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Abstrat

Strutures and binding energies for bimetalli lusters onsisting of a large variety of atomi speies are

obtained for all atomi sizes N ≤ 40 and all onentrations, using an interatomi potential derived within

a quasi-lassial desription. We �nd that inreasing the di�erene between the two types of atoms leads

to a gradual disappearane of the well-known homo-atomi geometri magi numbers and the appearane

of magi pairs orresponding to the number of atoms of eah atomi speies in binary nanostrutures with

higher stability. This hange is aompanied by strutural transitions and ground-state↔isomer inversions,

indued by hanges in omposition or onentration. We �nd a lear tendeny towards phase separation,

the ore-shell radial segregation being predominant (energetially favored) in this model.
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1 Introdution

Experimental and theoretial results show that alloying atomi lusters an lead to new nano-materials with

new properties and new funtionalities.[1℄ Therefore, there is a need of detailed studies of suh binary lusters,

overing a wide range of atomi speies. Sine the omputational e�ort limits the use of the ab-initio meth-

ods to seleted ompounds, guessed strutures or imposed symmetries, so far suh extensive studies have been

performed using semi-empirial potentials, usually Lennard-Jones potentials (see for example Ref.[2℄). Unfortu-

nately, these potentials apply primary to rare-gas ompounds, and it is known that bimetalli nanostrutures,

with their magneti, opti or atalyti properties, are better andidates for new tehnologial funtionalities.

Studies using semi-empirial potentials spei� to metals, like seond-moment approximation to tight-binding

potentials, inluding Gupta[3, 4℄ and Sutton-Chen[5℄ potentials, are foused on spei� luster sizes and ompo-

sitions, oasionally for various onentrations. (See for example Refs. [6, 7, 8, 9, 10, 11, 12℄). Sometimes, the

strutures obtained with these semi-empirial potentials are loally re-optimized using density funtional theory

(DFT) methods.[6, 7, 8℄ Here, we present a more general approah, similar in some respet to the one presented

in Ref.[2℄ for binary Lennard-Jones lusters. Using a genuine metalli potential derived and applied previously

to homo-atomi lusters,[13, 14℄ we searh for the ground state strutures for all binary lusters of size less

than 40 and for any onentration; moreover, by varying the oupling onstants in a range whih overs a large

number of metalli elements we try to map out the behavior of the bimetalli lusters in the ompositional spae.

The theory employed in deriving these potentials has been applied also to homo-atomi lusters deposited on

surfaes,[14, 15℄ or to the metalli ore of an iron-hydroarbon luster.[16℄ We ould add also that the theory

provides valuable information when applied to marosopi objet like metalli surfaes, in�nite plates or slabs.

It provides, for example, a theoretial derivation for the well known Smoluhowski ansatz[17℄ for the eletron

density at a metalli surfae.[14, 15℄ The theory applies straightforwardly to hetero-metalli ompounds, the

simplest ase of free binary lusters being reported here.

2 Theory

Using a quasi-lassial desription for the eletrons partiipating in a metalli bonding, it has been shown that

the atomi interations in a nanostruture an be desribed by an e�etive potential[13℄

Φij = −
1

2
qz∗i z

∗
j

(

1−
2

qRij

)

e−qRij , (1)

where Rij are the interatomi distanes, q is a variational sreening wavevetor and z∗i are the e�etive ioni

harges whih depends on the atomi speies.

1

It is worth mentioning here that long time ago a similar potential

1

Atomi units are used: the Bohr radius aH = ~2/me2 ∼= 0.53Å for distanes and e2/aH ∼= 27.2eV for energies; −e is the

eletron harge, m is the eletron mass and ~ denotes the Plank onstant.
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has been suggested on semi-empirial grounds, with some suess, for theH2 moleule.[18℄ These e�etive harges

whih play the role of oupling onstants in the e�etive atomi interation (1) an be estimated within the

atomi sreening theory. They aquire small values, as required by a quasi-lassial desription.[13℄ We have, for

example, z∗Na = 0.443 for sodium, z∗Ba = 0.339 for barium and z∗Fe = 0.579 for iron. The sreening wavevetor

minimizes the quasi-lassial energy, and has a z̄∗1/3-dependene, where z̄∗ is a mean e�etive harge. This

equilibrium value for q leads to a z̄∗7/3-behavior for the quasi-lassial energy. The equilibrium strutures

are obtained by minimizing the total potential energy,

∑

i<j Φij , and depend on q only as a sale fator for

the atomi positions. In addition, for homo-atomi lusters the interatomi distanes depends on e�etive

ioni harges only through q, giving rise to universal geometri forms.[13℄ For binary lusters, the equilibrium

strutures depends also on the ratio between the e�etive harges of the two atomi types leading to more stable

geometri forms (ore-shell lusters), distorted homo-atomi forms or even new strutures with new symmetries.

On the other hand, the binding energy depends on the values of both e�etive valene harges; it is obtained

by minimizing the quasi-lassial energy[13℄

Eq =
27π2

640
q4

N
∑

i=1

z∗i −
3

4
q

N
∑

i=1

z∗2i +
1

2

N
∑

i6=j=1

Φij , (2)

with respet to the variational sreening wavevetor q, and by adding the exhange energyEex = −(9/32)q2
∑

i z
∗
i .

In equation (2) the �rst term is the kineti energy of the eletrons moving in the self-onsistent Hartree �eld

ϕ =
∑

i

z∗i exp(−q |r−Ri|)/ |r−Ri| , (3)

where Ri are the atomi positions, and having the eletron density n = q2ϕ/4π. We may note that the self-

onsistent �eld (3) is a superposition of sreened Coulomb potentials. The seond term in equation (2) plays

the role of an eletron self-energy and the last term is the total potential energy. This potential energy inlude

the eletron-eletron and eletron-ion interations (through the self-onsistent �eld given by equation (3)) and

the interation between positively harged ioni ores.

It is worth emphasizing that the e�etive potential given by equation (1) is a genuine many-body poten-

tial beause the variational sreening wavevetor q, as obtained from the minimum ondition ∂Eq/∂q = 0
for the quasi-lassial energy (2), has an impliit dependene on all the atomi positions Ri. On the other

hand, in the numerial problem of �nding equilibrium luster strutures we an avoid the di�ult task of min-

imizing an energy omposed of multipartile potentials by minimizing �rst a redued total potential energy,

Epot/q =
∑

i<j Φij/q with respet to the saled positions Xi = qRi; expressed with these saled positions, the

orresponding saled potential for (1) has a true two-body form, Φij/q = −(1/2)z
∗
i z

∗
j (1− 2/Xij)exp(−Xij). In

this step we �nd the equilibrium form in the X−spae, by �nding the equilibrium saled positions X
0
i . Using

the minimum value for the redued potential energy we minimize the quasi-lassial energy (2) and obtain the

equilibrium sreening wavevetor q0. With this value we obtain the equilibrium positions as R
0
i = X

0
i /q0.

3 Binary lusters

The theory outlined above has been applied to binary lusters AnBN−n, with N = 2, 40, n = 0, N and the ratio

1 ≤ z∗A/z
∗
B ≤ 2.5 (step 0.1) of the e�etive valene harges of the two elements A and B. These parameters

over a very large domain of binary metalli ompounds. The minimization of the potential energy has been

performed by usual gradient method starting from random initial positions. Using a large number of trials

for eah luster inreases the hane of �nding the true ground-state. The use of large statistial ensembles is

required by the inreasing number of isomers ompared with the homo-atomi ase; eah isomer, lusters with

the same omposition and size but with di�erent struture and greater energy ompared to the ground-state,

is aompanied by the so alled homotops, lusters whih, up to permutations between di�erent type of atoms,

share approximately the same geometri struture and energy. A way to overome this di�ulty is to make

suh permutations during the minimization of the potential energy, provided they are energetially favorable.

Beause other authors use the word omposition with other meaning it is important to speify that we use the

term onentration for the ratio between the number of atoms A and the total number of atoms and omposition

for the ratio z∗A/z
∗
B. With this onventions, a hanged onentration means that some atoms A are replaed

by atoms of type B (or vie versa) and a hanged ompositions means that all the atoms of one type (say

A for example) are replaed by atoms of another type (say C for example) and this hange is re�eted in a

variation of the ratio z∗A/z
∗
B; we must note that we an modify the omposition by replaing both types of

atoms with a new pair of atoms, but usually we will keep the B atoms unhanged in the following disussion

beause all the qualitative results are independent of the absolute value of z∗B. By taking permutations during

the minimization of the potential energy we keep the onentration and omposition onstant, so we will �nd a
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Figure 1: Ground-state energy per atom for binary lusters AnBm with z∗B = 0.3

putative global minimum for eah luster size N , onentration n/N and omposition z∗A/z
∗
B (i.e. 11700 global

minima, exepting the homo-atomi global minima). In Refs[2℄ and [19℄ the onentration is allowed to hange

during minimization whih redues drastially the searh spae at the expense of loosing all the information

about a large number of lusters. The results reported here have been obtained using up to 1000 initial random

positions for eah luster size, omposition an onentration. Finally, the results have been re�ned by making

adiabati evolutions, i.e. starting from eah ground-state and the �rst isomer and going in small (adiabati)

steps toward lusters with di�erent oupling onstant z∗A/z
∗
B. The number of ground-states modi�ed by this

adiabati searh is less than 0.7%, whih gives on�dene in the auray of the results. For eah omposition,

the binding energies (ground state and isomers) and equilibrium strutures have been obtained. The ground-

state binding energies per atom for various values of the ratio z∗A/z
∗
B are presented in Figure 1. As stated above,

the binding energy depends on both values z∗A and z∗B; the energies presented in Figure 1 orrespond to z∗B = 0.3
but an be easily saled to di�erent values of z∗B; for z∗A/z

∗
B =onstant, we an obtain from (2) the following

saling relations for the binding energy E, the sreening wavevetor q, and the equilibrium positions Ri,

E = z
∗7/3
B E0 +

9

32
Z∗
0q

2
0(z

∗7/3
B − z

∗5/3
B ) ,

q = q0z
∗1/3
B , (4)

Ri = R
0
i z

∗−1/3
B ,

where Z∗
0 =

∑

i z
∗
i is the total ioni harge; the variables labeled by

′0′ refer to z∗B = 1. We an see in Figure

1 how the energy range inreases at higher z∗A/z
∗
B values; we obtain, for instane, a range of less than 0.5eV

for z∗A/z
∗
B = 1.1 and more than 8eV for z∗A/z

∗
B = 2.5. This energy range variation an be understand as a
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Figure 2: Stability spetrum for various values of z∗A/z
∗
B.

rapid hange in the mean e�etive valene harge z̄∗ when we hange the onentration for lusters omposed

of very dissimilar atoms (large z∗A/z
∗
B); as noted above the quasi-lassial energy behave like z̄∗7/3. We may

see in Figure 1 that even for large z∗A/z
∗
B the energy is slowly varying for onstant onentrations (onstant

onentration urves are the lines starting from the origin on the graphs shown in Figure 1).

For homo-atomi lusters the stability with respet to the variation of the number of atoms is tested by the

seond di�erene of the energy;[20, 21, 22℄ it de�nes the so alled stability spetrum, sometimes well orrelated

with the experimental mass-abundane spetrum; its maxima indiate the magi numbers, lusters with higher

stability ompared to their neighbors. The magi numbers obtained for homo-atomi metalli lusters are 6, 13,

19, 23, 26, 29, 34, ... ;[13℄ these numbers, now known as geometrial magi numbers, beause they are given by

the lose paking in the iosahedral strutures, have been obtained with various other methods like, for example

with Morse potentials.[23℄ For binary lusters we an de�ne two families of suh spetra for eah type of atoms:

∆A
2 E = En+1,m + En−1,m − 2En,m

(5)

∆B
2 E = En,m+1 + En,m−1 − 2En,m

where En,m is the ground-state energy of the binary luster AnBm, ∆
A
2 E and ∆B

2 E indiate the luster stability

with respet to the variation of the number of A-atoms (or B-atoms respetively) at �xed number of B-atoms
(or A-atoms respetively). Eah spetrum has magi numbers; the oinidene of a maximum in both spetra

de�ne a magi pair {n,m}, i.e. a double magi lusters AnBm, whih indiate the higher stability of the luster

ompared to his neighbors: An−1Bm, An+1Bm, AnBm−1 and AnBm+1. The maxima in a sum spetrum de�ned

4



Figure 3: The luster A13B20 (left), double magi for z
∗
A/z

∗
B ≥ 1.7 and ground-state for z∗A/z

∗
B ≥ 1.6, displaying

an A13 iosahedron ore (enter) and a B20 dodeahedron shell (right).

as

∆2E = ∆A
2 E +∆B

2 E =

(6)

= En+1,m + En,m+1 + En−1,m + En,m−1 − 4En,m

an also be viewed as magi pairs; by analogy with the homo-atomi ase,[13℄ we an de�ne a relative abundane

D = ln I4n,m/In+1,mIn−1,mIn,m+1In,m−1, where In,m is the Boltzmann statistial weight; up to a onstant we

have D ≃ ∆2E, where ∆2E is given by equation (6). The �rst de�nition for these magi pairs, viewed as

maxima in both relations given in equation (5), is more restritive; nevertheless, we have found a very lose

similarity between the results obtained with these two de�nitions in the whole range of e�etive valene harges

we have studied. The de�nitions given here for magi pairs follows losely the de�nition for magi numbers in

homo-atomi lusters, whih re�ets an enhaned stability relative to all the neighbors with one atom more or

one atom less. The only di�erenes are that every binary luster is indexed with two numbers (the numbers

of atoms of eah speies) and has four neighbors instead of two, relative to whih we must test the stability.

The de�nition of magi spetra re�et also the ondensation and evaporation proesses that take plae in a

majority of experimental setups. Only the �rst order proesses (involving loosing or aquiring of a single atom)

are taken into aount. It is somehow tempting to onsider also, for example, the luster An−1Bm+1 as a

neighbor of AnBm in the stability spetrum; but AnBm an evolve into An−1Bm+1 or vie versa only through

seond order proesses (losing an atom of one type and aquiring an atom of another type). Stability relative

to suh neighbors an be tested by de�ning a spetrum at �xed size and variable onentration.[1, 9, 24℄ Also,

the mixing energy de�ned as ∆N = En,m− (nEN,0+mE0,N )/N , was previously used for desribing the relative

stability and mixing in binary lusters.[7, 25℄

The sum spetrum given by equation (6) is shown in Figure 2 for all the values of z∗A/z
∗
B; the darker squares

indiate magi pairs; also, the magi pairs aording to the �rst de�nition are marked with white dots; we an

see the above mentioned similarity between the two de�nitions. We an see in Figure 2 that for small values

of the ratio z∗A/z
∗
B the magi pairs orrespond to the homo-atomi magi numbers for N = n +m. One the

disrepany between atomi speies inreases, this homo-atomi behavior gradually disappears giving plae to

new magi pairs. This an be explained by the small distortions in the iosahedral symmetry aused by the small

di�erene in the interatomi interations A−A, A−B, B−B, and by strutural transitions to f or disordered

geometries. The magi pairs are on�ned to ertain regions in the range of the parameter z∗A/z
∗
B. Varying the

omposition, the magi peaks gradually appear, starting with some value z∗A/z
∗
B and may vanish at a higher

z∗A/z
∗
B value. We obtained, for instane, the magi pairs {6,32} for z∗A/z

∗
B ≥ 1.4, {10,22} for 1.5 ≤ z∗A/z

∗
B ≤2.4,

{13,20} for z∗A/z
∗
B ≥ 1.7, {14,24} for 1.4 ≤ z∗A/z

∗
B ≤ 2.0 and {26,12} for z∗A/z

∗
B ≥ 1.8, whih orrespond to

lusters having N=32, 33 or 38 whih are not homo-atomi magi numbers.[13℄

In the lowest range of the z∗A/z
∗
B values the equilibrium strutures have with preponderane iosahedral

symmetry and display a ore-shell atomi arrangement, with the 'heavier', i.e. greater e�etive harge, A-atoms
in the enter and a B-atoms shell. There is experimental and theoretial evidene for this radial segregation

in binary lusters (see for example Refs. [6, 28, 29, 30, 31℄). In our model segregation is favored over mixing

beause the strength of the A − B interation is always smaller than the A − A interation (in fat, for a

onstant interatomi distane and sreening wavevetor, the strength of the A − B interation is a geometri

mean between the A−A and the B−B interation; therefore the mixing energy[7, 25℄ tends to aquire positive

values whih points out the preferene for segregation over mixing in our model; we obtain negative mixing

energies for binary lusters with similar type of atoms, z∗A/z
∗
B ≤ 1.3, at various onentrations, where alloying is

favored aording to this riterion). The A atoms segregate in the enter where atoms have greater oordination

numbers and an inreasing number of A − A bonds is energetially favorable. The mixing ould take plae if

A−B had been the strongest interation.[1℄ Comparing the e�etive valene harges for various types of atoms

we obtain, for example, that the ore positions are oupied by Cu atoms in Ag − Cu, Au− Cu, by Co atoms
in Co − Pt, Co − Pd, by Pd atoms in Ag − Pd, Au − Pd and by Pt or Ni atoms in Pd − Pt, Ag − Pt or
Ag−Ni lusters, in good agreement with other alulations.[6, 9, 12, 25, 26, 27℄ On the other hand for Ag−Au
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Figure 4: The bimetalli 38-atoms luster orresponding to the magi pairs {6,32} (the top row), {14,24} (the

middle row) and {26,12} (the bottom row).

Figure 5: The double magi luster A10B22 (left) with a f A−ore (enter) and an outside B−shell (right).

systems we obtain that the Ag atoms oupy ore positions in ontrast to the tendeny (although diminished

ompared to other ompounds) towards surfae segregation found in Ref. [27℄ but in agreement with more

reent DFT alulations.[25℄ Although new strutures and symmetries appear, the iosahedral symmetry is

often obtained for larger values of the ratio of the e�etive harges of the two atomi speies. For example,

the magi luster A13B20, whose struture is presented in Figure 3, has a perfet iosahedral symmetry and a

ore-shell atomi arrangement with a ore iosahedron formed by the A-atoms and an outside shell of B-atoms
grouped in a perfet dodeahedron. The high stability of this luster an be explained by the favorable ratio of

the numbers of atoms A and B (favorable onentration). The A13-iosahedron ore is also magi in the homo-

atomi series. In spite of di�erent strengths in the inter-atomi interation, eah atom speies oupies distint

iosahedral shells, whih do not lead to symmetry distortions, and gives stability. Moreover, the strength of the

inter-atomi interation A − B, greater than the B − B interation, equilibrates the inomplete outside shell

(the so alled anti-Makay shell whih beomes omplete at N = 45) by maximizing the numbers of A − B
bounds in detriment of the weaker B−B bounds. One the ratio between the two e�etive harges is dereased

this geometri arrangement beomes energetially unfavorable, the homo-atomi ground-state having a rather

disordered struture. This is a �rst example of strutural transition indued by omposition. Suh ore-magi

strutures (the ore is magi itself, as a homo-atomi luster) whih are also stable against the variation of the

number of B atoms, forming in this way magi pairs, have been obtained, usually for higher z∗A/z
∗
B values, for

various magi numbers of A-atoms. For instane, we an identify the magi pairs {6, 32}, {13, 20}, {23,m},
whit m = 3, 6 and {26,m} , with m = 3, 6, 9, 12.

A partiular luster is the 38-atoms lusters whih beomes highly stable, in di�erent equilibrium strutures,

for the magi pairs {6, 32}, {14, 24} and {26, 12}. The equilibrium geometri forms for these lusters are shown in

Figure 4. The lusters A6B32 and A26B12 belong to the above mentioned ore-magi strutures. The struture

A14B24 has a f symmetry, his A14-ore being a fae entered ube and the outside B24-shell a trunated

otahedron. This is not the only luster with f symmetry obtained by the present approah. The luster
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Figure 6: Transitions from Frank-Kasper polyhedra to fcc (�rst row; N = 14, z∗A/z
∗
B ≥ 2.2) or bcc (seond row,

N = 15, 1.4 ≤ z∗A/z
∗
B ≤ 2.3) symmetries.

orresponding to the magi pair {10, 22}, whose struture is presented in Figure 5, has also a f symmetry.

Although the iosahedral symmetry is dominant, for small sizes (N < 20) many of the ground-state strutures
obtained for homo-atomi lusters are the so alled Frank-Kasper polyhedra.[32, 33℄ For example, we have

obtained Frank-Kasper polyhedra for N = 8, 11, 14 and 15, N = 11 and N = 15 being also magi numbers

(although not very pronouned ompared to N = 13 and N = 19 whih have iosahedral symmetry).[13℄ The

strutures obtained for N = 14 and N = 15 are presented in the �rst olumn of Figure 6. We have found that

alloying these lusters with nA ≥ 2 usually destroys the symmetry of these strutures. For nA = 1, the A atom

is plaed in the enter and the struture remain unhanged. We have found also that for spei� onentrations

the strutures beomes highly symmetri: if 6 atoms from the B14 luster are replaed with spei� A atoms

suh that z∗A/z
∗
B ≥ 2.2 the ground-state struture beome a single fcc ell with the A atoms at the faes of

the B-atoms ube; in a similar way, form the B15 lusters using A atoms with 1.4 ≤ z∗A/z
∗
B ≤ 2.3 we obtain

the A9B6 luster whose ground-sate struture has a perfet bcc ell formed by the A atoms while the B atoms

�nd equilibrium positions in the viinity of the nearest neighbor enters. The ground-state strutures of these

lusters are presented in Figure 6.

The strutures presented in Figure 4 suggest an iosahedral-f transition for the AnB38−n lusters, driven by

the variation of onentration (variation of n) at �xed omposition (at �xed z∗A/z
∗
B ratio). The 38-atoms binary

luster was previously studied for ComPt38−m,[9℄ for mixed rare-gas lusters,[19℄ Morse binary lusters, [24℄ and

for Ag−Ni, Ag−Cu, Pd−Pt[6, 25, 26℄ and Ag−Pd, Au−Cu, Ag−Au, Ag−Pt, Pd−Au[25, 27℄ nanopartiles
using a geneti algorithm approah with Gupta-like potentials loally optimized using DFT, where transitions

form f to iosahedral symmetries an be identi�ed. This type of transition has been obtained for various luster

sizes, espeially at large z∗A/z
∗
B ratio. Our potential favors iosahedral strutures for homo-atomi lusters with

N = 38, a situation whih also ours for Morse lusters, for ertain potentials widths.[24℄ In fat, there is

a good agreement between the homo-atomi ground-state strutures and magi numbers obtained within the

present approah[13℄ and those obtained using Morse interations with ertain potential parameters.[23℄ Also,

in Refs.[9, 6, 19℄ the ground-state strutures for N = 38 homo-atomi lusters exhibit a f-symmetry and

alloying gives rise to iosahedral ore-shell strutures. Here, we �nd an inverted transition, from an iosahedral

struture in pure lusters to a f-like struture in binary lusters with very dissimilar type of atoms. For

atoms with z∗A/z
∗
B lose to 1, whih seems to be the ase for Co − Pt lusters (z∗Co/z

∗
Pt ≃ 1.1), the strutures

remains iosahedral also for binary lusters. In this respet, our results agree with the strutures reported in

Ref.[9℄ (where the strutures are iosahedral from m = 5 to m = 35). A large number of iosahedral strutures

were obtained also for Ag − Cu and Ag − Pd.[26, 27℄ but the f-like strutures were also present, espeially

for Ag − Pd. Our estimation for the e�etive valene harges gives z∗Pd/z
∗
Ag ≃ 2 and z∗Cu/z

∗
Ag ≃ 1.4, values

for whih we an observe the above mentioned iosahedral-f transitions. We may note also that the magi

struture A14B24 presented in Figure 4 was obtained also for Pt14Pd24 as being highly stable.[27℄ We have

obtained that this struture is groundstate for 1.3 ≤ z∗A/z
∗
B ≤ 2.2 and our estimation for z∗Pt/z

∗
Pd ≃ 1.3 is in

this range. On the other hand, this ratio is slightly outside the range 1.4 − 2.0 for whih the pair {14,24} is

magi aording to our de�nition. We may also note that perhaps a better agreement between our strutures

and those presented in Refs. [26, 27℄ is found for the 34-atoms lusters, espeially for Ag − Cu and Ag − Ni
where the iosahedral strutures (�vefold panake) are predominant.

A new kind of strutural transition, a omposition indued transition, is obtained for �xed numbers of atoms

A and B (�xed onentration), by varying z∗A/z
∗
B, i.e. by replaing at least one type of atom with one having

a di�erent e�etive harge. For example, the luster A14B24 has two strutural transitions, its ground-state

being of iosahedral type (slightly disordered) for z∗A/z
∗
B ≤ 1.2, f for 1.3 ≤ z∗A/z

∗
B ≤ 2.2 and iosahedral for
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Figure 7: Strutural transitions in the A7B22 luster. The top row represents the ground state for z∗A/z
∗
B ≤ 1.5,

the middle row orresponds to 1.6 ≤ z∗A/z
∗
B ≤ 1.9 and the bottom row to z∗A/z

∗
B ≥ 2.0.

z∗A/z
∗
B ≥ 2.3. The existene of these strutural domains bounded by strutural transition points is a general

feature of binary lusters. It is not restrited to magi pairs; moreover, it has been obtained for almost all

ombinations (ompositions) AnBm. Beause we have performed our study with step 0.1 of the parameter

z∗A/z
∗
B we an identify with this auray the loation of the transition points. For instane, in the above

example, we have two transition points, one loated between 1.2 − 1.3 and another between 2.2 − 2.3. Often,
for the left-right values whih border the transition points we an observe ground-state←→isomer inversions,

i.e. the left ground-state beomes the right isomer and (or) the left isomer beomes the right ground-state.

This implies that, at the transition points, the ground state is degenerate; we have two strutures with di�erent

symmetries but with the same ohesion energy. Of ourse, there remains the question of �nding two atomi

speies whose e�etive valene ratio has this ritial value. On the other hand, even if we �nd suh atomi

speies, it is likely that quantum orretions to the quasi-lassial desription[13℄ remove this degeneray. In

this respet, the orret onlusion is that it is possibly to synthesize binary metalli lusters, made up of spei�

atoms, with very small gaps between the ground-state and the �rst isomers. These small gaps ould imply an

inreased experimental abundane even if they are not magi (the theoretial abundane spetrum is referred

to the ground-state strutures; the existene of suh small gaps for spei� ompositions ould loally alter this

spetrum). On the other hand the task of produing lusters with a spei� geometry will beome di�ult in

the presene of this shape degeneray.

Another example of a omposition-indued strutural transition is the luster A7B22. As we an see in Figure

7 we have obtained three equilibrium strutures for various ompositions. When we vary the ratio z∗A/z
∗
B the

struture presented in the top row of Figure 7 remains ground-state for z∗A/z
∗
B ≤ 1.5 and beomes the �rst

isomer for z∗A/z
∗
B = 1.6. We have a transition point somewhere between z∗A/z

∗
B = 1.5 and z∗A/z

∗
B = 1.6. The

struture presented in the middle row of Figure 7 is found to be the ground-state for 1.6 ≤ z∗A/z
∗
B ≤ 1.9 and

the �rst isomer for z∗A/z
∗
B = 2.0. We have here a seond transition point. The struture of the �rst isomer

for z∗A/z
∗
B = 1.9, presented in the bottom row of Figure 7 beomes ground state for z∗A/z

∗
B ≥ 2.0. Although

very ommon, this inversion between the ground-state and the �rst isomer in the viinity of a transition point

annot be generalized as a rule. For example, at the �rst transition point for the luster A7B22 we have inversion

only in one way: the ground-state for z∗A/z
∗
B = 1.5 beomes isomer for z∗A/z

∗
B = 1.6 but the �rst isomer for

z∗A/z
∗
B = 1.5 and the ground-state for z∗A/z

∗
B = 1.6 do not have the same struture. They do have similar ore

struture but the outside shells are equilibrated in slightly di�erent on�gurations.

We may note also that the struture presented in the last row in Figure 7 has a star-shaped appearane

when viewed from above as in Figure 8 and has been previously obtained using the many-body Gupta potential

for the 29-atom Pd− Pt luster at various onentrations.[10, 11℄
Beside the ore-shell segregation, whih is dominant for binary nano-lusters, we an identify another type
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Figure 8: The star-shaped ground-state of the luster A7B22 for z
∗
A/z

∗
B ≥ 2.

Figure 9: The domain walls segregation in the luster A7B12 irrespetive of the ratio z∗A/z
∗
B.

of segregation. In the struture shown in the bottom row in Figure 7 the B-atoms oupy two distint regions

(up-down) separated by an A-atoms region. This kind of domains walls segregation is very rare, the ore-shell

segregation being predominant; it has been obtained also for the luster A7B12, whose struture is presented in

Figure 9. A similar segregation has been obtained for the Lennard-Jones luster A7B12[2℄ and also in Co− Pd
nanolusters for sizes N = 13 and N = 19, using a geneti algorithm in ombination with a Gupta potential.

On the other hand the segregation shown in Figure 9 an be desribed as a surfae segregation, beause the

12 B atoms, instead of forming a uniform losed surfae around the 7 atoms A-ore, segregate in two distint

regions diametrially opposite on that surfae. Moreover, a surfae segregation an be observed also in the

struture of the luster A26B12 shown in Figure 4. There, the 12 B atoms forming the outside shell segregate

in 4 distint regions, eah region onsisting of 3 B atoms losely bound together. Suh a surfae segregation

ould be interpreted as a variable surfae omposition in experimental measurements. Evidene for a variable

surfae omposition in Ar/Xe lusters in photoeletron spetrosopy has been reported in Ref. [29℄.

Varying the ratio z∗A/z
∗
B we an obtain all the possible strutures for a spei� nanoalloy, whih an be used

as an input for ab initio alulations. The values of the e�etive valene harges z∗ an be viewed as input

parameters in the present theoretial model. Exploring a large domain for the values of these e�etive harges we

have obtained qualitative results like segregation or strutural transitions driven by onentration or omposition

in good agreement with other models. In order to ompare numerial values, as binding energies or interatomi

distanes, we an use as a �rst approximation the estimation[13℄ z∗ = z(1+ 0.84Z1/3) exp(−0.84Z1/3), where z
is the nominal valene and Z is the atomi number. It is ustomary to use the 13-atom lusters as a benhmark

against ab initio DFT alulations. In Table 1 we pressent suh a omparation with other high-level alulations

for Co (Z = 27, z = 2, z∗ = 0.566), Pt (Z = 78, z = 4, z∗ = 0.507) and Cu (Z = 29, z = 1, z∗ = 0.271) metalli
lusters. In all ases the iosahedral struture is the ground-state struture; as we an see in Table 1 there is a

good agreement for binding energies and interatomi distanes. The same level of agreement is maintained for

binary 13-atom lusters. We obtained for example a binding energy of 2.93eV per atom for Co6Cu7 whih is

very lose to the value 3.08eV per atom obtained in Ref. [35℄ by a DFT optimization of the strutures resulted

from a geneti algorithm with a Gupta-like many-body potential. Similarly, we obtain a binding energy of

4.8eV per atom for Co12Cu, whih ompares well with the values 4.15 − 4.23eV per atom from Ref. [35℄. For

Cu-rih lusters the agreement is poorer; the same behavior an be observed in pure Cu lusters, although the

interatomi distanes are in good agreement. We an suspet here a poor estimation of the e�etive harge.

We have ompared also the binding energies per atom for Co− Pt lusters. For example, we obtained 4.14eV,
4.55eV and 5.04eV for CoPt12, Co6Pt7 and Co12Pt, whih ompare well with the values 3.49eV, 3.66eV and

4.45eV taken from Ref. [35℄

For Co−Pd lusters (ZPd = 46, zPd = 2, z∗Pd = 0.395) we have ompared our results with those obtained in

Ref. [12℄ for N =7, 13, 19, 23 and 26 using a Gupta potential in ombination with a geneti algorithm energy

minimization and heked with DFT alulations for some seleted lusters. Al the strutures reported there

are in agreement with our alulations. We have obtained deahedral strutures for N = 7 and simple, double,

triple and, respetively, quadruple iosahedral strutures for N = 13, 19, 23 and 26. The Co atoms, with

higher e�etive harges (z∗Co = 0.566), tends to segregate at the enter forming, for example, a tetrahedron in
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z∗ E/N(eV) Lb(Å) Refs.

0.566 5.12 2.00
Co13 4.89 2.42 Ref. [9℄

4.08 2.33 Ref. [34℄

4.48 2.49 Ref. [35℄

0.507 4.06 2.08
Pt13 3.47 2.79 Ref. [35℄

4.38 2.79 Ref. [9℄

4.43 2.6 Ref. [36℄

Cu13 0.271 1.12 2.56
2.19 2.55 Ref. [35℄

Table 1: Binding energies per atom and the �rst nearest distane for various metalli lusters ompared with

other results.

Co4Pd22, a hexahedron (triangular bipyramid) in Co5Pd21 or a apped hexahedron in Co6Pd20. If the number
of Pd atoms is insu�ient to form an outside shell (large Co onentrations) we an identify mixed outside

Co−Pd shells or domain wall segregation like in Figure 9. Nevertheless, the general trend remain the ore-shell

iosahedral segregation. The interatomi distanes are also in good agreement with those obtained in Ref. [12℄.

For example, we have obtained a Co − Co distane of 2.62Å (ompared to 2.39Å), the mean nearest neighbor

Co − Pd distane 2.36Å (ompared with 2.44Å) and Pd − Pd distane 2.31Å (ompared with 2.50Å) for the
Co2Pd5 luster. Another example is Co7Pd12; we obtained the mean nearest-neighbor distanes: 2.07Å for

Co−Co (ompared with 2.34Å), 2.06Å for Co−Pd (ompared with 2.52Å) and 2.22Å for Pd−Pd (ompared

with 2.62Å).
It is worth emphasizing that there are also di�erenes between our results and other numerial alulations.

Some of them are a onsequene of the form of the potential, like the already mentioned preferene for iosahedral

strutures in homo-atomi lusters. (We an note here that sometime there is no onsensus regarding the

lowest energy strutures for more simple ompounds like, for example, Pt13 (see for instane Ref. [10℄)). Other
di�erenes ould arise from our poor estimation of the e�etive valene harges, and the point-like approximation.

That ould be the ase for the star-shaped struture from Figure 9 obtained as a ground-state for z∗A/z
∗
B ≥ 2.

This shape was also obtained for Pd− Pt lusters in Ref. [10℄, but our estimation gives z∗Pt/z
∗
Pd ≃ 1.3.

4 Conlusions

In onlusion, despite the relatively small luster sizes, we have obtained the general harateristis of binary

metalli lusters: the magi pairs in the stability spetra, the radial, domain walls and surfae segregation, the

new ground-state geometries with f symmetry and the strutural transitions indued by hange in omposition

or onentration. Two types of transitions have been identi�ed: one by varying the ratio z∗A/z
∗
B and another by

varying the relative onentration for a �xed ratio z∗A/z
∗
B. These features, obtained here for bimetalli lusters

onsisting of up to 40 atoms, are expeted to hold also for larger binary lusters although new strutures and

segregation types ould appear, like, for example magi iosahedrons with alternating shells[37℄ or pathy multi-

shell hemial ordering.[38℄ It is worth noting that by adding an interation energy with a metalli surfae[15℄ to

the quasi-lassial energy given by (2), the present approah an be applied to binary metalli lusters deposited

on surfaes, whih is the ommon environment for most of the intended tehnial appliations. In addition,

despite the inrease in the number of isomers whih requires even larger statistis there are no impediments in

applying this method to trimetalli lusters or more omplex hetero-metalli lusters.
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