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Abstract—We derive van der Waals-London and Casimir forces by
calculating the eigenmodes of the electromagnetic field interacting
with two semi-infinite bodies (two halves of space) with parallel
surfaces separated by distance d. We adopt simple models for metals
and dielectrics, well-known in the elementary theory of dispersion.
In the non-retarded (Coulomb) limit we get a d−3-force (van der
Waals-London force), arising from the zero-point energy (vacuum
fluctuations) of the surface plasmon modes. When retardation is
included we obtain a d−4-(Casimir) force, arising from the zero-
point energy of the surface plasmon-polariton modes (evanescent
modes) for metals, and from propagating (polaritonic) modes for
identical dielectrics. The same Casimir force is also obtained for
“fixed surfaces” boundary conditions, irrespective of the pair of
bodies. The approach is based on the equation of motion of the
polarization and the electromagnetic potentials, which lead to coupled
integral equations. These equations are solved, and their relevant
eigenfrequencies branches are identified.

1. INTRODUCTION

The Casimir force was originally derived by estimating the zero-point
energy (vacuum fluctuations) of the electromagnetic field comprised in-
between two ideal, perfectly reflecting, semi-infinite metals (two halves
of space) separated by distance d [1]. As it is well-known, it goes
like d−4 for distances greater than the characteristic electromagnetic
wavelengths of the bodies (plasmon “wavelengths”). Further on, the
calculations have been cast in a different form, by resorting to the
fluctuations theory [2, 3], and a d−3-force has been obtained for the
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non-retarded (Coulomb) interaction, which corresponds to the van der
Waals-London force. The matter polarization is usually represented
in this case by a dielectric function. Recently, there is a renewed
interest in this subject, motivated, on one hand, by the role played
by plasmons, polaritons and other surface effects arising from the
interaction between the electromagnetic field and matter and, on
the other hand, by the querries related to the applicability of a
dielectric function for discontinuous bodies [4–20]. We report here on
a different investigation of these forces, based on the calculation of the
eigenfrequencies of the electromagnetic field interacting with matter.

We assume a simple model of matter, consisting of mobile particles
with charge −e and mass m, moving in a rigid neutralizing background,
and subjected to certain forces. Such a model is reminiscent of the
well-known jellium model of electron plasma, though it is generalized
here to some extent. In the presence of the electromagnetic field
matter polarizes. We leave aside the magnetization (we consider only
non-magnetic matter) and relativistic effects. We represent the small
disturbance in the density of the mobile charges as δn = −ndivu, where
n is the (constant) concentration of the charges and u is a displacement
field in the positions of these charges. The charge disturbance is
therefore ρ = endivu. This representation is valid for Ku(K) ¿ 1,
where K is the wavevector and u(K) is the Fourier transform of the
displacement field.

For homogeneous and isotropic matter the displacement field
obeys an equation of motion which can be taken of the form

mü = −eE− eE0 −mω2
0u−mγu̇, (1)

where E is the (internal) electric field, E0 is an external electric field,
ω0 is a frequency parameter corresponding to an elastic force and γ is a
dissipation parameter. Making use of the temporal Fourier transform
we get

u(ω) =
e

m

1
ω2 − ω2

0 + iωγ
(E + E0) (2)

(where we dropped out the argument ω of the electric fields). On
the other hand, from Maxwell’s equation divE = 4πendivu, we get
the (internal) electric field E = 4πneu (equal to −4πP, where P is
the polarization). Making use of Equation (2) we get the dielectric
function

ε(ω) = 1− ω2
p

ω2 − ω2
0 + iωγ

(3)

from its definition E0 = ε(E+E0), where ωp, given by ω2
p = 4πne2/m,

is the plasma frequency. The dielectric function given by Equation (3)
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is well known in the elementary theory of dispersion [21]. It proves to
be a fairly adequate representation for matter polarization in various
bodies. We can view ωp, ω0 and γ as free parameters, thus being able
to simulate various models of matter. For ω0 = γ = 0 we get the well-
known dielectric function of an ideal plasma; if ω0 = 0 we have the
dielectric function of the optical properties of simple metals for ω À γ
(Drude model), and the dielectric function corresponding to the static
(or quasi-static) currents in metals for ω ¿ γ; for ω0 À ωp we have a
dielectric function of dielectrics with loss; and so on.

In addition, making use of Equation (2), we can compute also
the electric conductivity σ, from its definition j = σ(E + E0), where
j = −enu̇ is the current density. We get the well-known conductivity

σ(ω) =
ω2

p

4π

iω

ω2 − ω2
0 + iωγ

, (4)

whence, for instance, the static conductivity for metals σ = ω2
p/4πγ;

parameter γ can be viewed as the reciprocal of a damping time τ (or
relaxation time, or lifetime), γ = 1/τ , and we get the well-known static
conductivity σ = ne2τ/mγ.

Therefore, the equation of motion (1) turns out to be an adequate
starting point for representing the matter polarization. However, we
must note that for dielectrics, which may imply oscillations in localized
atoms (in our model through the frequency ω0), the classical dynamics
assumed here turns out to be inadequate in the retarded regime, and
a quantum treatment is then required.

In the non-retarded limit the electric field E in Equation (1)
is given by the Coulomb law, i.e., E = −gradΦ, where Φ is the
static Coulomb potential arising in matter. The latter depends on
the charge disturbance ρ = −eδn, therefore on u. Then, it is easy
to see that the equation of motion (1) leads to an integral equation
for the displacement field u. Its eigenvalues give the plasmon modes.
For retarded interaction, the electric field E in Equation (1) is given
by the vector potential A and the scalar potential Φ trough E =
−1

c
∂A
∂t −gradΦ. Making use of the radiation (Kirchhoff) formulae, these

potentials can be expressed as integrals containing the displacement
field u (through the charge and current densities), and we get again
an integral equation for u. Its eigenvalues give polariton-like modes.
The use of integral equations in treating the electromagnetic field
interacting with matter was previously indicated in connection with
the so-called Ewald-Oseen extinction theorem [22]. We have applied
this approach to a semi-infinite (half-space) body, as well as to a slab
of finite thickness [23]. In this case, beside the bulk displacement
field, there appears a surface displacement field also, and the integral
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equations couple these degrees of freedom. We have solved these
coupled integral equations and computed bulk and surface plasmons
and polaritons, dielectric response, reflected, refracted and transmitted
fields, and derived generalized Fresnel relations. We employ the
same procedure here for two semi-infinite bodies (two halves of the
space) separated by distance d, in order to get the electromagnetic
eigenfrequencies and to derive van der Waals-London and Casimir
forces. We do it in two steps: First, for static Coulomb (non-retarded)
interaction (valid for wavelengths much longer than the characteristic
size of the bodies) and, second, for retarded interaction.

2. SURFACE PLASMONS. VAN DER WAALS-LONDON
FORCES

We consider two semi-infinite bodies (two halves of space) with parallel
surfaces in the (x, y)-plane, separated by distance d. The bodies
occupy the regions z < −d/2 and, respectively, z > d/2. We take
two displacement fields u1,2, giving rise to two charge disturbances
δn1,2 = −n1,2divu1,2. We consider first the equation of motion for an
ideal plasma. In general, we leave aside the dissipation (parameter γ
in Equation (1)), which is irrelevant for our discussion. The equation
of motion reads

mü1 = grad
∫

dR
′
U

(∣∣∣R−R
′
∣∣∣
)[

n1divu1

(
R
′)

+n2divu2

(
R
′)]

, (5)

and a similar equation for u2, which can be obtained from Equation (5)
by interchanging the labels 1 and 2 (1 ←→ 2); U(R) = e2/R in
Equation (5) is the Coulomb interaction. Since we are interested in the
eigenmodes, we leave aside the external field E0. We use R = (r, z)
for the position vector R, where r = (x, y), and the representation

u1,2 = (v1,2, w1,2)θ(±z − d/2) (6)

for the displacement fields, where θ(z) = 1 for z > 0 and θ(z) = 0 for
z < 0 is the step function; the ± sign is associated with labels 1 and
2, respectively. The divergence in Equation (5) can now be written as

divu1,2 =
(

divv1,2+
∂w1,2

∂z

)
θ(±z−d/2)+w1,2(±d/2)δ(±z−d/2), (7)

where w1,2(±d/2) means w1,2(r, z = ±d/2). We notice in Equation (7)
the (de)polarization charge arising at the surfaces z = ±d/2. We
employ Fourier representations of the form

v1,2(r, z; t) =
∑

k

∫
dωv1,2(k, z; ω)eikre−iωt (8)
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and similar ones for w1,2, and use the Fourier transform

1√
r2 + z2

=
∑

k

2π

k
e−k|z|eikr (9)

for the Coulomb potential. Then, we notice that Equation (5) implies
that v1,2 are parallel with the wavevector k (in-plane “longitudinal”
modes), and ikw1,2 = ∂v1,2

∂z . We use this latter relation to eliminate
w1,2 from the equations of motion. In addition, we introduce the
notation v1,2 = kv1,2/k. Then, it is easy to see that Equation (5)
yields two coupled integral equations

ω2v1 =
ω2

1k

2

∫ ∞

d/2
dz

′
e−k|z−z′|v1 +

ω2
1

2k

∫ ∞

d/2
dz

′ ∂

∂z′
e−k|z−z′|∂v1

∂z′

+
ω2

2k

2

∫ −d/2

−∞
dz

′
e−k(z−z′)v2+

ω2
2

2

∫ −d/2

−∞
dz

′
e−k(z−z′) ∂v2

∂z′

z > d/2,

ω2v2 =
ω2

1k

2

∫ ∞

d/2
dz

′
ek(z−z′)v1 − ω2

1

2

∫ ∞

d/2
dz

′
ek(z−z′) ∂v1

∂z′

+
ω2

2k

2

∫ −d/2

−∞
dz

′
e−k|z−z′|v2+

ω2
2

2k

∫ −d/2

−∞
dz

′ ∂

∂z′
e−k|z−z′|∂v2

∂z′

z < −d/2,

(10)

where ω2
1,2 = 4πn1,2e

2/m and we dropped out the arguments ω, k.
Integrating by parts in Equation (10) we obtain a system of two
algebraic equations

(
ω2 − ω2

1

)
v1 = −1

2
e−kz

[
ω2

1e
kd/2v1(d/2)− ω2

2e
−kd/2v2(−d/2)

]
,

z > d/2,

(
ω2 − ω2

2

)
v2 =

1
2
ekz

[
ω2

1e
−kd/2v1(d/2)− ω2

2e
kd/2v2(−d/2)

]
,

z < −d/2.

(11)

We can see that in this non-retarded limit the two bodies are coupled
only through their surfaces.
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For v1(d/2) = v2(−d/2) = 0 in Equation (11) we get the bulk
plasmons ω = ω1,2. Making z = ±d/2 in Equation (11) we get
the system of equations for the surface modes. The corresponding
dispersion equation is given by(

ω2 − 1
2
ω2

1

)(
ω2 − 1

2
ω2

2

)
− 1

4
ω2

1ω
2
2e
−2kd = 0. (12)

For d = 0 we obtain the surface plasmon of a metallic interface given
by ω2 = 1

2(ω2
1 + ω2

2), while for d → ∞ we get the surface plasmons
ω = ω1,2/

√
2 for free (uncoupled) surfaces. If the body labelled by

2 for instance is a dielectric, then ω2 in the second Equation (11) is
replaced by ω2 − ω2

0. In the limit ω0 À ω2 and for d = 0 we get the
surface plasmon ω = ω1/

√
1 + ε2, corresponding to a dielectric-metal

interface, where ε2 = 1+ω2
2/ω2

0. For two identical metals ω1 = ω2 = ωp

we get the surface plasmons given by

ω2 =
1
2
ω2

p

(
1± e−kd

)
. (13)

They are identical with the surface plasmons of a plasma slab of
thickness d. These are well-known results [24–31].

Let us label by α all the eigenvalues Ωα of the system of
Equation (11). We compute the force acting between the two bodies
by using the zero-point energy

F =
∂

∂d

∑
α

1
2
~Ωα. (14)

Although it can be included straightforwardly, it is easy to see that
the temperature plays no significant role, so we may neglect the
temperature effects, as usually.

We introduce the two surface modes Ω1,2 given by Equation (13)
(labeled by wavevector k) into Equation (14). We can see that these
eigenfrequencies are functions of kd, so the force depends on distance
d as F ∼ 1/d3. As it is well-known, such a force between two bodies
implies an inter-atomic interaction ∼ 1/R6, where R is the distance
between two atoms. This is the well-known van der Waals-London
interaction [32]. Making use of the change of variable x = kd, and
using

∑
k = (2π)−2

∫
dk, it is a matter of straightforward computation

to get a force

F =
~ωp

8π
√

2d3

∫ ∞

0
dx · x2e−x

(
1√

1− e−x
− 1√

1 + e−x

)
(15)

per unit area from Equation (14), acting between two identical metals.
The integral in Equation (15) is ' 4, so we get F ' ~ωp/2π

√
2d3.
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In like manner we can compute the force between two (identical)
dielectrics, by replacing ω2 in Equation (13) by ω2−ω2

0 and taking the
limit ω0 À ωp. The result is a much weaker force F = ~ω4

p/128ω3
0d

3. It
can also be written as F = ~ω0(ε− 1)2/128d3, where ε ' 1 + ω2

p/ω2
0 is

the (static) dielectric function in the limit ω ¿ ω0. The same result is
obtained by making use of the formulae given in [32] for non-retarded
interaction within the framework of the fluctuations theory (equation
82.3 p. 343 in [32]). Making use of the eigenvalues given by the roots
of the dispersion Equation (12), we can compute in the same manner
the force acting between two distinct bodies. For instance, we can
consider a dielectric-metal pair and get straightforwardly the force
F = ~ω1ω

2
2/32π

√
2ω2

0d
3, where ω1 belongs to the metal and ω2, ω0

represent the dielectric.
It is worth noting that the present calculations are performed

for ideal solids (in particular loss-less materials). It was shown
recently [33] that the van der Waals-London or Casimir forces may
change drastically in complex materials, like poor conductors for
instance, both in their numerical coefficients and in their d-dependence.
Some of such changes seem to be related to the high-frequency
dielectric functions ε (ω →∞), which is not unity anymore, in contrast
with our Equation (3). For instance, the van der Waals-London
force ∼ 1/d3 may be removed entirely by a non-unity high-frequency
dielectric function. In order to include such effects in the present theory
we need a more elaborate model for such complex materials, which is
beyond the aim of the present paper.

3. SURFACE PLASMON-POLARITON MODES.
CASIMIR FORCE

We pass now to the retarded interaction. The electric field in
Equation (1) is given by E = −1

c
∂A
∂t − gradΦ, where A is the vector

potential and Φ is the scalar potential. These potentials are given by

A(r, z; t) =
1
c

∫
dr′

∫
dz′

j (r′, z′; t−R/c)
R

(16)

and

Φ(r, z; t) =
∫

dr′
∫

dz′
ρ (r′, z′; t−R/c)

R
, (17)

where

j = −en1 (v̇1, ẇ1) θ(z − d/2)− en2 (v̇2, ẇ2) θ(−z − d/2) (18)
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is the current density,

ρ = en1

(
divv1 +

∂w1

∂z

)
θ(z − d/2) + w1(d/2)δ(z − d/2)

+en2

(
divv2+

∂w2

∂z

)
θ(−z − d/2)+w2(−d/2)δ(z + d/2) (19)

is the charge density and R =
√

(r− r′)2 + (z − z′)2. We use
the Fourier representations given by Equation (8) and the Fourier
transform [34]

ei ω
c

√
r2+z2

√
r2 + z2

=
∑

k

2πi

κ
eikreiκ|z|, (20)

where κ =
√

ω2

c2
− k2. Then we compute the electric field from the

potentials given by Equations (16) and (17) and use Equation (1) for
ω0 = 0, γ = 0, E0 = 0 in order to get integral equations for v1,2, w1,2.
We define the wavevector k⊥ of magnitude k and perpendicular to
the wavevevctor k, and introduce the notations v1,2 = kv1,2/k, v⊥1,2 =
k⊥v1,2/k. Doing so, we get the first set of integral equations

v⊥1 =− iω2
1

2c2κ

∫ ∞

d/2
dz′eiκ|z−z′|v⊥1 (z′)

− iω2
2

2c2κ

∫ −d/2

−∞
dz′eiκ(z−z′)v⊥2 (z′), z > d/2,

v⊥2 =− iω2
1

2c2κ

∫ ∞

d/2
dz′e−iκ(z−z′)v⊥1 (z′)

− iω2
2

2c2κ

∫ −d/2

−∞
dz′eiκ|z−z′|v⊥2 (z′), z < −d/2,

(21)

where we dropped out the arguments ω, k.
A similar set of coupled integral equations are obtained from

Equations (16), (17) and (1) for v1,2 and w1,2. It is easy to notice
from these integral equations the relationship

w1,2 =
ik

κ2 − ω2
1,2/c2

∂v1,2

∂z
, (22)

which we use to eliminate w1,2; so, we are left with the second set of
two integral equations for v1,2:
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for z > d/2
c2κ2(ω2 − ω2

1)
c2κ2 − ω2

1

v1 = − iκω2
1(ω

2 − ω2
1)

2(c2κ2 − ω2
1)

∫ ∞

d/2
dz′eiκ|z−z′|v1(z′)

− iκω2
2(ω

2 − ω2
2)

2(c2κ2 − ω2
2)

∫ −d/2

−∞
dz′eiκ(z−z′)v2(z′)

+
c2k2ω2

1

2(c2κ2 − ω2
1)

eiκ(z−d/2)v1(d/2)− c2k2ω2
2

2(c2κ2 − ω2
2)

eiκ(z+d/2)v2(−d/2)(23)

and
c2κ2(ω2 − ω2

2)
c2κ2 − ω2

2

v2 = − iκω2
1(ω

2 − ω2
1)

2(c2κ2 − ω2
1)

∫ ∞

d/2
dz′e−iκ(z−z′)v1(z′)

− iκω2
2(ω

2 − ω2
2)

2(c2κ2 − ω2
2)

∫ −d/2

−∞
dz′eiκ|z−z′|v2(z′)

− c2k2ω2
1

2(c2κ2−ω2
1)

e−iκ(z−d/2)v1(d/2)+
c2k2ω2

2

2(c2κ2−ω2
2)

e−iκ(z+d/2)v2(−d/2)(24)

for z < −d/2. It is worth observing in deriving these equations the
non-intervertibility of the derivatives and the integrals, according to
the identity

∂

∂z

∫ ∞

d/2
dz

′
f
(
z
′) ∂

∂z′
e
iκ

∣∣∣z−z
′ ∣∣∣ = κ2

∫ ∞

d/2
dz

′
f
(
z
′)

e
iκ

∣∣∣z−z
′ ∣∣∣−2iκf(z) (25)

for any function f(z), z > d/2; a similar identity holds for z, z′ < −d/2.

It is due to the discontinuity in the derivative of the function e
iκ

∣∣∣z−z
′ ∣∣∣

for z = z
′
. We can see that these equations become Equation (10) in

the non-retarded limit by taking formally the limit c → ∞. However,
this is not so for their dispersion equations, as we shall see below.
One can also see from Equations (21), (23) and (24) that the coupling
between the two bodies is performed through both bulk and surface
degrees of freedom, in contrast to the non-retarded situation, where
this coupling occurs only through surfaces (Equation (11)).

We turn now to Equation (21). Taking the second derivative with
respect to z in these equations we get

∂2v⊥1,2

∂z2
+

(
κ2 − ω2

1,2

c2

)
v⊥1,2 = 0, (26)

which tells that v⊥1,2 are a superposition of two waves e±iκ1,2z, where

κ1,2 =

√
κ2 − ω2

1,2

c2
. (27)
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We note that such modes are polaritonic modes, since ω2 =
c2

(
k2 + κ2

)
= c2

(
k2 + κ2

1,2

)
+ ω2

1,2 = c2K2
1,2 + ω2

1,2, where K1,2 =
(k, κ1,2), which is the well-kown dispersion relation for the polaritonic
modes. It can also be written as ω2ε1,2 = c2K2

1,2, where ε1,2 =
1− ω2

1,2/ω2 is the dielectric function for metals. This relation is well-
known in the so-called thery of “effective medium permittivity”. We
take v⊥1,2 = A1,2e

iκ1,2z, where A1,2 are amplitudes to be determined.
Then, Equation (21) have non-trivial solutions for frequencies ω given
by the roots of the dispersion equation

e2iκd =
(κ1 + κ)(κ2 − κ)
(κ1 − κ)(κ2 + κ)

. (28)

Equation (28) has a branch of roots for the damped regime (evanescent
modes) κ1 = iα1, κ2 = −iα2, given by

tanκd =
κ (α1 + α2)
κ2 − α1α2

, (29)

where

α1,2 =

√
ω2

1,2

c2
− κ2, ω1,2 > cκ, (30)

and κ real. Since these modes are damped inside the bodies and
propagating in-between the bodies they may be called surface plasmon-
polariton modes. It is worth noting the correct choice of the sign of
the square root in this case, in order to get the correct behaviour at
infinity, v⊥1 = A⊥1 e−α1z for z > d/2 and v⊥2 = A⊥2 eα2z for z < −d/2.
The roots of Equation (29) can be written as

Ω1 = c

√
k2 +

π2x2
n

d2
, (31)

where x0 = 0 and n − 1/2 < xn < n + 1/2, n = 1, 2, 3, . . . for
xn < min (ω1, ω2) d/πc. For identical bodies the roots are given by

Ω = c

√
k2 +

π2n2

d2
(32)

for any integer n = 0, 1, 2, . . .. They correspond to propagating
(polariton) modes (κ1 = κ2 and κ all real numbers) and arise from
Equation (28) for e2iκd = 1. Equation (29) may have another solution
in the vicinity of the vertical asymptote of the function in its rhs,
which, however, is irrelevant for our discussion.

Similarly, v1,2 from Equations (23) and (24) obey the same
Equation (26). We look again for solutions of the form v1,2 =
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A1,2e
iκ1,2z, where A1,2 are amplitudes to be determined. According

to Equation (22) these modes are transverse modes, as they should be
(for κ1,2 real). The relevant dispersion equation is given by

e2iκd =
(κ1 + κ)(κ2 − κ)(κκ1 + k2)(κκ2 − k2)
(κ1 − κ)(κ2 + κ)(κκ1 − k2)(κκ2 + k2)

. (33)

We note that this dispersion equation does not become the non-
retarded dispersion Equation (28) by taking formally the limit c →∞.

An analysis similar to the one performed above for Equation (28)
shows that Equation (33) has a branch of roots

Ω2 = c

√
k2 +

π2y2
n

d2
, (34)

where y0 = 0 and yn < min (ω1, ω2) d/πc. They correspond to surface
plasmon-polariton modes κ1 = iα1, κ2 = −iα2 and κ real. We
note that yn may differ from xn. For identical bodies these roots
are those given by Equation (32). Some other isolated roots may
appear, as for instance the one corresponding to an overall damping,
i.e., κ1 = iα1, κ2 = −iα2, κ = iα, where α =

√
k2 − ω2/c2, ω < ck.

It is given by

Ω0 = c

√
k2 − π2z2

0

d2
, (35)

where min (ω1, ω2) < π
√

2cz0/d < max (ω1, ω2). Such an isolated mode
does not contribute significantly to the energy, so we may neglect it in
our subsequent analysis.

We can take the limit d → ∞ in Equation (33). It can be shown
that this limit amounts formally to put e2iκd = 0 [23]. We get in this
case the surface plasmon-polariton modes corresponding to a semi-
infinite body, given by αα1,2 = k2, i.e.,

ω2 =
2ω2

1,2c
2k2

ω2
1,2 + 2c2k2 +

√
ω4

1,2 + 4c4k4
, (36)

as derived previously [23]. In general, there are problems with taking
formally the limits d → 0 or d → ∞ in the above equations, as
expected.

It is also worth interesting to look for solutions of the type

v1,2 = A1,2

[
eiκ1,2z − e±iκ1,2(d∓z)

]
(37)

for Equations (23) and (24), which are vanishing on the surfaces,
v1,2(±d/2) (“fixed surfaces” boundary conditions). In this case, we
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get again the resonance modes Ω given by Equation (32), irrespective
of the bodies being distinct or identical. In addition, we may get special
modes ω = ω1,2, ω2 = c2k2 + ω2

1,2 (κ1,2 = 0) or ω = ck (κ = 0), which
do not depend on distance d. Other boundary conditions can be put
on surfaces z = ±d/2, and we can get the corresponding eigenmodes.

We note that the dispersion Equations (28) and (33) appear,
though in a disguised form, in various formulations of the fluctuations
theory [2, 3, 5, 32]. Within the framework of this theory the dielectric
function is included from the beginning. On the contrary, we recover
the dielectric function in the final results of the present approach, which
shows that our approach is equivalent with the so-called “effective
medium permittivity” theory.

We pass now to the zero-point energy corresponding to the Ω1,2-
eigenmodes given by Equations (31) and (34), or the Ω-branch given
by Equation (32) (for identical bodies or “fixed surfaces”, in the limit
min (ω1, ω2) d/πc À 1. These are the only eigenfrequencies which
depend on distance d. In the limit min (ω1, ω2) d/πc À 1 these modes
are dense sets, and it is easy to see that their contributions to the
zero-point energy are equal (corresponding to the two polarizations),
so we can write the total zero-point energy as

E = ~c
∑

kn=0

√
k2 +

π2x2
n

d2
, (38)

where xn are defined above; for identical bodies (or for “fixed
surfaces”) xn = n. We follow the standard regularization procedure by
removing the ultraviolet divergencies and using the Euler-MacLaurin
formula [35]. As it is well-known, the energy thus regularized reads

E =
~c
2π

∑

k=1

B2k

(2k)!
f (2k−1)(x0), (39)

where B2k are Bernoulli’s numbers and

f(x) =
∫

0
dk · k

√
k2 +

π2x2

d2
=

1
2

∫

π2x2/d2

du · √u. (40)

Since x0 = 0 (and y0 = 0), we get the well-known energy E =
−π2~cB4/4!d3 = −π2~c/720d3 and Casimir force F = π2~c/240d4

per unit area. The same result is obtained for the Ω-modes given
by Equation (32) with n = 0, 1, 2, . . ., corrresponding to identical
bodies or the “fixed surfaces” boundary conditions v1,2(±d/2). It
is easy to see that for decreasing min (ω1, ω2) d/πc the number of
xn-roots contributing to energy decreases, the numerical coefficient
of the Casimir force decreases gradually, and the d−4-dependence
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deteriorates, untill a cross-over may occur to the non-retarded van
der Waals-London d−3-force.

The dispersion Equations (28) and (33) hold also for dielectrics,
providing the wavevectors κ1,2 are changed according to

κ2
1,2 → κ2 − ω2

1,2

c2

ω2

ω2 − ω2
01,2

. (41)

We can get a usual model of dielectric for ω01,2 À ω1,2. In this case,
the wavevectors κ1,2 become

κ1,2 =

√
κ2 +

ω2
1,2

ω2
01,2

ω2

c2
, (42)

and we cannot have anymore surface plasmon-polariton modes
(evanescent modes). In general, under these circumstances, the
dispersion Equations (28) and (33) have no solutions, except for
identical bodies when we may have the Ω-modes given by Equation (32)
(e2iκd = 1) for n = 0, 1, 2, . . .. These modes correspond to propagating
polaritons and give again the classical result for the Casimir force
F = π2~c/240d4 per unit area. Similarly, for a dielectric-metal pair
there is no force, except for boundary conditions v1,2(±d/2) when the
resonant Ω-modes given by Equation (32) for n = 0, 1, 2, . . . are present.
The latter result holds for any pair of bodies. It is, however, worth
stressing that such results depend on our model of dielectric function
for dielectrics, and, in general, it is necessary to have a quantum-
mechanical treatment for the internal dynamics of the dielectrics.

4. DISCUSSION AND CONCLUSION

In conclusion, we may say that we have derived here van der Waals-
London and Casimir forces acting between two semi-infinite bodies
with parallel surfaces by calculating the electromagnetic eigenmodes in
matter and estimating their zero-point energy (vacuum fluctuations).
We have adopted well-known, simple, usual models for matter
polarization in metals and dielectrics and made use of the equation of
motion for the polarization in order to get coupled integral equations.
The eigenfrequencies of these equations have been identified and used
in calculating the zero-point energy. In the non-retarded (Coulomb)
limit we get the well-known van der Waals-London d−3-force, arising
from the surface plasmons, where d is the distance between the two
bodies. The numerical coefficient of this force acquires various values,
depending on the nature of the bodies and on their being distinct



128 Apostol and Vaman

or identical. When retardation is included we get the Casimir d−4-
force arising from surface plasmon-polariton modes (evanescent modes)
for a pair of metals. The classical numerical coefficient of this force
(π2/240) is obtained for distances much larger than the characteristic
wavelengths (∼ c/ω1,2, where ω1,2 are the plasmon frequencies) of the
bodies, and it diminishes gradually for shorter distances, while the
force loses its characteristic d−4-dependence. For a pair of identical
dielectrics we get the classical Casimir result arising from propagating
polariton modes. The same result holds for any pair of bodies with
“fixed surfaces” boundary conditions.

As it is well-known, the fluctuations theory [32] predicts Casimir
forces between any pair of bodies, in contrast with our results, which
give a vanishing force for two distinct dielectrics, for instance. The
difference originates in the circumstance, usually overlooked, that the
equivalent of our dispersion Equations (28) and (33) in the fluctuations
theory have no solutions in some cases, as, for instance, for distinct
dielectrics. The usual theorem of meromorphic functions, applied
within the framework of the fluctuations theory [4–6], gives then a
finite result, but it does not represent the energy of the eigenmodes.
The problem does not appear in the non-retarded regime, where our
results coincide with those of the fluctuations theory. On the other
hand, we must stress again upon the fact that our model for the
dielectric function may not be perfectly adequate for describing the
internal polarization of dielectric matter. Again, this is immaterial
in the non-retarded regime, and we succeeded to compute a d−4-van
der Waals-London force between a classical model of polarizable point-
like particle and a semi-infinite body. But our approach fails in this
case in the retarded regime, where a quantum mechanical treatment is
necessary, as in the original attempt in [36]).

Finally, it is worth noting that the dispersion Equations (28)
and (33) can also be obtained by calculating the reflected field in-
between the bodies (fields for semi-infinite bodies) [23]. If r1,2 are the
amplitudes of these fields (for a given polarization), then the dispersion
Equations (28) and (33) are obtained from r1 = r2e

2iκd. We note that
|r1,2|2 are the reflection coefficients, and for two perfectly reflecting
bodies |r1| = |r2| = 1. If we neglect the phases of the coefficients
r1,2, and put r1 = r2 = 1, we get the Casimir dispersion equation
e2iκd = 1 (Ω-modes given by Equation (32)). However, it is precisely
these phases that give the damped surface plasmon-polariton regime,
as we have shown in the present paper, and these phases are not equal
in the damped regime, not even for identical bodies. This is related
to the correct choice of the sign of the square root in κ1,2, which,
as we have shown here, is κ1 = iα1 and κ2 = −iα2 (Equations (29)
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and (30)). For the propagating regime (vanishing phases) and identical
bodies (r1 = r2) we get again the Casimir dispersion equation e2iκd = 1,
as we do for “fixed surfaces” boundary conditions (in the latter case
irrespective of the bodies).
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