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Abstra
t

Stru
tures and binding energies for bimetalli
 
lusters 
onsisting of a large variety of atomi
 spe
ies are

obtained for all atomi
 sizes N ≤ 40 and all 
on
entrations, using an interatomi
 potential derived within

a quasi-
lassi
al des
ription. We �nd that in
reasing the di�eren
e between the two types of atoms leads

to a gradual disappearan
e of the well-known homo-atomi
 geometri
 magi
 numbers and the appearan
e

of magi
 pairs 
orresponding to the number of atoms of ea
h atomi
 spe
ies in binary nanostru
tures with

higher stability. This 
hange is a

ompanied by stru
tural transitions and ground-state↔isomer inversions,

indu
ed by 
hanges in 
omposition or 
on
entration. We �nd a 
lear tenden
y towards phase separation,

the 
ore-shell radial segregation being predominant (energeti
ally favored) in this model.
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1 Introdu
tion

Experimental and theoreti
al results show that alloying atomi
 
lusters 
an lead to new nano-materials with

new properties and new fun
tionalities.[1℄ Therefore, there is a need of detailed studies of su
h binary 
lusters,


overing a wide range of atomi
 spe
ies. Sin
e the 
omputational e�ort limits the use of the ab-initio meth-

ods to sele
ted 
ompounds, guessed stru
tures or imposed symmetries, so far su
h extensive studies have been

performed using semi-empiri
al potentials, usually Lennard-Jones potentials (see for example Ref.[2℄). Unfortu-

nately, these potentials apply primary to rare-gas 
ompounds, and it is known that bimetalli
 nanostru
tures,

with their magneti
, opti
 or 
atalyti
 properties, are better 
andidates for new te
hnologi
al fun
tionalities.

Studies using semi-empiri
al potentials spe
i�
 to metals, like se
ond-moment approximation to tight-binding

potentials, in
luding Gupta[3, 4℄ and Sutton-Chen[5℄ potentials, are fo
used on spe
i�
 
luster sizes and 
ompo-

sitions, o

asionally for various 
on
entrations. (See for example Refs. [6, 7, 8, 9, 10, 11, 12℄). Sometimes, the

stru
tures obtained with these semi-empiri
al potentials are lo
ally re-optimized using density fun
tional theory

(DFT) methods.[6, 7, 8℄ Here, we present a more general approa
h, similar in some respe
t to the one presented

in Ref.[2℄ for binary Lennard-Jones 
lusters. Using a genuine metalli
 potential derived and applied previously

to homo-atomi
 
lusters,[13, 14℄ we sear
h for the ground state stru
tures for all binary 
lusters of size less

than 40 and for any 
on
entration; moreover, by varying the 
oupling 
onstants in a range whi
h 
overs a large

number of metalli
 elements we try to map out the behavior of the bimetalli
 
lusters in the 
ompositional spa
e.

The theory employed in deriving these potentials has been applied also to homo-atomi
 
lusters deposited on

surfa
es,[14, 15℄ or to the metalli
 
ore of an iron-hydro
arbon 
luster.[16℄ We 
ould add also that the theory

provides valuable information when applied to ma
ros
opi
 obje
t like metalli
 surfa
es, in�nite plates or slabs.

It provides, for example, a theoreti
al derivation for the well known Smolu
howski ansatz[17℄ for the ele
tron

density at a metalli
 surfa
e.[14, 15℄ The theory applies straightforwardly to hetero-metalli
 
ompounds, the

simplest 
ase of free binary 
lusters being reported here.

2 Theory

Using a quasi-
lassi
al des
ription for the ele
trons parti
ipating in a metalli
 bonding, it has been shown that

the atomi
 intera
tions in a nanostru
ture 
an be des
ribed by an e�e
tive potential[13℄

Φij = −
1

2
qz∗i z

∗
j

(

1−
2

qRij

)

e−qRij , (1)

where Rij are the interatomi
 distan
es, q is a variational s
reening waveve
tor and z∗i are the e�e
tive ioni



harges whi
h depends on the atomi
 spe
ies.

1

It is worth mentioning here that long time ago a similar potential

1

Atomi
 units are used: the Bohr radius aH = ~2/me2 ∼= 0.53Å for distan
es and e2/aH ∼= 27.2eV for energies; −e is the

ele
tron 
harge, m is the ele
tron mass and ~ denotes the Plan
k 
onstant.
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has been suggested on semi-empiri
al grounds, with some su

ess, for theH2 mole
ule.[18℄ These e�e
tive 
harges

whi
h play the role of 
oupling 
onstants in the e�e
tive atomi
 intera
tion (1) 
an be estimated within the

atomi
 s
reening theory. They a
quire small values, as required by a quasi-
lassi
al des
ription.[13℄ We have, for

example, z∗Na = 0.443 for sodium, z∗Ba = 0.339 for barium and z∗Fe = 0.579 for iron. The s
reening waveve
tor

minimizes the quasi-
lassi
al energy, and has a z̄∗1/3-dependen
e, where z̄∗ is a mean e�e
tive 
harge. This

equilibrium value for q leads to a z̄∗7/3-behavior for the quasi-
lassi
al energy. The equilibrium stru
tures

are obtained by minimizing the total potential energy,

∑

i<j Φij , and depend on q only as a s
ale fa
tor for

the atomi
 positions. In addition, for homo-atomi
 
lusters the interatomi
 distan
es depends on e�e
tive

ioni
 
harges only through q, giving rise to universal geometri
 forms.[13℄ For binary 
lusters, the equilibrium

stru
tures depends also on the ratio between the e�e
tive 
harges of the two atomi
 types leading to more stable

geometri
 forms (
ore-shell 
lusters), distorted homo-atomi
 forms or even new stru
tures with new symmetries.

On the other hand, the binding energy depends on the values of both e�e
tive valen
e 
harges; it is obtained

by minimizing the quasi-
lassi
al energy[13℄

Eq =
27π2

640
q4

N
∑

i=1

z∗i −
3

4
q

N
∑

i=1

z∗2i +
1

2

N
∑

i6=j=1

Φij , (2)

with respe
t to the variational s
reening waveve
tor q, and by adding the ex
hange energyEex = −(9/32)q2
∑

i z
∗
i .

In equation (2) the �rst term is the kineti
 energy of the ele
trons moving in the self-
onsistent Hartree �eld

ϕ =
∑

i

z∗i exp(−q |r−Ri|)/ |r−Ri| , (3)

where Ri are the atomi
 positions, and having the ele
tron density n = q2ϕ/4π. We may note that the self-


onsistent �eld (3) is a superposition of s
reened Coulomb potentials. The se
ond term in equation (2) plays

the role of an ele
tron self-energy and the last term is the total potential energy. This potential energy in
lude

the ele
tron-ele
tron and ele
tron-ion intera
tions (through the self-
onsistent �eld given by equation (3)) and

the intera
tion between positively 
harged ioni
 
ores.

It is worth emphasizing that the e�e
tive potential given by equation (1) is a genuine many-body poten-

tial be
ause the variational s
reening waveve
tor q, as obtained from the minimum 
ondition ∂Eq/∂q = 0
for the quasi-
lassi
al energy (2), has an impli
it dependen
e on all the atomi
 positions Ri. On the other

hand, in the numeri
al problem of �nding equilibrium 
luster stru
tures we 
an avoid the di�
ult task of min-

imizing an energy 
omposed of multiparti
le potentials by minimizing �rst a redu
ed total potential energy,

Epot/q =
∑

i<j Φij/q with respe
t to the s
aled positions Xi = qRi; expressed with these s
aled positions, the


orresponding s
aled potential for (1) has a true two-body form, Φij/q = −(1/2)z
∗
i z

∗
j (1− 2/Xij)exp(−Xij). In

this step we �nd the equilibrium form in the X−spa
e, by �nding the equilibrium s
aled positions X
0
i . Using

the minimum value for the redu
ed potential energy we minimize the quasi-
lassi
al energy (2) and obtain the

equilibrium s
reening waveve
tor q0. With this value we obtain the equilibrium positions as R
0
i = X

0
i /q0.

3 Binary 
lusters

The theory outlined above has been applied to binary 
lusters AnBN−n, with N = 2, 40, n = 0, N and the ratio

1 ≤ z∗A/z
∗
B ≤ 2.5 (step 0.1) of the e�e
tive valen
e 
harges of the two elements A and B. These parameters


over a very large domain of binary metalli
 
ompounds. The minimization of the potential energy has been

performed by usual gradient method starting from random initial positions. Using a large number of trials

for ea
h 
luster in
reases the 
han
e of �nding the true ground-state. The use of large statisti
al ensembles is

required by the in
reasing number of isomers 
ompared with the homo-atomi
 
ase; ea
h isomer, 
lusters with

the same 
omposition and size but with di�erent stru
ture and greater energy 
ompared to the ground-state,

is a

ompanied by the so 
alled homotops, 
lusters whi
h, up to permutations between di�erent type of atoms,

share approximately the same geometri
 stru
ture and energy. A way to over
ome this di�
ulty is to make

su
h permutations during the minimization of the potential energy, provided they are energeti
ally favorable.

Be
ause other authors use the word 
omposition with other meaning it is important to spe
ify that we use the

term 
on
entration for the ratio between the number of atoms A and the total number of atoms and 
omposition

for the ratio z∗A/z
∗
B. With this 
onventions, a 
hanged 
on
entration means that some atoms A are repla
ed

by atoms of type B (or vi
e versa) and a 
hanged 
ompositions means that all the atoms of one type (say

A for example) are repla
ed by atoms of another type (say C for example) and this 
hange is re�e
ted in a

variation of the ratio z∗A/z
∗
B; we must note that we 
an modify the 
omposition by repla
ing both types of

atoms with a new pair of atoms, but usually we will keep the B atoms un
hanged in the following dis
ussion

be
ause all the qualitative results are independent of the absolute value of z∗B. By taking permutations during

the minimization of the potential energy we keep the 
on
entration and 
omposition 
onstant, so we will �nd a
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Figure 1: Ground-state energy per atom for binary 
lusters AnBm with z∗B = 0.3

putative global minimum for ea
h 
luster size N , 
on
entration n/N and 
omposition z∗A/z
∗
B (i.e. 11700 global

minima, ex
epting the homo-atomi
 global minima). In Refs[2℄ and [19℄ the 
on
entration is allowed to 
hange

during minimization whi
h redu
es drasti
ally the sear
h spa
e at the expense of loosing all the information

about a large number of 
lusters. The results reported here have been obtained using up to 1000 initial random

positions for ea
h 
luster size, 
omposition an 
on
entration. Finally, the results have been re�ned by making

adiabati
 evolutions, i.e. starting from ea
h ground-state and the �rst isomer and going in small (adiabati
)

steps toward 
lusters with di�erent 
oupling 
onstant z∗A/z
∗
B. The number of ground-states modi�ed by this

adiabati
 sear
h is less than 0.7%, whi
h gives 
on�den
e in the a

ura
y of the results. For ea
h 
omposition,

the binding energies (ground state and isomers) and equilibrium stru
tures have been obtained. The ground-

state binding energies per atom for various values of the ratio z∗A/z
∗
B are presented in Figure 1. As stated above,

the binding energy depends on both values z∗A and z∗B; the energies presented in Figure 1 
orrespond to z∗B = 0.3
but 
an be easily s
aled to di�erent values of z∗B; for z∗A/z

∗
B =
onstant, we 
an obtain from (2) the following

s
aling relations for the binding energy E, the s
reening waveve
tor q, and the equilibrium positions Ri,

E = z
∗7/3
B E0 +

9

32
Z∗
0q

2
0(z

∗7/3
B − z

∗5/3
B ) ,

q = q0z
∗1/3
B , (4)

Ri = R
0
i z

∗−1/3
B ,

where Z∗
0 =

∑

i z
∗
i is the total ioni
 
harge; the variables labeled by

′0′ refer to z∗B = 1. We 
an see in Figure

1 how the energy range in
reases at higher z∗A/z
∗
B values; we obtain, for instan
e, a range of less than 0.5eV

for z∗A/z
∗
B = 1.1 and more than 8eV for z∗A/z

∗
B = 2.5. This energy range variation 
an be understand as a

3



Figure 2: Stability spe
trum for various values of z∗A/z
∗
B.

rapid 
hange in the mean e�e
tive valen
e 
harge z̄∗ when we 
hange the 
on
entration for 
lusters 
omposed

of very dissimilar atoms (large z∗A/z
∗
B); as noted above the quasi-
lassi
al energy behave like z̄∗7/3. We may

see in Figure 1 that even for large z∗A/z
∗
B the energy is slowly varying for 
onstant 
on
entrations (
onstant


on
entration 
urves are the lines starting from the origin on the graphs shown in Figure 1).

For homo-atomi
 
lusters the stability with respe
t to the variation of the number of atoms is tested by the

se
ond di�eren
e of the energy;[20, 21, 22℄ it de�nes the so 
alled stability spe
trum, sometimes well 
orrelated

with the experimental mass-abundan
e spe
trum; its maxima indi
ate the magi
 numbers, 
lusters with higher

stability 
ompared to their neighbors. The magi
 numbers obtained for homo-atomi
 metalli
 
lusters are 6, 13,

19, 23, 26, 29, 34, ... ;[13℄ these numbers, now known as geometri
al magi
 numbers, be
ause they are given by

the 
lose pa
king in the i
osahedral stru
tures, have been obtained with various other methods like, for example

with Morse potentials.[23℄ For binary 
lusters we 
an de�ne two families of su
h spe
tra for ea
h type of atoms:

∆A
2 E = En+1,m + En−1,m − 2En,m

(5)

∆B
2 E = En,m+1 + En,m−1 − 2En,m

where En,m is the ground-state energy of the binary 
luster AnBm, ∆
A
2 E and ∆B

2 E indi
ate the 
luster stability

with respe
t to the variation of the number of A-atoms (or B-atoms respe
tively) at �xed number of B-atoms
(or A-atoms respe
tively). Ea
h spe
trum has magi
 numbers; the 
oin
iden
e of a maximum in both spe
tra

de�ne a magi
 pair {n,m}, i.e. a double magi
 
lusters AnBm, whi
h indi
ate the higher stability of the 
luster


ompared to his neighbors: An−1Bm, An+1Bm, AnBm−1 and AnBm+1. The maxima in a sum spe
trum de�ned

4



Figure 3: The 
luster A13B20 (left), double magi
 for z
∗
A/z

∗
B ≥ 1.7 and ground-state for z∗A/z

∗
B ≥ 1.6, displaying

an A13 i
osahedron 
ore (
enter) and a B20 dode
ahedron shell (right).

as

∆2E = ∆A
2 E +∆B

2 E =

(6)

= En+1,m + En,m+1 + En−1,m + En,m−1 − 4En,m


an also be viewed as magi
 pairs; by analogy with the homo-atomi
 
ase,[13℄ we 
an de�ne a relative abundan
e

D = ln I4n,m/In+1,mIn−1,mIn,m+1In,m−1, where In,m is the Boltzmann statisti
al weight; up to a 
onstant we

have D ≃ ∆2E, where ∆2E is given by equation (6). The �rst de�nition for these magi
 pairs, viewed as

maxima in both relations given in equation (5), is more restri
tive; nevertheless, we have found a very 
lose

similarity between the results obtained with these two de�nitions in the whole range of e�e
tive valen
e 
harges

we have studied. The de�nitions given here for magi
 pairs follows 
losely the de�nition for magi
 numbers in

homo-atomi
 
lusters, whi
h re�e
ts an enhan
ed stability relative to all the neighbors with one atom more or

one atom less. The only di�eren
es are that every binary 
luster is indexed with two numbers (the numbers

of atoms of ea
h spe
ies) and has four neighbors instead of two, relative to whi
h we must test the stability.

The de�nition of magi
 spe
tra re�e
t also the 
ondensation and evaporation pro
esses that take pla
e in a

majority of experimental setups. Only the �rst order pro
esses (involving loosing or a
quiring of a single atom)

are taken into a

ount. It is somehow tempting to 
onsider also, for example, the 
luster An−1Bm+1 as a

neighbor of AnBm in the stability spe
trum; but AnBm 
an evolve into An−1Bm+1 or vi
e versa only through

se
ond order pro
esses (losing an atom of one type and a
quiring an atom of another type). Stability relative

to su
h neighbors 
an be tested by de�ning a spe
trum at �xed size and variable 
on
entration.[1, 9, 24℄ Also,

the mixing energy de�ned as ∆N = En,m− (nEN,0+mE0,N )/N , was previously used for des
ribing the relative

stability and mixing in binary 
lusters.[7, 25℄

The sum spe
trum given by equation (6) is shown in Figure 2 for all the values of z∗A/z
∗
B; the darker squares

indi
ate magi
 pairs; also, the magi
 pairs a

ording to the �rst de�nition are marked with white dots; we 
an

see the above mentioned similarity between the two de�nitions. We 
an see in Figure 2 that for small values

of the ratio z∗A/z
∗
B the magi
 pairs 
orrespond to the homo-atomi
 magi
 numbers for N = n +m. On
e the

dis
repan
y between atomi
 spe
ies in
reases, this homo-atomi
 behavior gradually disappears giving pla
e to

new magi
 pairs. This 
an be explained by the small distortions in the i
osahedral symmetry 
aused by the small

di�eren
e in the interatomi
 intera
tions A−A, A−B, B−B, and by stru
tural transitions to f

 or disordered

geometries. The magi
 pairs are 
on�ned to 
ertain regions in the range of the parameter z∗A/z
∗
B. Varying the


omposition, the magi
 peaks gradually appear, starting with some value z∗A/z
∗
B and may vanish at a higher

z∗A/z
∗
B value. We obtained, for instan
e, the magi
 pairs {6,32} for z∗A/z

∗
B ≥ 1.4, {10,22} for 1.5 ≤ z∗A/z

∗
B ≤2.4,

{13,20} for z∗A/z
∗
B ≥ 1.7, {14,24} for 1.4 ≤ z∗A/z

∗
B ≤ 2.0 and {26,12} for z∗A/z

∗
B ≥ 1.8, whi
h 
orrespond to


lusters having N=32, 33 or 38 whi
h are not homo-atomi
 magi
 numbers.[13℄

In the lowest range of the z∗A/z
∗
B values the equilibrium stru
tures have with preponderan
e i
osahedral

symmetry and display a 
ore-shell atomi
 arrangement, with the 'heavier', i.e. greater e�e
tive 
harge, A-atoms
in the 
enter and a B-atoms shell. There is experimental and theoreti
al eviden
e for this radial segregation

in binary 
lusters (see for example Refs. [6, 28, 29, 30, 31℄). In our model segregation is favored over mixing

be
ause the strength of the A − B intera
tion is always smaller than the A − A intera
tion (in fa
t, for a


onstant interatomi
 distan
e and s
reening waveve
tor, the strength of the A − B intera
tion is a geometri


mean between the A−A and the B−B intera
tion; therefore the mixing energy[7, 25℄ tends to a
quire positive

values whi
h points out the preferen
e for segregation over mixing in our model; we obtain negative mixing

energies for binary 
lusters with similar type of atoms, z∗A/z
∗
B ≤ 1.3, at various 
on
entrations, where alloying is

favored a

ording to this 
riterion). The A atoms segregate in the 
enter where atoms have greater 
oordination

numbers and an in
reasing number of A − A bonds is energeti
ally favorable. The mixing 
ould take pla
e if

A−B had been the strongest intera
tion.[1℄ Comparing the e�e
tive valen
e 
harges for various types of atoms

we obtain, for example, that the 
ore positions are o

upied by Cu atoms in Ag − Cu, Au− Cu, by Co atoms
in Co − Pt, Co − Pd, by Pd atoms in Ag − Pd, Au − Pd and by Pt or Ni atoms in Pd − Pt, Ag − Pt or
Ag−Ni 
lusters, in good agreement with other 
al
ulations.[6, 9, 12, 25, 26, 27℄ On the other hand for Ag−Au

5



Figure 4: The bimetalli
 38-atoms 
luster 
orresponding to the magi
 pairs {6,32} (the top row), {14,24} (the

middle row) and {26,12} (the bottom row).

Figure 5: The double magi
 
luster A10B22 (left) with a f

 A−
ore (
enter) and an outside B−shell (right).

systems we obtain that the Ag atoms o

upy 
ore positions in 
ontrast to the tenden
y (although diminished


ompared to other 
ompounds) towards surfa
e segregation found in Ref. [27℄ but in agreement with more

re
ent DFT 
al
ulations.[25℄ Although new stru
tures and symmetries appear, the i
osahedral symmetry is

often obtained for larger values of the ratio of the e�e
tive 
harges of the two atomi
 spe
ies. For example,

the magi
 
luster A13B20, whose stru
ture is presented in Figure 3, has a perfe
t i
osahedral symmetry and a


ore-shell atomi
 arrangement with a 
ore i
osahedron formed by the A-atoms and an outside shell of B-atoms
grouped in a perfe
t dode
ahedron. The high stability of this 
luster 
an be explained by the favorable ratio of

the numbers of atoms A and B (favorable 
on
entration). The A13-i
osahedron 
ore is also magi
 in the homo-

atomi
 series. In spite of di�erent strengths in the inter-atomi
 intera
tion, ea
h atom spe
ies o

upies distin
t

i
osahedral shells, whi
h do not lead to symmetry distortions, and gives stability. Moreover, the strength of the

inter-atomi
 intera
tion A − B, greater than the B − B intera
tion, equilibrates the in
omplete outside shell

(the so 
alled anti-Ma
kay shell whi
h be
omes 
omplete at N = 45) by maximizing the numbers of A − B
bounds in detriment of the weaker B−B bounds. On
e the ratio between the two e�e
tive 
harges is de
reased

this geometri
 arrangement be
omes energeti
ally unfavorable, the homo-atomi
 ground-state having a rather

disordered stru
ture. This is a �rst example of stru
tural transition indu
ed by 
omposition. Su
h 
ore-magi


stru
tures (the 
ore is magi
 itself, as a homo-atomi
 
luster) whi
h are also stable against the variation of the

number of B atoms, forming in this way magi
 pairs, have been obtained, usually for higher z∗A/z
∗
B values, for

various magi
 numbers of A-atoms. For instan
e, we 
an identify the magi
 pairs {6, 32}, {13, 20}, {23,m},
whit m = 3, 6 and {26,m} , with m = 3, 6, 9, 12.

A parti
ular 
luster is the 38-atoms 
lusters whi
h be
omes highly stable, in di�erent equilibrium stru
tures,

for the magi
 pairs {6, 32}, {14, 24} and {26, 12}. The equilibrium geometri
 forms for these 
lusters are shown in

Figure 4. The 
lusters A6B32 and A26B12 belong to the above mentioned 
ore-magi
 stru
tures. The stru
ture

A14B24 has a f

 symmetry, his A14-
ore being a fa
e 
entered 
ube and the outside B24-shell a trun
ated

o
tahedron. This is not the only 
luster with f

 symmetry obtained by the present approa
h. The 
luster

6



Figure 6: Transitions from Frank-Kasper polyhedra to fcc (�rst row; N = 14, z∗A/z
∗
B ≥ 2.2) or bcc (se
ond row,

N = 15, 1.4 ≤ z∗A/z
∗
B ≤ 2.3) symmetries.


orresponding to the magi
 pair {10, 22}, whose stru
ture is presented in Figure 5, has also a f

 symmetry.

Although the i
osahedral symmetry is dominant, for small sizes (N < 20) many of the ground-state stru
tures
obtained for homo-atomi
 
lusters are the so 
alled Frank-Kasper polyhedra.[32, 33℄ For example, we have

obtained Frank-Kasper polyhedra for N = 8, 11, 14 and 15, N = 11 and N = 15 being also magi
 numbers

(although not very pronoun
ed 
ompared to N = 13 and N = 19 whi
h have i
osahedral symmetry).[13℄ The

stru
tures obtained for N = 14 and N = 15 are presented in the �rst 
olumn of Figure 6. We have found that

alloying these 
lusters with nA ≥ 2 usually destroys the symmetry of these stru
tures. For nA = 1, the A atom

is pla
ed in the 
enter and the stru
ture remain un
hanged. We have found also that for spe
i�
 
on
entrations

the stru
tures be
omes highly symmetri
: if 6 atoms from the B14 
luster are repla
ed with spe
i�
 A atoms

su
h that z∗A/z
∗
B ≥ 2.2 the ground-state stru
ture be
ome a single fcc 
ell with the A atoms at the fa
es of

the B-atoms 
ube; in a similar way, form the B15 
lusters using A atoms with 1.4 ≤ z∗A/z
∗
B ≤ 2.3 we obtain

the A9B6 
luster whose ground-sate stru
ture has a perfe
t bcc 
ell formed by the A atoms while the B atoms

�nd equilibrium positions in the vi
inity of the nearest neighbor 
enters. The ground-state stru
tures of these


lusters are presented in Figure 6.

The stru
tures presented in Figure 4 suggest an i
osahedral-f

 transition for the AnB38−n 
lusters, driven by

the variation of 
on
entration (variation of n) at �xed 
omposition (at �xed z∗A/z
∗
B ratio). The 38-atoms binary


luster was previously studied for ComPt38−m,[9℄ for mixed rare-gas 
lusters,[19℄ Morse binary 
lusters, [24℄ and

for Ag−Ni, Ag−Cu, Pd−Pt[6, 25, 26℄ and Ag−Pd, Au−Cu, Ag−Au, Ag−Pt, Pd−Au[25, 27℄ nanoparti
les
using a geneti
 algorithm approa
h with Gupta-like potentials lo
ally optimized using DFT, where transitions

form f

 to i
osahedral symmetries 
an be identi�ed. This type of transition has been obtained for various 
luster

sizes, espe
ially at large z∗A/z
∗
B ratio. Our potential favors i
osahedral stru
tures for homo-atomi
 
lusters with

N = 38, a situation whi
h also o

urs for Morse 
lusters, for 
ertain potentials widths.[24℄ In fa
t, there is

a good agreement between the homo-atomi
 ground-state stru
tures and magi
 numbers obtained within the

present approa
h[13℄ and those obtained using Morse intera
tions with 
ertain potential parameters.[23℄ Also,

in Refs.[9, 6, 19℄ the ground-state stru
tures for N = 38 homo-atomi
 
lusters exhibit a f

-symmetry and

alloying gives rise to i
osahedral 
ore-shell stru
tures. Here, we �nd an inverted transition, from an i
osahedral

stru
ture in pure 
lusters to a f

-like stru
ture in binary 
lusters with very dissimilar type of atoms. For

atoms with z∗A/z
∗
B 
lose to 1, whi
h seems to be the 
ase for Co − Pt 
lusters (z∗Co/z

∗
Pt ≃ 1.1), the stru
tures

remains i
osahedral also for binary 
lusters. In this respe
t, our results agree with the stru
tures reported in

Ref.[9℄ (where the stru
tures are i
osahedral from m = 5 to m = 35). A large number of i
osahedral stru
tures

were obtained also for Ag − Cu and Ag − Pd.[26, 27℄ but the f

-like stru
tures were also present, espe
ially

for Ag − Pd. Our estimation for the e�e
tive valen
e 
harges gives z∗Pd/z
∗
Ag ≃ 2 and z∗Cu/z

∗
Ag ≃ 1.4, values

for whi
h we 
an observe the above mentioned i
osahedral-f

 transitions. We may note also that the magi


stru
ture A14B24 presented in Figure 4 was obtained also for Pt14Pd24 as being highly stable.[27℄ We have

obtained that this stru
ture is groundstate for 1.3 ≤ z∗A/z
∗
B ≤ 2.2 and our estimation for z∗Pt/z

∗
Pd ≃ 1.3 is in

this range. On the other hand, this ratio is slightly outside the range 1.4 − 2.0 for whi
h the pair {14,24} is

magi
 a

ording to our de�nition. We may also note that perhaps a better agreement between our stru
tures

and those presented in Refs. [26, 27℄ is found for the 34-atoms 
lusters, espe
ially for Ag − Cu and Ag − Ni
where the i
osahedral stru
tures (�vefold pan
ake) are predominant.

A new kind of stru
tural transition, a 
omposition indu
ed transition, is obtained for �xed numbers of atoms

A and B (�xed 
on
entration), by varying z∗A/z
∗
B, i.e. by repla
ing at least one type of atom with one having

a di�erent e�e
tive 
harge. For example, the 
luster A14B24 has two stru
tural transitions, its ground-state

being of i
osahedral type (slightly disordered) for z∗A/z
∗
B ≤ 1.2, f

 for 1.3 ≤ z∗A/z

∗
B ≤ 2.2 and i
osahedral for
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Figure 7: Stru
tural transitions in the A7B22 
luster. The top row represents the ground state for z∗A/z
∗
B ≤ 1.5,

the middle row 
orresponds to 1.6 ≤ z∗A/z
∗
B ≤ 1.9 and the bottom row to z∗A/z

∗
B ≥ 2.0.

z∗A/z
∗
B ≥ 2.3. The existen
e of these stru
tural domains bounded by stru
tural transition points is a general

feature of binary 
lusters. It is not restri
ted to magi
 pairs; moreover, it has been obtained for almost all


ombinations (
ompositions) AnBm. Be
ause we have performed our study with step 0.1 of the parameter

z∗A/z
∗
B we 
an identify with this a

ura
y the lo
ation of the transition points. For instan
e, in the above

example, we have two transition points, one lo
ated between 1.2 − 1.3 and another between 2.2 − 2.3. Often,
for the left-right values whi
h border the transition points we 
an observe ground-state←→isomer inversions,

i.e. the left ground-state be
omes the right isomer and (or) the left isomer be
omes the right ground-state.

This implies that, at the transition points, the ground state is degenerate; we have two stru
tures with di�erent

symmetries but with the same 
ohesion energy. Of 
ourse, there remains the question of �nding two atomi


spe
ies whose e�e
tive valen
e ratio has this 
riti
al value. On the other hand, even if we �nd su
h atomi


spe
ies, it is likely that quantum 
orre
tions to the quasi-
lassi
al des
ription[13℄ remove this degenera
y. In

this respe
t, the 
orre
t 
on
lusion is that it is possibly to synthesize binary metalli
 
lusters, made up of spe
i�


atoms, with very small gaps between the ground-state and the �rst isomers. These small gaps 
ould imply an

in
reased experimental abundan
e even if they are not magi
 (the theoreti
al abundan
e spe
trum is referred

to the ground-state stru
tures; the existen
e of su
h small gaps for spe
i�
 
ompositions 
ould lo
ally alter this

spe
trum). On the other hand the task of produ
ing 
lusters with a spe
i�
 geometry will be
ome di�
ult in

the presen
e of this shape degenera
y.

Another example of a 
omposition-indu
ed stru
tural transition is the 
luster A7B22. As we 
an see in Figure

7 we have obtained three equilibrium stru
tures for various 
ompositions. When we vary the ratio z∗A/z
∗
B the

stru
ture presented in the top row of Figure 7 remains ground-state for z∗A/z
∗
B ≤ 1.5 and be
omes the �rst

isomer for z∗A/z
∗
B = 1.6. We have a transition point somewhere between z∗A/z

∗
B = 1.5 and z∗A/z

∗
B = 1.6. The

stru
ture presented in the middle row of Figure 7 is found to be the ground-state for 1.6 ≤ z∗A/z
∗
B ≤ 1.9 and

the �rst isomer for z∗A/z
∗
B = 2.0. We have here a se
ond transition point. The stru
ture of the �rst isomer

for z∗A/z
∗
B = 1.9, presented in the bottom row of Figure 7 be
omes ground state for z∗A/z

∗
B ≥ 2.0. Although

very 
ommon, this inversion between the ground-state and the �rst isomer in the vi
inity of a transition point


annot be generalized as a rule. For example, at the �rst transition point for the 
luster A7B22 we have inversion

only in one way: the ground-state for z∗A/z
∗
B = 1.5 be
omes isomer for z∗A/z

∗
B = 1.6 but the �rst isomer for

z∗A/z
∗
B = 1.5 and the ground-state for z∗A/z

∗
B = 1.6 do not have the same stru
ture. They do have similar 
ore

stru
ture but the outside shells are equilibrated in slightly di�erent 
on�gurations.

We may note also that the stru
ture presented in the last row in Figure 7 has a star-shaped appearan
e

when viewed from above as in Figure 8 and has been previously obtained using the many-body Gupta potential

for the 29-atom Pd− Pt 
luster at various 
on
entrations.[10, 11℄
Beside the 
ore-shell segregation, whi
h is dominant for binary nano-
lusters, we 
an identify another type

8



Figure 8: The star-shaped ground-state of the 
luster A7B22 for z
∗
A/z

∗
B ≥ 2.

Figure 9: The domain walls segregation in the 
luster A7B12 irrespe
tive of the ratio z∗A/z
∗
B.

of segregation. In the stru
ture shown in the bottom row in Figure 7 the B-atoms o

upy two distin
t regions

(up-down) separated by an A-atoms region. This kind of domains walls segregation is very rare, the 
ore-shell

segregation being predominant; it has been obtained also for the 
luster A7B12, whose stru
ture is presented in

Figure 9. A similar segregation has been obtained for the Lennard-Jones 
luster A7B12[2℄ and also in Co− Pd
nano
lusters for sizes N = 13 and N = 19, using a geneti
 algorithm in 
ombination with a Gupta potential.

On the other hand the segregation shown in Figure 9 
an be des
ribed as a surfa
e segregation, be
ause the

12 B atoms, instead of forming a uniform 
losed surfa
e around the 7 atoms A-
ore, segregate in two distin
t

regions diametri
ally opposite on that surfa
e. Moreover, a surfa
e segregation 
an be observed also in the

stru
ture of the 
luster A26B12 shown in Figure 4. There, the 12 B atoms forming the outside shell segregate

in 4 distin
t regions, ea
h region 
onsisting of 3 B atoms 
losely bound together. Su
h a surfa
e segregation


ould be interpreted as a variable surfa
e 
omposition in experimental measurements. Eviden
e for a variable

surfa
e 
omposition in Ar/Xe 
lusters in photoele
tron spe
tros
opy has been reported in Ref. [29℄.

Varying the ratio z∗A/z
∗
B we 
an obtain all the possible stru
tures for a spe
i�
 nanoalloy, whi
h 
an be used

as an input for ab initio 
al
ulations. The values of the e�e
tive valen
e 
harges z∗ 
an be viewed as input

parameters in the present theoreti
al model. Exploring a large domain for the values of these e�e
tive 
harges we

have obtained qualitative results like segregation or stru
tural transitions driven by 
on
entration or 
omposition

in good agreement with other models. In order to 
ompare numeri
al values, as binding energies or interatomi


distan
es, we 
an use as a �rst approximation the estimation[13℄ z∗ = z(1+ 0.84Z1/3) exp(−0.84Z1/3), where z
is the nominal valen
e and Z is the atomi
 number. It is 
ustomary to use the 13-atom 
lusters as a ben
hmark

against ab initio DFT 
al
ulations. In Table 1 we pressent su
h a 
omparation with other high-level 
al
ulations

for Co (Z = 27, z = 2, z∗ = 0.566), Pt (Z = 78, z = 4, z∗ = 0.507) and Cu (Z = 29, z = 1, z∗ = 0.271) metalli


lusters. In all 
ases the i
osahedral stru
ture is the ground-state stru
ture; as we 
an see in Table 1 there is a

good agreement for binding energies and interatomi
 distan
es. The same level of agreement is maintained for

binary 13-atom 
lusters. We obtained for example a binding energy of 2.93eV per atom for Co6Cu7 whi
h is

very 
lose to the value 3.08eV per atom obtained in Ref. [35℄ by a DFT optimization of the stru
tures resulted

from a geneti
 algorithm with a Gupta-like many-body potential. Similarly, we obtain a binding energy of

4.8eV per atom for Co12Cu, whi
h 
ompares well with the values 4.15 − 4.23eV per atom from Ref. [35℄. For

Cu-ri
h 
lusters the agreement is poorer; the same behavior 
an be observed in pure Cu 
lusters, although the

interatomi
 distan
es are in good agreement. We 
an suspe
t here a poor estimation of the e�e
tive 
harge.

We have 
ompared also the binding energies per atom for Co− Pt 
lusters. For example, we obtained 4.14eV,
4.55eV and 5.04eV for CoPt12, Co6Pt7 and Co12Pt, whi
h 
ompare well with the values 3.49eV, 3.66eV and

4.45eV taken from Ref. [35℄

For Co−Pd 
lusters (ZPd = 46, zPd = 2, z∗Pd = 0.395) we have 
ompared our results with those obtained in

Ref. [12℄ for N =7, 13, 19, 23 and 26 using a Gupta potential in 
ombination with a geneti
 algorithm energy

minimization and 
he
ked with DFT 
al
ulations for some sele
ted 
lusters. Al the stru
tures reported there

are in agreement with our 
al
ulations. We have obtained de
ahedral stru
tures for N = 7 and simple, double,

triple and, respe
tively, quadruple i
osahedral stru
tures for N = 13, 19, 23 and 26. The Co atoms, with

higher e�e
tive 
harges (z∗Co = 0.566), tends to segregate at the 
enter forming, for example, a tetrahedron in
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z∗ E/N(eV) Lb(Å) Refs.

0.566 5.12 2.00
Co13 4.89 2.42 Ref. [9℄

4.08 2.33 Ref. [34℄

4.48 2.49 Ref. [35℄

0.507 4.06 2.08
Pt13 3.47 2.79 Ref. [35℄

4.38 2.79 Ref. [9℄

4.43 2.6 Ref. [36℄

Cu13 0.271 1.12 2.56
2.19 2.55 Ref. [35℄

Table 1: Binding energies per atom and the �rst nearest distan
e for various metalli
 
lusters 
ompared with

other results.

Co4Pd22, a hexahedron (triangular bipyramid) in Co5Pd21 or a 
apped hexahedron in Co6Pd20. If the number
of Pd atoms is insu�
ient to form an outside shell (large Co 
on
entrations) we 
an identify mixed outside

Co−Pd shells or domain wall segregation like in Figure 9. Nevertheless, the general trend remain the 
ore-shell

i
osahedral segregation. The interatomi
 distan
es are also in good agreement with those obtained in Ref. [12℄.

For example, we have obtained a Co − Co distan
e of 2.62Å (
ompared to 2.39Å), the mean nearest neighbor

Co − Pd distan
e 2.36Å (
ompared with 2.44Å) and Pd − Pd distan
e 2.31Å (
ompared with 2.50Å) for the
Co2Pd5 
luster. Another example is Co7Pd12; we obtained the mean nearest-neighbor distan
es: 2.07Å for

Co−Co (
ompared with 2.34Å), 2.06Å for Co−Pd (
ompared with 2.52Å) and 2.22Å for Pd−Pd (
ompared

with 2.62Å).
It is worth emphasizing that there are also di�eren
es between our results and other numeri
al 
al
ulations.

Some of them are a 
onsequen
e of the form of the potential, like the already mentioned preferen
e for i
osahedral

stru
tures in homo-atomi
 
lusters. (We 
an note here that sometime there is no 
onsensus regarding the

lowest energy stru
tures for more simple 
ompounds like, for example, Pt13 (see for instan
e Ref. [10℄)). Other
di�eren
es 
ould arise from our poor estimation of the e�e
tive valen
e 
harges, and the point-like approximation.

That 
ould be the 
ase for the star-shaped stru
ture from Figure 9 obtained as a ground-state for z∗A/z
∗
B ≥ 2.

This shape was also obtained for Pd− Pt 
lusters in Ref. [10℄, but our estimation gives z∗Pt/z
∗
Pd ≃ 1.3.

4 Con
lusions

In 
on
lusion, despite the relatively small 
luster sizes, we have obtained the general 
hara
teristi
s of binary

metalli
 
lusters: the magi
 pairs in the stability spe
tra, the radial, domain walls and surfa
e segregation, the

new ground-state geometries with f

 symmetry and the stru
tural transitions indu
ed by 
hange in 
omposition

or 
on
entration. Two types of transitions have been identi�ed: one by varying the ratio z∗A/z
∗
B and another by

varying the relative 
on
entration for a �xed ratio z∗A/z
∗
B. These features, obtained here for bimetalli
 
lusters


onsisting of up to 40 atoms, are expe
ted to hold also for larger binary 
lusters although new stru
tures and

segregation types 
ould appear, like, for example magi
 i
osahedrons with alternating shells[37℄ or pat
hy multi-

shell 
hemi
al ordering.[38℄ It is worth noting that by adding an intera
tion energy with a metalli
 surfa
e[15℄ to

the quasi-
lassi
al energy given by (2), the present approa
h 
an be applied to binary metalli
 
lusters deposited

on surfa
es, whi
h is the 
ommon environment for most of the intended te
hni
al appli
ations. In addition,

despite the in
rease in the number of isomers whi
h requires even larger statisti
s there are no impediments in

applying this method to trimetalli
 
lusters or more 
omplex hetero-metalli
 
lusters.
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