18) we perform
a Fourier transform with respect to the coordinate z. Introducing
the wavevectors K = (k, 
) and K1 = (k, 
1) and making use of Eq.,
(14), Eq. (18) becomes(

ω2

v2
t

− K2

)
v̄2(Kω) = −ω2

v2
t

∑
K1

ḡ(K − K1)v̄2(K1ω). (19)

We assume first that function g(R) is a constant, g(R) = g. Then,
ḡ(K) = gıK,0 and Eq. (19) gives the frequency

ω = vt√
1 + g

K, (20)

an expected result, which shows that the wave velocity is renor-
malized as a consequence of the change in density, as described by
the parameter g. Second, we assume that the function g(R) is local-
ized at some position R0 in the body over a small spatial range of
linear extension a. Then, its Fourier transform can be taken almost
constant, ḡ(K)� ga3/V , over a range ∼1/a, where V is the volume
of the Fourier integration and g = g(R0). Under these conditions we
get from Eq. (19) the dispersion relation

1 = −ω2ga3

v2
t V

∑
K

1

ω2/v2
t − K2

. (21)
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For small values of g the solutions of this equation are given by

ω2/v2
t = K2 − gω2

6�2v2
t

= K2 − g

6�2
K2 + · · · , (22)

whence, in the first approximation, we get another renormalization
of the wave velocity

vt → vt

(
1 − g

12�2

)
. (23)

More specifically, we may take for the localized function
g(R) a Gaussian normal distribution of the form g(R) =
g exp(−|R − R0|/2a2), centered at R0 and of standard devia-
tion a. As it is well known, its Fourier transform is ḡ(K) =
(g/V)(2�a2)

3/2
exp(−iKR0) exp(−K2a2/2), which is, essentially,

another Gaussian distribution, centered at K = 0 and of standard
deviation 1/a. In this case, the correction term (g/6�2)K2 in Eq. (22)
acquires an additional factor (2�)3/2. However, we emphasize here
that all these numerical results are only qualitative estimations.

We note that the renormalization given by Eq. (23) does not
depend on the spatial extension of the function g(R). We also note
that these results are the same for an infinite body. For a general
function g(R) we may obtain a renormalization of the velocity com-
prised between the two limiting cases given above by Eqs. (20) and
(23). As one can see, there is a qualitative resemblance between
these two results (for instance, Eq. (20) can also be written as
vt → vt(1 − g/2)). But we must keep in mind that all these are only
approximate, qualitative estimations. The exact solution would
imply solving the integral equation (19) (a homogeneous Fredholm
equation of the second kind), which, for a general kernel ḡ(K − K1),
is a difficult problem. Generally speaking, it implies finding out the
eigenfunctions and eigenvalues of the kernel. Under certain con-
ditions, we may try an iterative technique, which may offer an
insight into the qualitative behaviour of the solution: the dispersion
relation ω(K) will exhibit both dispersion and anisotropy, and the
waves will get anisotropic, dispersive group velocities. They may,
more appropriately, be then viewed as dispersive, anisotropic wave
packets.

It is also interesting the case where the localized inhomo-
geneities are randomly distributed in the whole body, i.e. the
function g(R) is given by

g(R) =
N∑

i=1

gi(R − R0i), (24)

where gi(R − R0i) is a function of strength gi localized over the
volume a3

i
centered at R0i and N denotes the number of these inho-

mogeneities. The Fourier transform is given then approximately
by gi(K) � gia

3
i
/V , which extends over a volume ∼1/a3

i
. Repeating

the above calculations for Eq. (19) we get a renormalization of the
velocity given by

vt → vt

(
1 − 1

12�2

∑
i

gi

)
= vt

(
1 − Nḡ

12�2

)
, (25)

where ḡ is the mean strength, as expected. If the inhomogeneities
are distributed in a regular, periodic array, then the problem
becomes more complicated, because the Fourier transforms will
then be peaked at all the reciprocal vectors of the array. The integral
equation (19) is then replaced by another integral equation, imply-
ing summation over all the reciprocal vectors, but with similar
(common) kernels in all the terms of the summation. The quali-
tative behaviour of the solutions of such equations are known from
the theory of energy bands in solids (or the propagation of light in
periodic media (Brillouin and Parodi, 1956)): due to the multiple
reflections, the waves may form stationary waves and the frequen-

cies ω will be distributed in bands, separated by frequency gaps.
However, such subjects will take the present discussion too far.

We can also consider a layer of thickness a, i.e. take g(R) =
g(z − z0), where g(z − z0) is a function localized over the thickness
a around z0. Its Fourier transform is ḡ(k, 
) � (ga/L)ık,0, where L
is the length of the Fourier integration along the z-direction and
ḡ(k, 
) extends over a range ∼1/a as a function of 
. We note that
function g(R) = g(z − z0) does not depend on r. Of course, the defi-
nition of such a (full) Fourier transform is

u(r, z; t) = u(R, t) =
∑

k


∫
dωū(k, 
, ω)eikrei
z

=
∑

K

∫
dωū(K, ω)eiKR, (26)

(compare with Eq. (7)), where the summations (integrations) over
k, 
 and ω extend over the entire space. The velocity is then renor-
malized according to

vt → vt

(
1 − g

4�

)
. (27)

We turn now to Eq. (15) written for ṽ1 and Eq. (16) for ũ3. We leave
aside arguments k, ω for simplicity, and preserve explicitly only
the argument z. It is easy to see that these two equations imply

ũ3(z) = − i

k

∂ṽ1

∂z
− ω2

2v2
t 
0k

∂H̃1

∂z
+ iω2

2v2
t 
0

H̃3(z), (28)

where

H̃1,3(z) =
∫

0

dz′h̃1,3(z′)ei
0|z−z′ |. (29)

We introduce ũ3(z) as given by Eq. (28) in Eq. (15) for ṽ1(z) and take
the second derivative in the resulting equation. We get

∂2ṽ1

∂z2
+ 


′2
0 ṽ1 = iω2

2v2
t 
0

(
∂2H̃1

∂z2
+ 
2

0v2
t

v2
l

H̃1

)
+ qkω2

2v2
l

0

∂H̃3

∂z
, (30)

where


′
0 =
√

ω2

v2
l

− k2. (31)

We introduce Fourier transforms with respect to the z-coordinate
both in Eqs. (28) and (30). The Fourier transforms of the functions
H̃1,3(z) are

H̄1,3(
) = − 2i
0


2 − 
2
0

h̄1,3(
) (32)

for 
 /= 
0. Restoring the arguments, h̄1(
) is written, by Eq. (11), as

h̄1(K) =
∑
K1

ḡ(K − K1)v̄1(K1); (33)

a similar expression holds for h̄3. Doing so, we get two coupled
equations

ū3(K) − 


k
v̄1(K) + ω2

ω2 − v2
t K2

∑
K1

ḡ(K − K1)
[

ū3(K1) − 


k
v̄1(K1)

]
= 0 (34)

and
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(ω2 − v2
t K2)(ω2 − v2

l K2)v̄1(K)

+ ω2(ω2 − v2
l 
2 − v2

t k2)
∑
K1

ḡ(K − K1)v̄1(K1)

+ qv2
t 
kω2

∑
K1

ḡ(K − K1)ū3(K1) = 0. (35)

In analyzing these equations we proceed as before. For a constant
function g(R) = g, whose Fourier transform is ḡ(K) = gıK,0, Eqs. (34)
and (35) give two types of waves. For the longitudinal wave, ū3 =

v̄1/k, Eq. (34) is satisfied identically, while from Eq. (35) we get a
renormalization of the velocity vl which is the same as that given
above by Eq. (20). For the transverse wave ū3 = −kv̄1/
 (p-wave,
whose polarization lies in the plane of propagation) we get from
Eqs. (34) and (35) the same renormalization of the velocity vt as
that given by Eq. (20).

We assume now a function g(R) localized at some position R0
within the body and extending over a range ∼a. Its Fourier trans-
form can be taken as ḡ(K) � ga3/V for K extending over a range
∼1/a and g = g(R0). It is easy to see that, according to Eqs. (34)
and (35), the velocity vt is not renormalized in the first order of the
(small) parameter g, but the velocity vl acquires a renormalization
given by

vl → vl

(
1 − g

36�2

)
. (36)

Similarly, for a layer of thickness a the velocity vt is not renormal-
ized in the first order of the parameter g but the frequency of the
longitudinal waves becomes

ω = vlK
(

1 − gak

4

)
; (37)

we can see that the longitudinal waves become dispersive in this
case.

For comparison we give here the results for a density inhomo-
geneity in an infinite elastic body. By using Fourier transforms, Eq.
(12) leads to

ū(Kω) = qv2
t

ω2 − v2
t K2

(Kū)K − ω2

ω2 − v2
t K2

h̄(Kω), (38)

where

h̄(Kω) =
∑
K1

ḡ(K − K1)ū(K1ω) (39)

and we have used the integral given by Eq. (4). Eq. (38) reduces to

ū1,2(Kω) + ω2

ω2 − v2
l,t

K2

∑
K1

ḡ(K − K1)ū1,2(K1ω) = 0 (40)

for the longitudinal waves ū1 = ūK/K (velocity vl) and, respectively,
transverse waves ū2 = ūK⊥/K (velocity vt), where K⊥ is a vector
perpendicular to the wavevector K, KK⊥ = 0, and of the same mag-
nitude K . Both Eqs. (40) lead to a dispersion equation of the same
form as the one corresponding to the s-wave (Eq. (19)). For an
extended inhomogeneity both vt,l are renormalized according to
Eq. (20), for a localized inhomogeneity both velocities are renor-
malized according to Eq. (23). This is different than the semi-infinite
body (compare with Eq. (36)).

In conclusion we may say that we have introduced herein a new
method, based on the Kirchhoff electromagnetic potentials, to esti-
mate the effects of density inhomogeneities on the propagation of
the elastic waves in isotropic bodies. We have applied this method
both to an infinite body and a semi-infinite (half-space) body. For
an infinite body a density inhomogeneity renormalizes the velocity
of the transverse and longitudinal waves. We have estimated this

effect both for an extended and a localized inhomogeneity, or for
a layer, assuming that the strength of the inhomogeneity is small
(parameter g). For a semi-infinite body the present method leads to
coupled integral equations which we have solved. The transverse
s-wave is affected in the same manner as in an infinite body, and
this holds also for all the waves for an extended inhomogeneity,
as expected. For a localized inhomogeneity the transverse p-wave
is affected in the second-order of the parameter g, while the lon-
gitudinal wave undergoes a renormalization of velocity (different
than in an infinite body). In addition, for a layer inhomogeneity, the
longitudinal waves become dispersive.

The method presented here can be extended to other types of
inhomogeneities, as, for instance, those produced in the elastic
properties of the body (the Lame coefficients). This problem is left
for a forthcoming investigation.
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Appendix A. The derivation of the Eqs. (15) and (16)

Let us denote by

F(r, z; t) = − 1

4�v2
t

∫
dR′ g(r′, z′)ü(R′, t − |R − R′|/vt)

|R − R′| (41)

the second term in the rhs of Eq. (12), where R = (r, z) and R′ =
(r′, z′). We note that the integration here extends over the whole
space (according to the definition of the Kirchhoff potentials). First,
we replace u by u�(z), which will restrict the integration with
respect to z′ to 0 < z′ < ∞. Second, we perform the Fourier trans-
form with respect to the time, according to Eq. (7), which will bring
a factor −ω2. Then, we introduce the spatial Fourier transforms
(according to the same Eq. (7)) and get

F̃(r, z; ω) = ω2

4�v2
t

∑
k1k2

∫ ∞

0

dz′
∫

dr′ g̃(k2, z′)ũ(k1ω; z′)√
(r − r′)2 + (z − z′)2

× ei(ω/vt )
√

(r−r′)2+(z−z′)2
ei(k1+k2)r′

. (42)

In this equation we introduce the new variable r1 = r′ − r and put
k1 + k2 = k. We get immediately the Fourier transform

F̃(kω; z) = ω2

4�v2
t

∑
k1

∫ ∞

0

dz′
∫

dr1
g̃(k − k1, z′)ũ(k1ω; z′)√

r2
1 + (z − z′)2

× e
i(ω/vt )

√
r2
1
+(z−z′)2

eikr1 . (43)

Now, by successive integrations, we have∫
dr1

e
i(ω/vt )

√
r2
1
+z2√

r2
1 + z2

eikr1 = 2�

∫ ∞

0

dr1r1
e

i(ω/vt )
√

r2
1
+z2√

r2
1 + z2

J0(kr1)

= 2�

∫ ∞

|z|
dxJ0(k

√
x2 − z2)ei(ω/vt )x

= 2�i


0
ei
0|z|, (44)
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according to Eq. (13), where 
0 =
√

ω2/v2
t − k2 (Eq. (14)). In Eq. (44)

J0 is the Bessel function of the first kind and zeroth order and we
made the change of variable r2

1 + z2 = x2. This result will be used in
all the subsequent calculations. We may replace now the integral
with respect to r1 in Eq. (43) by this result and get

F̃(kω; z) = iω2

2v2
t 
0

∑
k1

∫ ∞

0

dz′g̃(k − k1, z′)ũ(k1ω; z′)ei
0|z−z′ |, (45)

or

F̃(kω; z) = iω2

2v2
t 
0

∫ ∞

0

dz′h̃(kω; z′)ei
0|z−z′ |, (46)

according to definition (11). We can already recognize the last term
in the rhs of Eqs. (15) and (16).

Now, we pass to the first term in the rhs of Eq. (12). First, we
replace here u by u�(z). Second, we note that this term is computed
for u(R′, t′), where the time t′ is then replaced by the retarded time
t − |R − R′|/vt (according to the definition of the retarded Kirch-
hoff potentials). Making use of Eqs. (6) and (8), and introducing the
Fourier transform with respect to r, we get

divu =
∑

k

[(
ikv + ∂u3

∂z

)
�(z) + u3(0)ı(z)

]
eikr (47)

and

(grad · divu)‖ =
∑

k

[
ik

(
ikv + ∂u3

∂z

)
�(z) + iKu3(0)ı(z)

]
eikr (48)

for the in-plane component of the gradient and

(grad · divu)3 =
∑

k

[(
ik

∂v
∂z

+∂2u3

∂z2

)
�(z)+

(
ikv + ∂u3

∂z

)
ı(z)

]
eikr

+
∑

k

u3(0)ı′(z)eikr (49)

for its component normal to the surface. The symbol ı′(z) denotes
here the derivative of the ı-function with respect to the coordinate
z. Making the Fourier transform with respect to the time, the con-
tribution of the in-plane component of the gradient (Eq. (48)) to Eq.
(12) becomes

q

4�

∑
k

∫ ∞

0

dz′
∫

dr′
ik
(

ikv+ ∂u3
∂z′

)
√

(r − r′)2+(z − z′)2
ei(ω/vt )

√
(r−r′)2+(z−z′)2

eikr′

+ q

4�

∑
k

∫
dr′ iku3(0)√

(r − r′)2 + z2
ei(ω/vt )

√
(r−r′)2+z2

eikr′
. (50)

Here, we introduce again the variable r1 = r′ − r and use the result
given by Eq. (44). Now, we can write the Fourier transform of v as
given by Eq. (12) (including the contribution given by Eq. (46)) as

ṽ(kω; z) = − iqk
2
0

∫ ∞

0

dz′kṽei
0|z−z′ | − qk
2
0

∫ ∞

0

dz′ ∂ũ3

∂z′ ei
0|z−z′ |

− qk
2
0

ũ3(0)ei
0z + F̃‖(kω; z). (51)

In the second integral in this equation we make an integration by

parts and pass from ∂/∂z′ to −∂/∂z in the derivatives of function
ei
0|z−z′ |. We get immediately the Eq. (15) given in the main text.

The gradient component normal to the surface (Eq. (49)) is
treated in the same way. We introduce the Fourier transform with
respect to the time, then use Eq. (44) for the integration over r′

and get the partial Fourier transform of the u3. Thereafter, we per-
form an integration by parts in the first bracket in Eq. (49) which
cancels out the contribution of the second bracket in this equation.
Finally, we make another integration by parts for the term contain-
ing ∂ũ3/∂z′ which cancels out the contribution of the ı′-term. We
give here the contribution of this ı′-term, which is perhaps a bit
more difficult to compute. We have successively∫ +∞

−∞
dz′ı′(z′)ei
0|z−z′ | = −

∫ +∞

−∞
dz′ı(z′)

∂

∂z′ ei
0|z−z′ |

= ∂

∂z

∫ +∞

−∞
dz′ı(z′)ei
0|z−z′ | = i
0ei
0z. (52)

This completes the proof of the derivation of the Eqs. (15) and (16)
given in the main text.
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